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Abstract

The real world image databases such as Flickr are char-
acterized by continuous addition of new images. The recent
approaches for image annotation, i.e. the problem of as-
signing tags to images, have two major drawbacks. First,
either models are learned using the entire training data, or
to handle the issue of dataset imbalance, tag-specific dis-
criminative models are trained. Such models become ob-
solete and require relearning when new images and tags
are added to database. Second, the task of feature-fusion
is typically dealt using ad-hoc approaches. In this paper,
we present a weighted extension of Multi-view Non-negative
Matrix Factorization (NMF) to address the aforementioned
drawbacks. The key idea is to learn query-specific genera-
tive model on the features of nearest-neighbors and tags us-
ing the proposed NMF-KNN approach which imposes con-
sensus constraint on the coefficient matrices across different
features. This results in coefficient vectors across features
to be consistent and, thus, naturally solves the problem of
feature fusion, while the weight matrices introduced in the
proposed formulation alleviate the issue of dataset imbal-
ance. Furthermore, our approach, being query-specific, is
unaffected by addition of images and tags in a database.
We tested our method on two datasets used for evaluation
of image annotation and obtained competitive results.

1. Introduction

Image annotation refers to the task of assigning relevant
tags to query images based on their visual content [22, 15].
The problem is difficult because an arbitrary image can cap-
ture a variety of visual concepts, each of which would re-
quire separate detection. Each image can be represented
using multiple features which may be low-level, e.g. RGB
histograms and HOG, or mid-level such as object concepts,
e.g. human, dog, sky etc., or even high-level denoting the
broader class to which the image belongs, e.g., structures,
animal, food. These different features capture different as-

pects or views' of the image, thereby, providing comple-
mentary information. However, since each feature repre-
sents the same image, they all capture the same underlying
latent structure. That is, it is possible to transform feature
vectors for each image so that the new representations, with
respect to some pre-defined distance metric, are consistent
across all the views.

Automatic image annotation is crucial for searchable
databases like Flickr, Photobucket, Picassa or Facebook.
One of the key characteristics of real world databases is
the continuous addition of new images, which contain new
tags as well. Till 2011, 6 billion images had been uploaded
to Flickr> while almost a quarter trillion images have been
shared on Facebook® with a total of 300 million images up-
loaded every day. For a method to be practical for such
databases, it has to rely on minimal training as the addi-
tion of new images and tags can render the learned mod-
els less effective over time. This holds true for both the
methods that learn a direct mapping from features to tags
[38, 3], or those that learn tag-specific discriminative mod-
els [15, 30, 34] where positive set contains images which
contain a particular tag and the negative set contains images
which do not have that tag. Obviously, as new images and
tags are introduced into the database, the positive set for
each tag will change, requiring retraining of the models.

Inspired by the success of the recent nearest-neighbor ap-
proaches for image annotation [22, 15], we propose a novel
method that learns a query-specific generative model using
the nearest-neighbors. The proposed approach is illustrated
in Figure 1. The key idea of our approach is to treat tags as
another view in addition to visual features, and find a joint
factorization of all views into basis and coefficient matrices
such that the coefficients of each training image are similar
across views. This forces each basis vector to capture same
latent concept in each view as well. After the factorization,
the tags are transferred using both the model (basis) and the

IFor consistency with Machine Learning literature, views means fea-
tures in this paper.
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Figure 1. Schematic illustration of the proposed method: Given a query image, we extract different features which are used to find its
nearest-neighbors. Then, using Non-negative Matrix Factorization using all the features X, including tags, we find basis U and coeffi-
cient matrices V’. The factorization for all matrices is done in a joint fashion by imposing a consensus constraint (red double arrows).
Furthermore, to handle dataset imbalance, we introduce weight matrices T and W within the formulation. Using the basis matrices and
corresponding features of the query, we find coefficient vector for each view (green lines). The matrix product of the tag-basis U*%9) and
mean of coefficient vectors from all views gives score for each tag (blue lines).

visual features of the query. Thus, given a query image,
we first extract different visual features and find its nearest-
neighbors. Then, using Non-negative Matrix Factorization
on all views, i.e., visual features as well as tags, we find ba-
sis and coefficient matrices. The coefficient vectors from all
views, recovered using visual features of the query and the
corresponding basis, are then averaged to get a unique co-
efficient vector. The matrix product of the final vector with
basis for tags gives the scores for individual tags.

