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Abstract

We present a practical framework to automatically de-
tect shadows in real world scenes from a single photograph.
Previous works on shadow detection put a lot of effort in
designing shadow variant and invariant hand-crafted fea-
tures. In contrast, our framework automatically learns the
most relevant features in a supervised manner using mul-
tiple convolutional deep neural networks (ConvNets). The
7-layer network architecture of each ConvNet consists of
alternating convolution and sub-sampling layers. The pro-
posed framework learns features at the super-pixel level and
along the object boundaries. In both cases, features are ex-
tracted using a context aware window centered at interest
points. The predicted posteriors based on the learned fea-
tures are fed to a conditional random field model to gen-
erate smooth shadow contours. Our proposed framework
consistently performed better than the state-of-the-art on all
major shadow databases collected under a variety of con-
ditions.

1. Introduction
Shadows provide useful clues of the scene characteris-

tics which can help in visual scene understanding. As early
as the time of Da Vinci, the properties of shadows were well
studied [7]. Recently, shadows have been used for tasks re-
lated to object shape [17, 18], size, movement [14], number
of light sources and illumination conditions [23]. Shadows
have a particular practical importance in augmented reality
applications, where the illumination conditions in a scene
can be used to seamlessly render virtual objects and their
casted shadows. In digital photography, information about
shadows and their removal can help to improve the visual
quality of photographs. Beside the above mentioned assis-
tive roles, shadows can also cause complications in many
fundamental computer vision tasks. They can degrade the
performance of object recognition, stereo, shape reconstruc-
tion, image segmentation and scene analysis. Shadows are
also a serious concern for aerial imaging and object tracking
in video sequences [21].

Figure 1: Top: A photograph with its shadow map on the right.
Bottom: The extracted local information from homogeneous re-
gions (left) and along the boundaries (right) is used in our ap-
proach to detect shadows. (Best viewed in color)

Despite the ambiguities generated by shadows, the Hu-
man Visual System (HVS) does not face any real diffi-
culty in filtering out the degradations caused by shadows.
We need to equip machines with these same visual com-
prehension abilities. Inspired by the hierarchical architec-
ture of the human visual cortex, many deep representa-
tion learning architectures have been proposed in the last
decade. We draw our motivation from the recent successes
of these deep learning methods in many computer vision
tasks where learned features out-performed hand-crafted
features [6, 10]. On that basis, we propose to use multi-
ple convolutional neural networks (ConvNets) to learn use-
ful feature representations for the task of shadow detection.
ConvNets are biologically inspired deep network architec-
tures based on Hubel and Wiesel’s [11] work on the cat’s
primary visual cortex. To the best of our knowledge, we are
the first to use ‘learned features’ in the context of shadow
detection, as opposed to the common carefully designed and
hand-crafted features.

Our proposed approach combines local information at
image patches with the local information across boundaries
(Fig. 1). Since the regions and the boundaries exhibit dif-
ferent types of features, we split our framework into two
respective portions. Separate ConvNets are consequently
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trained for patches extracted around the scene boundaries
and the super-pixels. Predictions made by the ConvNets are
local and we therefore need to exploit the higher level inter-
actions between the neighboring pixels. For this purpose,
we incorporate local beliefs in a Conditional Random Field
(CRF) model which enforces the labeling consistency over
the nodes of a grid graph defined on an image (Sec. 3).
This removes isolated and spurious labeling outcomes and
encourages neighboring pixels to adopt the same label.

2. Background and Contributions
One of the most popular methods to detect shadows is to

use a variety of shadow variant and invariant cues to cap-
ture the statistical and deterministic characteristics of shad-
ows [28, 15, 12, 9, 22]. The extracted features model the
chromatic, textural [28, 15, 9, 22] and illumination [12, 20]
properties of shadows to determine the illumination con-
ditions in the scene. Some works give more importance
to features computed across image boundaries, such as in-
tensity and color ratios across boundaries and the computa-
tion of texton features on both sides of the edges [27, 15].
Although these feature representations are useful, they are
based on assumptions that may not hold true in all cases.
As an example, chromatic cues assume that the texture of
image regions remains the same across shadow boundaries
and only the illumination is different. This approach fails
when the image regions under shadows are barely visible.
Moreover, all of these methods involve a considerable ef-
fort in the design of hand-crafted features for shadow detec-
tion and their selection (e.g., the use of ensemble learning
methods to rank the best features [28, 15]). Our data-driven
framework is unique, in the sense that instead of focusing
our efforts on the careful design of hand-crafted features,
we propose to use deep feature learning methods to learn
the most relevant features for shadow detection.