Non-negative Matrix Factorization [19] is a well-studied
problem where the aim is to decompose a matrix into non-
negative basis and coefficient matrices. The non-negative
coefficients can then be seen as a soft assignment in terms
of discovered basis [ 10, 5]. For the case of image annotation
where multiple views are available, this problem requires
NMF across all views. This is severely under-constrained
and since the views capture the same latent structure, a con-
sensus regularization can enforce the solution to discover
a consistent latent structure for all views [21]. Each basis
in each view then represents the same latent concept across
views. In this work, we treat annotated tags as another view
of the image and learn a set of basis across all views that cor-
respond to the same underlying concepts. Note that, these
concepts may not have any semantics associated with them,
all that is implied is consistency in terms of the abstraction
they capture.

One important issue in image annotation as encountered
by all previous works is that of rare tags - tags that do not
occur frequently in the training data. For that, we introduce
two weight matrices within the Multi-view NMF framework

that increase the importance of both the rare tags and the im-
ages that contain rare tags. By assigning suitable weights,
the NMF learns consistent latent concepts that are forced
to capture the rare tags well, thus, allowing us to alleviate
the issue of dataset imbalance by increasing recall for the
rare tags. In summary, we propose to use Multi-view NMF
for image annotation which learns a generative model spe-
cific to a particular query. The factorization is performed in
such a way that ensures consistency in coefficients across
features. This yields an elegant solution to the problem of
feature fusion. Furthermore, we introduce weight matrices
which increase the recall of the rare tags, without requiring
tag-specific discriminative models. The proposed solution
is practical for real world datasets characterized by contin-
uous addition of images and tags.

2. Related Work

Over the past decade, significant efforts have been de-
voted to the task of image annotation. Many approaches are
generative in nature consisting of either the topic or mix-
ture models. In mixture model-based approaches, each an-
notated image is modeled as a mixture of topics over vi-
sual and tag features, where the mixture proportions are
shared between different features or views. Examples in-
clude latent Dirichlet allocation [1], probabilistic latent se-
mantic analysis [24], hierarchical Dirichlet processes [35],
machine translation methods [6], and canonical correlation
analysis [27]. The approach by Xiang et al. [32] also per-
forms query-specific training using Markov random fields



but it has expensive testing as one MRF is generated per
tag. Mixture models define a joint distribution over im-
age features and annotations. Given a query image, these
models compute the conditional probability over tags given
the visual features by marginalizing the joint likelihood.
Carneiro et al. [2] use a fixed number of mixture compo-
nents over visual features per tag, while in [7], it is defined
by using the training images as components over visual fea-
tures and tags. Yavlinsky et al. [37] annotate images using
only global features and perform nonparametric density es-
timation over the features. Besides generative approaches,
discriminative models have also been used including SVM
[4, 30], ranking SVM by Grangier et al. [1 1] and the method
by Hertz et al. [16] which uses boosting.

A number of recent papers have reported better results
with simple data-driven approaches by finding visually sim-
ilar training images for a given query followed by trans-
fer of tags from those images. Joint Equal Contribution
(JEC) by Makadia et al. [22] was one of the first pa-
pers to highlight the effectiveness of the nearest-neighbors
(NN) for image annotation. The paper presented an ad-hoc
but simple procedure to transfer annotations from NN to
the query image. The authors found that equal contribu-
tions from different features (mean of distances) performs
on par with computationally expensive L;-regularized Lo-
gistic Regression (Lasso). In contrast, we propose to fuse
features using Multi-view NMF and show that it improves
results. Guillaumin et al. [15] introduced TagProp which
also uses nearest-neighbors to transfer tags. They showed
that using large number of features, metric learning and spe-
cial handling of rare tags (tag-specific models) improve re-
sults of image annotation. The nearest-neighbors are em-
ployed both during training and testing. Verma and Jawa-
har [29] presented two-pass kNN to find neighbors in se-
mantic neighborhoods besides metric learning which learns
weights for combining different features. The nearest-
neighbor search they require for their method scales super-
linearly with the number of training images, as a single im-
age can occur in multiple semantic neighborhoods.