Owing to the challenging nature of the shadow detec-
tion problem, many simplistic assumptions are commonly
adopted. Previous works made assumptions related to the
illumination sources [23], the geometry of the objects cast-
ing shadows and the material properties of the surfaces on
which shadows are cast. For example, [22] considers ob-
ject cast shadows while [15, 24] only detect shadows that
lie on the ground. Some methods use synthetically gener-
ated training data to detect shadows [19]. Techniques tar-
geted for video surveillance applications take advantage of
multiple images [8] or time-lapse sequences [13] to detect
shadows. User assistance is also required by some proposed
techniques to achieve their attained performances [25, 3].
Methods based on strong assumptions such as known geom-
etry [24] and point light sources casting shadows on a planar
lambertian surface [23] are also used in practice. In con-
trast, our framework makes absolutely no ‘prior assump-
tions’ about the scene and the shadow properties, the shape

of objects, the image capturing conditions and the surround-
ing environments. Based on this premise, we tested our pro-
posed framework on all of the publicly available databases
for shadow detection from single images. These databases
contain common real world scenes with artifacts such as
noise, compression and color balancing effects. There is an
acute need for shadow detection from a single image in such
noisy and varied environments.

The key contributions of our work are outlined below:
• A new approach for robust shadow detection combin-

ing both regional and across-boundary learned features
in a probabilistic framework involving CRFs (Sec. 3).
• Automatic learning of the most relevant feature repre-

sentations from raw images using multiple ConvNets
(Sec. 3.1).
• An extensive quantitative evaluation to prove that the

proposed framework is robust, less-constrained and
generalisable across different types of scenes (Sec. 4).

3. Proposed Shadow Detection Framework
Given a single color image, we aim to detect and localize

shadows precisely at the pixel level (see Fig. 2). If y de-
notes the desired binary mask encoding class relationships,
we can model the shadow detection problem as a condi-
tional distribution:

P(y|x;w) =
1

Z(w)

∏
i∈V

ϕwi
i (yi,x)

∏
(i,j)∈E

ϕ
wij
ij (yij ,x), (1)

where, the parameter vector w includes the weights of the
model, the latent variables are represented by x where xi

denote the intensity of pixel i ∈ {pi}1×N and Z(w) de-
notes the partition function. The distribution in Eq. 1 can
be formulated in terms of the Gibbs energy as follows:

P(y|x;w) =
1

Z(w)
exp(−E(y,x;w)) (2)

The energy function is composed of two potentials; the
unary potential ψi and the pairwise potential ψij :

E(y,x;w) = − logP(y|x;w)− logZ(w)

=
∑
i∈V

ψi(yi,x;wi) +
∑

(i,j)∈E

ψij(yij ,x;wij) (3)

These energies are related to the potential functions defined
in Eq. 1 as: ϕwk

k (yk,x) = exp(−ψk(yk,x;wk)). with k ∈
{i, ij}. The unary potential considers the shadow properties
both at the regions and at the boundaries inside the image.

ψi(yi,x;wi) =

region︷ ︸︸ ︷
φri (yi,x;w

r
i )+

boundary︷ ︸︸ ︷
φbi (yi,x;w

b
i ) (4)

Each of the boundary and regional potentials is defined in
terms of probability estimates from the two separate Con-
vNets,

φri (yi,x;w
r
i ) = −wr

i logPcnn1(yi|xr)

φbi (yi,x;w
b
i ) = −wb

i logPcnn2(yi|xb)
(5)
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Figure 2: The proposed shadow detection framework. (Best viewed in color)

This is logical because the features to be estimated at the
boundaries are likely to be different from the ones esti-
mated inside the shadowed regions. Therefore, we train
two separate ConvNets, one for the regional potentials and
the other for the boundary potentials. ConvNets operate
on equi-sized windows, so it is required to extract patches
around the desired interest points using a windowing oper-
ation (Wi,j(·) in Eq. 6). For the case of regional potentials,
we extract super-pixels by clustering the homogeneous pix-
els (Fslic(·) in Eq. 6). Although any super-pixel extraction
method can be used, we opted to use a recently proposed
technique called SLIC [1], due to its efficiency. Afterwards,
a patch (Ir) is extracted by centering a τs×τs window at the
centroid of each superpixel. For the spatial location (i, j) of
a centroid, this operation can be represented as:

Ir(i, j) =Wi,j(Fslic(x), τs). (6)

Similarly for boundary potentials, we extract boundaries in-
side an image using the gPb technique (FgPb(·) in Eq. 7)
[2]. We traverse along each boundary with a stride λb and
extract a τs× τs patch at each step to incorporate local con-
text. Therefore, similar to Eq. 6, we have:

Ib(i, j) =Wi,j(FgPb(x), τs). (7)

Using ConvNets, we want to model the distributions:
Pcnn1(yi|Ir(i, j)) and Pcnn2(yi|Ib(i, j)) as:

Pcnn(yi|I(i, j)) = C(θ(I(i, j))), (8)

where θ(·) is the pre-processor, I can be either a bound-
ary or a super-pixel patch and C(·) is a ConvNet with
five hidden layers. The distribution in Eq. 8 is related
to those in Eq. 5, since xr = {Ir(i, j)}1×|Fslic(x)| and
xb = {Ib(i, j)}

1×
|FgPb(x)|

λb

, where |.| is the cardinality op-

erator. The response of each convolution node is given by:

aln = σ(
∑
∀m

(al−1
m ∗ klm,n) + bln) (9)

where, aln and al−1n are the feature maps of the current layer
l and the previous layer l− 1 respectively, k is the convolu-
tion kernel and indices (m,n) show the mapping from mth

feature map of the previous layer to the nth feature map in
the current layer. The σ(·) represents the element-wise non-
linear activation function and b denotes the bias node. The
response of each sub-sampling node is given by:

aln = σ(kln ×
1

S2

∑
S×S

al−1
n + bln) (10)

where, kln is the weight and S × S is the size of the patch
on which the values are averaged. The response of a neuron
in the output layer is given by:

aoutn = σ(
∑
∀m

(aout−1
m × koutm,n) + boutn ) (11)

The posterior distribution on the binary output variables
(n ∈ {shdw, n-shdw} in Eq. 11) is defined as:

Pcnn(yi|I(i, j)) = [aoutshdw aoutn-shdw]. (12)

Here, for the case of the regions, the posteriors predicted by
the ConvNet are assigned to each super pixel in an image.
However, for the boundaries, we first localize the probable
shadow location and then average the predicted probabili-
ties over each contour (See Sec. 3.3).

The pairwise potential in Eq. 3 is defined as a combi-
nation of the class transition potential φp1

and the spatial
transition potential φp2

:

ψij(yij ,x;wij) = wijφp1(yi, yj)φp2(x). (13)

The class transition potential is defined as an Ising prior:

φp1(yi, yj) = α1yi 6=yj =

{
0 if yi = yj
α otherwise

(14)

The spatial transition potential captures the differences in
the adjacent pixel intensities:

φp2(x) = [exp(− ‖xi − xj‖2

βx〈‖xi − xj‖2〉
)] (15)

where, 〈·〉 denotes the average contrast in an image. The
parameters α and βx were derived from a cross validation
on each database.
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Figure 3: ConvNet architecture used for automatic feature learning

(a) Examples of 9× 9 learned kernels for bottom (2nd

from left in Fig. 3) convolution layer

(b) Examples of 5×5 learned kernels for top (4th from
left in Fig. 3) convolution layer

Figure 4: Visualization of the learned kernels

When making an inference, the most likely labeling is
found by using the Maximum a Posteriori (MAP) estimate
(y∗) upon a set of random variables y ∈ LN . This estimate
turns out to be an energy minimization problem since the
partition function Z(w) does not depend on y:

y∗ = argmax
y∈LN

P(y|x;w) = argmin
y∈LN

E(y,x;w) (16)

The parameters (w) in Eq. 16 are learnt using a max-margin
criterion, details of which are given in [26]. In the next
section, we outline the details of the ConvNet architecture.