Non-negative matrix factorization has been successfully
applied to various domains including text (document clus-
tering [33]) and vision (face recognition [14]) and, in gen-
eral, is an active area of research in clustering. Unlike PCA,
the non-negativity of coefficients can be readily translated
as weighted-assignment to basis or clusters. To understand
the relationship between PCA, VQ and single-view NMF,
the reader is referred to [18, 14]. The work by [12] pro-
poses to integrate multiple views but the optimization is
not performed jointly among views. They also propose a
model selection strategy for identifying the correct number
of clusters (basis). The work by Liu et al. [21] proposes a
multi-view extension of NMF along with a novel normal-
ization which makes all the basis to have unit sum permit-

ting interpretation in terms of pLSA [10, 5]. Our approach
is a weighted extension of [21], and differs in three aspects.
First, [21] uses Multi-view NMF for unsupervised data clus-
tering, i.e. they assume all data is available. For the task of
image annotation which is supervised multi-label concept
detection, testing data is not known. Thus, we need to re-
cover coefficients for the query image during testing. Sec-
ond, in our our formulation, we introduce weight matrices
to handle imbalanced data. The third and most important
difference is that, while [21] only uses visual features, we
use tags as another feature and force Multi-view NMF to
learn a set of basis across visual features and tags that are
consistent across views. The key insight is that if we learn
basis across features enforcing consistency on coefficients,
then it is possible to use learned tag basis and query’s visual
features to obtain tags.

The proposed use of Multi-view NMF is also related to
Relaxed Collaborative Representation [36], but rather than
using features of training images directly as dictionaries,
we learn a query-specific set of basis in each view and use
that to transfer tags from annotated nearest-neighbors to
the query image. One can also see our proposed approach
as a multi-view extension with multiple weight matrices of
the weighted but single-view NMF [13].

3. Proposed Approach

Given a query image, we first find its nearest-neighbors
in the database which are assumed to be annotated with
tags. Each image is represented in terms of visual features
which we treat as different views of the image. We also
treat tags as another view by obtaining binary vectors with
length equal to the vocabulary size of tags. Then, the matri-
ces from all views are decomposed to obtain basis in each
view such that the coefficient vector of each NN image is
consistent across all views. This gives a query-specific gen-
erative model from which the tags of query image are gen-
erated using its visual features.

3.1. Weighted Multi-view Non-negative Matrix Fac-
torization (Query-specific Training)

Given a query image represented with multiple visual
features, we compute its distance to images in the database
in each view using pre-defined distance metrics (see Sec.
4). Next, the distance is normalized to lie between 0 and
1 for all the images for each view. Then, the distances
across views are combined by taking their average and the
N images with the smallest average distance are selected as
nearest-neighbors.

Let X\/) ¢ RM/xN represent the matrix obtained by
horizontal concatenation of features vectors of length My
from N images in f-th view, with a total of F' views. Since
we treat tags as another view, we let X1 = x(ta9),



The goal of Multi-view NMF is to decompose each X
into a basis matrix UYY) € RMs*K and a coefficient matrix
V) e RVXK  where the parameter K defines the number
of basis or latent concepts in each view. The factorization
is subjected to soft-consensus regularization which enforces
coefficient vectors corresponding to each image to be simi-
lar to a consensus vector in all views. This also results in the
basis vectors to capture similar contents in their respective
views. This is particularly desirable for image annotation
as the coefficient vectors, recovered using the basis and the
visual features of the query, are comparable across views.

Furthermore, to improve predictability of rare tags, we
introduce two weight matrices in Multi-view NMF formu-
lation which bias the factorization towards improved recon-
struction for rare tags. Weight matrix T) € RMw *M(p
is identity for views corresponding to visual features. How-
ever, it is a diagonal matrix for tag-view and is used to in-
crease weight of rare tags so that reconstruction is biased
towards a solution which results in improved performance
on such tags. The matrix W € RY*¥ gives more weight to
images containing rare tags and is applied to all views.

The objective function for Weighted Multi-view NMF
which constitutes reconstruction and regularization terms is
given by:
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where (.)" denotes transpose operator. Since the factor-
ization obtained by NMF is not unique, i.e., uv =
UQ 'QV/, we use the Q to normalize U so that each ba-
sis vector sums to 1, i.e., ||U. ;|| = 1. The diagonal matrix
Q) ¢ REXK ig defined as:
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The minimization is performed through an iterative
procedure. First, we minimize L over UY) and V)
keeping V* fixed. In the next step, we minimize L over V*
keeping UY) and V) fixed. The procedure is repeated
for a fixed number of iterations. Both UY) and V¥) are
initialized with non-negative values. Since the function is
non-convex, optimization converges to a local minima.