3.1. Feature Learning with ConvNets

We employ multiple ConvNets for feature learning along
the boundaries and at the super-pixel level. The same Con-
vNet architecture was used for feature learning at each of
these levels (see Fig. 3). This consists of alternating con-
volution and sub-sampling layers together with a fully con-
nected layer located just before the output layer. This lay-
ered structure enables ConvNets to learn multilevel hierar-
chies of features. The network architecture takes an RGB
patch as an input and processes it to give a posterior distri-
bution over binary classes. Each neuron output is modeled
as a nonlinear function (σ(·)) of its input, which is defined
by a logistic sigmoid function, σ(x) = (1 + e−x)−1. The
convolution layers in ConvNets consist of filter banks which
are convolved with the input feature maps (Eq. 9). The sub-
sampling layers combine the outputs from the neighboring
groups of neurons in the same kernel map (Eq. 10). We
define the stride of this pooling operation to be equal to
the pooling neighborhood over which the kernel elements
are averaged. The pooling operation performed by the sub-
sampling layers helps in learning invariant feature represen-
tations.

A fully connected layer appears just before the output
layer. It has dense connections with the previous layer i.e.,
its input is the set of all feature maps of the final sub-
sampling layer. The fully connected layer works as a tra-
ditional MLP with one hidden layer followed by a logistic

regression output layer which provides a distribution over
the classes. In our ConvNet architecture, the kernels of each
convolution layer are connected with all the kernel maps of
the previous layer. However, each kernel map in the sub-
sampling layer is only connected to the corresponding ker-
nel map of the previous layer. For the two convolution lay-
ers, we use 6 and 12 kernels of size 9× 9 and 5× 5 respec-
tively (Fig. 4). A unit pixel stride is chosen for the center of
the receptive fields.

The ConvNets operate on equi-sized patches extracted
around the super-pixels and the boundaries (Eq. 6, 7). Be-
fore feeding the extracted patches to each ConvNet, the data
is zero-centered and normalized (θ operator in Eq. 8). We
empirically found that pixel decorrelation methods (e.g.,
whitening) do not help in the shadow detection task. After
pre-processing, a supervised training of the ConvNet is per-
formed using online learning (stochastic gradient descent),
which showed to be more efficient compared to batch learn-
ing. During the training process, the gradients are computed
using the back-propagation method and the cross entropy
loss function is minimized [16]. We set the training pa-
rameters (such as momentum, weight decay) by cross vali-
dation. The training samples are shuffled randomly before
training since the network can learn faster from unexpected
samples. The weights of the ConvNet were initialized us-
ing randomly drawn samples from a Gaussian distribution
of zero mean and a variance that is inversely proportional to
the fan-in measure of neurons.

The number of epochs during the training of ConvNets is
set by an early stopping criterion. For this purpose a small
validation set is used to evaluate the trained network after
every epoch. The training process is halted once the perfor-
mance on the validation set does not increase in δ successive
steps (δ = 5 in our case). The trained network with the best
performance on the validation set is then used for the actual
testing. The initial learning rate is heuristically chosen by
selecting the largest rate which resulted in the convergence
of the training error.
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3.2. Region Extraction and Imbalance Learning

We generate over-segmented images using the Simple
Linear Iterative Clustering (SLIC) algorithm [1]. In this
way, homogeneous regions are clustered in an unsupervised
manner to form super-pixels. The centroid of each super-
pixel is found and a fixed size window is extracted around
the interest points. However, shadows have a limited repre-
sentation in natural scenes which results in a skewed class
distribution of the training set. The ratios between shad-
owed versus non-shadowed pixels are approximately 1:6,
1:4 and 1:4 for the case of UCF, UIUC and CMU databases,
respectively (Sec. 4.1). We address this class imbalance
problem at the data level using the Synthetic Minority Over-
sampling Technique (SMOTE) [5]. It is a bootstrapping
technique which synthetically generates training samples to
increase the representation of the minority class. It inter-
polates between closely lying training samples to generate
synthetic data: z′ = zi + ω(zki − zi), where, zki is a ran-
domly selected k nearest neighbor of training sample zi and
ω ∈ [0, 1] is a random weight. For ConvNets, this artificial
enlargement of the dataset through the application of label
preserving transformations proved to be an easy and elegant
way to reduce the overfitting problem (e.g., in [6]).