Minimize over UY) and V), given V*: With
V* fixed, UY) does not depend on U(f/) and VU for
f" # f. In the following treatment, we drop notation of

feature for clarity. The objective function for a particular

feature for fixed V* is given by,
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Compute U, given V() and V*: We obtain the follow-

ing multiplicative update rule (similar to [21]):
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Compute vV ), given UY) and V*: We obtain the follow-
ing multiplicative update rule (similar to [21]):
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Minimize over V*, given UY) and V¥ Once UV
and V) have been updated for each view in a particular
iteration, we take derivative of (1) w.r.t V¥, set it equal to 0
and obtain the following closed-form solution to V*:

Z}ll /\fWW/V(f)Q(f)

v* =
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(6)

3.2. Boosting Mechanism for Rare Tags

Since rare tags appear with low frequency, they are over-
shadowed by frequent tags during training which leads to
low recall for rare tags. The matrices T(%9) and W intro-
duced in the NMF improve recall and address the issue of
dataset imbalance. Weight matrix T(**9) is a diagonal ma-
trix with Tgtf 9) set to 1/frequency of i-th tag in a query’s
neighborhood. T(*a9) penalizes inaccurate matrix factoriza-
tion in Eq.1 severely for rare tags to ensure that the learned
ytes) accurately models the rare tags. Thus, all tags con-
tribute equally to the loss function. Furthermore, the diago-
nal matrix W is embedded in Eq.1 to bias the learned basis
matrices towards a more accurate factorization of images
with rare tags. W; ; equals the summation of 1/frequency
of tags of j-th NN example. The images annotated with rare
tags are more important for an accurate generative model
around a query as they capture co-occurrence of rare tags
with the more frequent ones.

3.3. Recovering Tags of Query (Testing)

Given the factorized basis using features and tags of
nearest-neighbors of a particular query image, we recover



the coefficients for visual features of the query in terms
of learned basis using GPSR[&], which gives stable re-
sults than least squares especially when basis matrix is ill-
conditioned. Next, the coefficient vectors from all views

are combined using weighted average with weight for view

. . ~(t
f equal to As to estimate the coefficient vector V( ag).

In our experiments, those were set to 0.01 for visual fea-

tures and 1 for tags, so that basis for visual features are

aligned with those of tags. Finally, the product of V(mg)

with the U9 which was learned during training, i.e.,

ytes) (V(mg))’ gives the scores for predicted tags. The de-
sired number of tags can be obtained by ranking the tags
according to the obtained scores.

4. Experiments

In this section, we first explain the datasets used in our
experiments as well as metrics used for evaluation. Next,
we present the experimental results of proposed method on
different datasets and compare them to previous works. Fi-
nally, we evaluate the effect of weight matrices and con-
clude the section with a brief discussion on the complexity
of the proposed method.

4.1. Datasets and Evaluation Metrics

We performed experiments on two popular and publicly
available datasets Corel5SK and ESP Game. Initially used
by [6], Corel5K is the most common dataset for tag-based
image annotation and retrieval. The training and testing sets
consist of 4, 500 and 499 images, respectively. Images are
manually annotated with, 3.4 tags on average, from a dic-
tionary of 260 tags. ESP Game contains images annotated
through an on-line game [31] in which players had to pre-
dict the same tags for images to gain points. Training and
testing sets of ESP Game contain 18, 689 and 2, 081 images,
respectively, with each image has 4.7 tags on average, from
a dictionary of 268 tags. Figure 2 shows some example im-
ages from ESP Game dataset where we also illustrate the
tag ambiguity for two images which share many tags while
being visually and conceptually dissimilar.

We follow the evaluation metrics used in [15]. We au-
tomatically annotate each image with 5 tags and then com-
pute precision and recall for each tag. The average precision
(P) and average recall (R) across all tags in addition to the
number of tags with non-zero recall (N+) is reported for
performance evaluation. The F); measure, defined as har-
monic mean of P and R (F} = 2%), is also reported.
4.2. Features

We used the publicly available features* provided by
[15]. These are categorized as global and local descrip-

4Features: GIST, DenseSIFT, DenseSIFTV3H1, HarrisSIFT, Harris-
SIFTV3HI1, DenseHue, DenseHueV3H1, HarrisHue, HarrisHueV3H1,

(b) circle, orange, round (c) circle, music, orange, red, round, white

Figure 2. Example images from ESP Game dataset are illustrated
in 2(a). Figures 2(b) and 2(c) share many tags, although they are
conceptually and visually different.

tors. Global descriptors consist of GIST [26] and color his-
tograms of RGB, Lab and HSV. Local descriptors include
SIFT and robust (invariant to lighting geometry and spec-
ularities) hue descriptor [28] extracted around multi-scale
grid and Harris-Laplacian interest points. Color histograms,
SIFT and hue descriptors are also computed over three
equal horizontal partitions (denoted by V3H1) for each im-
age to encode spatial information. This provides a total of
F' = 15 features representing each image. To compare two
features, we used L; for color histograms, Lo for GIST and
x? for SIFT and hue descriptors, as was done in [15].