3.3. Boundary Detection and Shadow Localization

An edge aware smoothness filter (Bilateral filter1) was
applied before boundary extraction to enhance the edges.
Next, the gPb boundary detector [2] was used to find the
significant boundaries in an image. We extracted windows
along the boundaries after every λb boundary points2. The
overlapping boundary patches are then fed to a ConvNet for
training. The trained ConvNet differentiates between the
shadow and reflectance edges and predicts the class belong-
ing probabilities based on the trained weights. Next, the
probable shadow portion is localized using the dominant
shadow properties and the appropriate posterior predicted
by the ConvNet is assigned to the localized region. We also
calculate the Ultra-metric Contour Maps (UCM) and thus
the hierarchical segmentation regions. The assigned prob-
abilities are averaged inside each segmented region to end
up with a uniform posterior distribution inside each homo-
geneous patch (see Algorithm 1).

3.4. Shadows Contour Generation using CRFs

We model our problem in the form of a two-class scene
parsing problem where each pixel is labeled either as a
shadow or non-shadow. This binary classification prob-
lem takes probability estimates from the supervised feature
learning algorithm and incorporates them in a CRF model.
The CRF model is defined on a grid structured graph topol-

1with half width of 4, spatial and intensity std of 3 and 0.1 respectively.
2the step size is λb = τs/4 to get partially overlapping windows.

Algorithm 1 Boundary Detection and Shadow Localization
Input: I: Image with shadow
Output: O: 3D Matrix of posterior probabilities

Initialize: γth ← 0.2; λb ← τs/4; Patch dictionary, T ← φ; Posteri-
ors predicted by ConvNet operating on boundaries, P ← φ; idx = 0
Calculate boundaries: B← FgPb(I)
Get hierarchical segmentations: U← Fucm(B)
Bth ← (B >= γth)
All unique boundary strengths: b← {Bijn }n∈{1...N}
for n← 1 . . . N do

idx← idx+ 1; M ← |Bth == bn|/λb
for m← 1 . . .M do
{i, j} ← loc([Bth == bn]m×λb+1)

Extract window at location {i, j} corresponding to nth bound-
ary and mth point; T [idx]←W(I(i, j))

P[idx]← FCNN2(T [idx])
if Pidx ∈ S (shadow class) then

Convert to grayscale; I ← Fgrayscale(Tidx)
Calculate edges; I ← Fcanny-edge(I)
Crop the patch to remove the unit width border

Icrop ← I[2 : (end− 1)][2 : (end− 1)]
Diagonal-fill morphological operator to remove diagonal

connectivity of background; Icrop ← Fdiag(Icrop)

Convert to a binary image; Ii,jbinary ← (Ii,jcrop <= 0.5)

Label connected components in Ibinary using 8-neighborhood
system, Li,j ← ` ∈ [1, L]

for each connected region c ∈ L do
Calculate mean intensity; c̄k ← avg(ck)

end for
Locate the minimum mean intensity region in L
Locate the position of patch in the actual image I
Assign the probability Pidx to the located region

end if
end for

end for
O ← Averaged posteriors on each segmented region in U

ogy, where graph nodes correspond to image pixels (Eq. 1).
The CRFs prove to be an elegant source of enforcing la-
bel consistency and local smoothness over the pixels. How-
ever, the size of the training space (labeled images) makes
it intractable to compute the gradient of the likelihood and
therefore the parameters of the CRF cannot be found by
simply maximizing the likelihood of hand labeled shadows.
Therefore, we use a max-margin learning algorithm to learn
the parameters of our proposed CRF model [26]. Because
our proposed energies are sub-modular, we use graph-cuts
for making efficient inference [4].

4. Experiments and Analysis
4.1. Datasets

UCF Shadow Dataset [28]: It has 355 images together
with their manually labeled ground truths. Zhu et al. have
used 255/355 images for shadow detection [28].
CMU Shadow Dataset [15]: It consists of 135 consumer
grade images with labels for only those shadow edges which
lie on the ground plane. Since our algorithm is not re-
stricted to ground shadows, we tested our approach on the
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Methods UCF Dataset CMU Dataset UIUC Dataset
BDT-BCRF (Zhu et al. [28]) 88.70% − −
BDT-CRF-Scene Layout (Lalonde et al. [15]) − 84.80% −
Unary SVM-Pairwise (Guo et al. [9]) 90.20% − 89.10%
Bright Channel-MRF (Panagopoulos et al. [20]) 85.90% − −

T
his

paper

{ Illumination Maps-BDT-CRF (Jiang et al. [12]) 83.50% 84.98% −
ConvNet(Boundary+Region) 89.31% 87.02% 92.31%
ConvNet(Boundary+Region)-CRF 90.65% 88.79% 93.16%

Table 1: Evaluation of the proposed shadow detection scheme; All performances are reported in terms of pixel-wise accuracies.

more challenging criterion of full shadow detection which
required the generation of new ground truths.
UIUC Shadow Dataset [9]: It contains 108 images each of
which is paired with its corresponding shadow-free image
to generate a ground truth shadow mask.
Test/Train Split: For UCF and UIUC databases, we used
the split mentioned in [28, 9]. Since CMU database [15] did
not report the split, we therefore used even/odd images for
training/testing (following the procedure in [12]).

4.2. Results

We assessed our approach both quantitatively and qual-
itatively on all the major datasets for single image shadow
detection. We demonstrate the success of our shadow de-
tection framework on different types of scenes including
beaches, forests, street views, aerial images, road scenes
and buildings. The databases also contain shadows under
a variety of illumination conditions such as sunny, cloudy
and dark environments. For quantitative evaluation, we re-
port the performance of our framework when only the unary
term (Eq. 4) was used for shadow detection. Further, we
also report the per-pixel accuracy achieved using the CRF
model on all the datasets. This means that labels are pre-
dicted for every pixel in each test image and are compared
with the ground-truth shadow masks. For the UCF and
CMU datsets, the initial learning rate of η0 = 0.1 was used
while for the UIUC dataset we set η0 = 0.01. After every
20 epochs the learning rate was decreased by a small factor
β = 0.5 which resulted in a good performance.

Table 1 summarizes and compares the overall results of
our approach. It must be noted that the accuracy of Jiang’s
method [12] (on the CMU database) is given by the Equal
Error Rate (EER). All other accuracies represent the high-
est detection rate achieved, which may not necessarily be
an EER. Using the CRF model incorporating ConvNets, we
were able to get the best performance on the UCF, CMU
and UIUC databases with a respective increase of 0.50%,
4.48% and 4.55% compared to the previous best results.
These improvements in accuracies approximately translate
into 1.52× 105, 1.0× 106 and 6.68× 105 correctly classi-
fied pixels on the UCF, CMU and UIUC databases respec-
tively. Although an accuracy gain of 0.5% on the entire
UCF database looks modest, previous best methods [9,28]

Methods/Datasets Shadows Non-Shadows
UCF Dataset
BDT-BCRF [28] 63.9% 93.4%
Unary-Pairwise [9] 73.3% 93.7%
Bright Channel-MRF [20] 68.3% 89.4%
ConvNet(Boundary+Region) 72.5% 92.1%
ConvNet(Boundary+Region)-CRF 78.0% 92.6%
CMU Dataset
BDT-CRF-Scene Layout [15] 73.1% 96.4%
ConvNet(Boundary+Region) 81.5% 90.5%
ConvNet(Boundary+Region)-CRF 83.3% 90.9%
UIUC Dataset
Unary-Pairwise [9] 71.6% 95.2%
ConvNet(Boundary+Region) 83.6% 94.7%
ConvNet(Boundary+Region)-CRF 84.7% 95.5%

Table 2: Class-wise accuracies of our proposed framework in com-
parison with the state-of-the-art techniques. Our approach gives
the highest accuracy for the class ‘shadows’.

were only evaluated on a subset of 255/355 images. We
report the results on the entire database because the exact
subset of the color images is not known. Compared to [12],
which is evaluated on the entire database, we achieved a
relative accuracy gain of 8.56%. On 255 randomly selected
images from UCF database, our method achieved an accu-
racy of 95.1% with a gain of 5.43% over [9].

Table 2 shows the comparison of class-wise accuracies.
The true positives are reported as the number of predicted
shadow pixels which match with the ground-truth shadow
mask. False positives are reported as the number of pre-
dicted shadow pixels that lie outside the shadow mask.
It is interesting to see that our framework has the high-
est shadow detection performance on the UCF, CMU and
UIUC datasets. The ROC curve comparisons are shown in
Fig. 6. These curves represent the performance of the unary
detector since we cannot generate ROC curves from the out-
come of the CRF model. Our approach achieved the highest
AUC measures for all datasets (Fig. 6).