4.3. Results

Table 1 compares the performance of the proposed
NMEF-KNN framework to existing approaches on CorelSk
dataset. We can see that NMF-KNN significantly outper-
forms other image annotation algorithms including the ML
variant of TagProp which does not use tag-specific discrim-
inative models. This indicates that the proposed approach
is more effective than weighted nearest-neighbor based ap-
proaches. To handle the issue of rare tags and boost their re-
call, TagProp [15] learns discriminant models for each tag
given by the variant TagProp-cML, which is the state-of-

RGB, RGBV3HI, Lab, LabV3HI1, HSV, HSVV3HI - available at http:
//tinyurl.com/15d68s]
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Figure 3. Example images from ESP Game dataset and the corresponding top 5 tags predicted using NMF-KNN are shown in this figure.
Predicted tags in green appear in the ground truth while red ones do not. In many cases, even though the proposed method has predicted
relevant tags to the image, those tags are missing in the ground truth. That is because the tag lists are not complete and are generally a

subset of relevant tags.

] Method \ P \ R \ Iy \ N+ \ provides competitive results w.r.t R and N+ to TagProp-
CRM]17] 16 | 19 ] 173 ] 107 oML. This shows that learning a model around a query is
InfNet[23] 17 | 24 | 199 | 112 more useful and the natural capabilities of features fusion
NPDE[37] 18 | 21 | 19.3 | 114 and handling rare tags, without requiring training on entire
SML2] 23 [ 29 | 25.6 | 137 datasets, makes our approach superior to the previous meth-
MBRM]7] 24 | 25 | 244 | 122 ods. NMF-KNN performs slightly worse than FastTag [3],
TGLM][20] 25129 | 26.8 | 131 however, at constant time complexity during testing. Fig-
JEC[22] 27 | 32| 29.2 | 139 ure 3 illustrates qualitative results of image annotation us-
TagProp-ML][15] 31 | 37 | 33.7 | 146 ing proposed method on some example images from ESP
TagProp-cML[15] | 33 | 42 | 36.9 | 160 Game dataset. True positives, i.e., the tags predicted by our
Group Sparsity[38] | 30 | 33 | 31.4 | 146 method that also occur in ground truth are shown in green,
FastTag|[3] 32 | 43 | 36.7 | 166 while false positives are shown in red. It is evident that
NMF-KNN 38 | 56 | 452 | 150 many of the predicted tags are relevant to the image content,

Table 1. Performance evaluation on Corel5k dataset

even though, they are not annotated in the ground truth. An-
other important difference between our method and exist-

’ Method ‘ P ‘ R ‘ F ‘ N+ ‘ ing methods [22, 15, 29] is the number of nearest-neighbors
MBRM][ /] 18119 | 184 | 209 used to propagate the tags. These methods retrieve around
JEC[2?] 22| 25| 234 | 224 N = 200 neighbors per query while we use only N = 40
TagProp-oSD[15] | 39 | 24 | 29.7 | 232 neighbors. This suggests that NMF-KNN can build a reli-
TagProp-ML][ 5] 49 | 20 | 284 | 213 able mqqel around the query with 20% data compared to the
TagProp-oML][15] | 39 | 27 | 31.9 | 239 competitive methods.

FastTag|3] 46 | 22 | 29.7 | 247 To measure the effect of K, we evaluated the perfor-
NMF-KNN 33 | 26 | 29.0 | 238 mance of NMF-KNN by increasing the value of K from

Table 2. Performance evaluation on ESP Game dataset

the-art algorithm on this dataset. Although, TagProp-cML
has a slightly higher N+ with a difference of 10, the pro-
posed method gives a much higher P, R, and F} making it
competitive to TagProp-cML.

Table 2 shows the results of the proposed and compari-
son methods on ESP Game dataset. The proposed method

10 to 150 when N is fixed to 40. We observed that, for
K beyond 50, R does not improve significantly while P
initially increases and then reaches a plateau. Meanwhile,
a larger K increases the computational complexity of the
model and therefore is not desirable. We also studied the
effect of neighborhood size, IV, on the performance of our
proposed method. For IV larger than 40, we did not observe
a considerable change in R, however P begins to decrease.
A possible explanation is that for large neighborhood sizes,
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Figure 4. Evaluating the effect of Weight Matrices: Evaluated on
Corel5k dataset, 4(a) shows the effect of using weight matrices,
before (blue) and after (yellow), on the annotation performance.
Tags are grouped based on their frequency of appearance in the
dataset. The first bin groups words that have between 1 to 5 images
related to them. The second bin is associated with tags with the
images between 6 to 10, and so on. In 4(b) we show the same for
first group of 4(a) to analyze the recall of tags with 1 to 5 related
images. 4(c) and 4(d) give the fraction of tags in each bin of 4(a)
and 4(b), respectively. This shows that we can improve the recall
of rare tags without sacrificing that of frequent tags.

we allow irrelevant training examples to participate in con-
struction of our query-specific model and therefore, learned
basis become contaminated.

4.4. Effect of W and T

To evaluate the proposed boosting mechanism for rare
tags, we study the effect of W and T in the Multi-view
NMF. In Fig. 4(a) and 4(b), the y-axis shows the frequency
with which tags appear in the training dataset. In Fig. 4(a),
they have been grouped, while in Fig. 4(b), we show them
individually. The z-axis shows the value of recall and the
blue and yellow bars represent the before and after effect
of W and T, respectively. In Fig. 4(c) and 4(d), the frac-
tion of tags that belong to each group are shown. Boosting
mechanism improves the mean recall of tags in five groups
(Fig. 4(a)) by 1.91%, 1.48%, 0.94%, 1.82% and 1.67%,
respectively. The first group contains tags with frequency
less than 6 while the last one with frequency greater than
100. Fig. 4(c) shows that the majority (70.38%) of tags
are assigned to less than 6 images in the dataset. From Fig.
4(d), we can see that tags with only 1 relevant image in the
dataset are dominant. The proposed boosting mechanism
increased the recall of tags with 1, 2 and 3 relevant tags in
the dataset by 2.47%, 2.13% and 3.70%, respectively. In
summary, Fig. 4(a) shows that for the tags belonging to all
frequencies, the boosting mechanism improves the recall.
This is different from TagProp [15] which sacrifices recall

of frequent tags to boost that of rare tags.

4.5. Computational Complexity

As noted by [9, 3, 38], [I5]’s training complexity is
quadratic, O(n'g), where n is the number of training im-
ages. Since it relies on sophisticated training procedures
and per tag optimizations, it is not scalable on large datasets.
Adding new images or tags to the dataset influences the per-
formance of trained models as both positive and negative in-
stances change for discriminative classifiers. JEC [22] and
FastTag [3] are comparable with proposed method in terms
of complexity but [22] provides considerably lower perfor-
mance. Since [3] performs a global co-regularized learn-
ing, regressor (W) and enricher (B) matrices have to be re-
trained when a new set of samples or tags are introduced to
the dataset.

The proposed Multi-view NMF framework does not re-
quire any training but has O(n) test-time complexity due
to nearest-neighbor look up for the query image where n
is the total number of training examples. The complexity
of Weighted Multi-view NMF is linear with respect to the
cardinality of chosen nearest-neighborhood that results in
O(n) complexity for the proposed approach.

In our experiments, query-specific training usually con-
verges after 15 — 20 iterations. The computation cost break-
down of NMF-KNN follows: 80% for finding the nearest-
neighbors, 19% for learning the model and 1% for predict-
ing tags. Sub-linear time complexity can be achieved by
employing approximate NN search methods e.g. FLANN
[25] or k-d trees in the implementation of NMF-KNN.

5. Conclusion and Future Work

The proposed approach is suitable to real-world
databases which are characterized by a continuous increase
in both the images and tags assigned to those images. It is a
hybrid of nearest-neighbor and generative approaches and
does not require any training in the form of global mapping
between features and tags or tag-specific discriminant mod-
els. NMF-KNN allows feature-fusion in a mathematically
coherent way by discovering a set of basis using both the
visual features and annotated tags. The weight matrices
handle the issue of dataset imbalance by increasing the
recall of rare tags. The proposed approach offers a practical
solution to real world datasets and performs competitively
with state-of-the-art methods without requiring any train-
ing. This is due to the proposed Weighted Multi-view
NMF which learns a superior model specific to each query
while requiring fewer number of nearest-neighbors for tag
transfer. For future work, we intend to find the weight
matrices within optimization instead of pre-defining them.
We would also like to explore the possibility of introducing
kernels within the proposed framework.
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