Some representative qualitative results are shown in Fig.
5 and Fig. 7. The proposed framework successfully de-
tects shadows in dark environments (Fig. 5: 1st row, middle
image) and distinguishes between dark non-shadow regions
and shadow regions (Fig. 5: 2nd row, 2nd and 5th image
from left). It performs equally well on satellite images (Fig.
5: last column) and outdoor scenes with street views (Fig.
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Figure 5: Examples of our results; Images (1st, 3rd row) and shadow masks (2nd, 4th row); Shadows are in white. (Best viewed in color)

(a) UCF Shadow Dataset (b) CMU Shadow Dataset (c) UIUC Shadow Dataset

Figure 6: ROC curve comparisons of proposed framework with previous works.

Tested on Trained on
UCF CMU UIUC

UCF − 80.3% 80.5%
CMU 77.7% − 76.8%
UIUC 82.8% 81.5% −

Table 3: Results when ConvNets
were trained and tested across differ-
ent datasets

5: 1st row, 3rd and 5th images; 2nd row, middle image),
buildings (Fig. 5: 1st column) and shadows of animals and
humans (Fig. 5: 2nd column).

4.3. Discussion

The previously proposed methods (e.g., [28, 15]) which
used many hand-crafted features, not only require a lot of
effort in their design but also require long training times
when ensemble learning methods are used for feature se-
lection. As an example, Zhu et al. [28] extracted differ-
ent shadow variant and invariant features alongside an ad-
ditional 40 classification results from the Boosted Decision
Tree (BDT) for each pixel as their features. Their approach
required a huge amount of memory (∼9GB for 125 training
images of average size of approximately 480× 320). Even
after paralleliztion and training on multiple processors, they
reported 10 hours of training with 125 images. Lalonde et
al. [15] used 48 dimensional feature vectors extracted at
each pixel and fed these to a boosted decision tree in a sim-
ilar manner as [28]. Jiang et al. [12] included illumination
features on top of the features used in [15]. Although, en-
riching the feature set in this way increases performance, it
not only takes much more effort to design such features but
it also slows down the detection procedure. In contrast, our

feature learning procedure is fully automatic and only re-
quires ∼1GB memory and approximately one hour training
for each of the UCF, CMU and UIUC databases.

We extensively evaluated our approach on all available
databases and our proposed framework turned out to be
fairly generic and robust to variations. It achieved the best
results on all the single image shadow databases known to
us. In contrast, previous techniques were only tested on a
portion of database [15], one [28] or at most two databases
[9]. Another interesting observation was that the proposed
framework performed reasonably well when our ConvNets
were trained on one dataset and tested on another dataset.
Table 3 summarizes the results of cross-dataset evaluation
experiments. These performance levels show that the fea-
ture representations learned by the ConvNets across the dif-
ferent datasets were common to a large extent. This obser-
vation further supports our claim regarding the generaliza-
tion ability of the proposed framework.

In our experiments, objects with dark albedo turned out
to be a difficult case for shadow detection. Moreover, some
ambiguities were caused by the complex self shading pat-
terns created by tree leaves. There were some inconsis-
tencies in the manually labeled ground-truths, in which
a shadow mask was sometimes missing for an attached
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Figure 7: Examples of ambiguous cases: (From left to right) Our
framework misclassified a dark non-shadow region, texture-less
black window glass, very thin shadow region and trees due to com-
plex self shading patterns.

shadow. Narrow shadowy regions caused by structures like
poles and pipes also proved to be a challenging case for
shadow detection. Examples of the above mentioned fail-
ure cases are shown in Fig. 7.

5. Conclusion and Future Work
We presented a data-driven approach to learn the most

relevant features to detect shadows from a single image. We
showed that our framework performs best on a number of
databases and it does not depend on the object shape, the
environment and the type of scene. In our future work, we
will use the proposed shadow detection framework together
with the scene geometry (as in [15]) and object properties
to reason about high-level scene understanding tasks (as in
[19]). The joint training of deep learning architectures over
both regions and boundaries will also be explored.
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