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Abstract

3D reconstruction of transparent and specular objects
is a very challenging topic in computer vision. For trans-
parent and specular objects, which have complex interior
and exterior structures that can reflect and refract light
in a complex fashion, it is difficult, if not impossible, to
use either passive stereo or the traditional structured light
methods to do the reconstruction. We propose a frequency-
based 3D reconstruction method, which incorporates the
frequency-based matting method. Similar to the structured
light methods, a set of frequency-based patterns are pro-
jected onto the object, and a camera captures the scene.
Each pixel of the captured image is analyzed along the time
axis and the corresponding signal is transformed to the
frequency-domain using the Discrete Fourier Transform.
Since the frequency is only determined by the source that
creates it, the frequency of the signal can uniquely identify
the location of the pixel in the patterns. In this way, the cor-
respondences between the pixels in the captured images and
the points in the patterns can be acquired. Using a new la-
belling procedure, the surface of transparent and specular
objects can be reconstructed with very encouraging results.

1. Introduction
3D reconstruction is the procedure of capturing the shape

or surface structure of an object. The goal is to acquire the
3D information of each point on the surface of an object.
For opaque objects with Lambertian surface, many meth-
ods [8, 21] can be used. However, for objects with poor
reflection or anisotropic properties (Fig. 1a and 1b), which
means that the reflection is either weak or non-uniform, 3D
reconstruction is still an active research topic.

Traditionally, methods for 3D reconstruction of opaque
objects use structured light with coded patterns, but these
methods may fail for transparent and specular objects. For
transparent objects, the projected patterns will transmit
through the object and reflected by the background, which
may interfere with the reflection from the object surface.

(a) (b)

Figure 1: Examples of objects that are difficult to be re-
constructed using existing methods. (a) A transparent tro-
phy with weak reflection. (b) A metal cup with anisotropic
properties.

For specular objects, the reflection is view-dependent and
sometimes the intensity of the reflection is very strong,
which may also interfere with the projected pattern. The
interference makes it very difficult to find the correct corre-
spondences between points on the pattern and pixels on the
images. However, the frequency-based environment mat-
ting [24] can be adapted to accurately find the correct cor-
respondences. To our best knowledge, none of the existing
methods have incorporated this method into 3D reconstruc-
tion for the purpose of finding the correct correspondences.

The goal of our work is to use the structured light meth-
ods incorporated with the environment matting method to
perform 3D reconstruction of transparent and specular ob-
jects. Based on the challenges stated above, our contri-
butions are as follows. First, the proposed method in-
corporates the environment matting method for 3D recon-
struction, and can find the correct correspondences between
points on the projected patterns and pixels on the captured
images. Second, a new labelling method is proposed to suc-
cessfully find the correct points on the surface of the object.
Third, the proposed method is applicable to both transparent
objects and specular objects with anisotropic surface.

2. Related Work
3D reconstruction was originally introduced to acquire

the shape and surface structure of diffuse opaque objects.
One of the fundamental methods is the structured light
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method using code patterns such as gray code and phase
shifting [7]. The advantage of these method is the resilience
to imaging errors and noise as well as the simple setup.

Despite its high accuracy, the structured light methods
are seldom directly applied to the 3D reconstruction of
transparent and specular objects. The main reason is the ac-
tive optical interaction of the objects with light. Researchers
have been working in this area for over three decades and
many effective methods have been proposed. These meth-
ods can be categorized into several groups. The first group
of methods recover the shape from distortion. The early
work [16, 17] mainly reconstructs the surface of waving
water and recovers the pattern under the water. The results
are highly dependent on the accuracy of the optical flow
and, to acquire accurate results, the observation time can be
very long. A checkerboard pattern is usually used and ob-
served after distorted by the transparent objects [5, 14]. The
correspondences between the pattern and the captured im-
age are estimated, and the 3D information of surface points
is obtained after an optimization procedure. Other than a
checkerboard pattern, a light field probe can also be used
[11, 23]. Ji et al. [11] observe the light field probe through
a gas flow, acquire a dense set of ray-ray correspondences
and then reconstruct their light paths. These methods are
limited to a single refractive event along each camera ray
[23] to simplify the estimation procedure. For specular ob-
jects, shape from distortion can be applied as well [18]. The
method is based on the consistency of surface normal and
depth. By minimizing a stereo matching cost function, the
surface normal and depth can be estimated. However, be-
cause of the limitation of the setup, the method can only re-
cover surface normal within a small range of angles, which
is limited to objects with relatively flat and smooth surface.
The methods in the second category use direct ray mea-
surement. These methods are based on the measurement of
calibrated planar targets imaged at different positions with
respect to the object to be reconstructed [12] or approxi-
mated from optical flow data [2]. Although these meth-
ods can perform the reconstruction of dynamic effects, they
need more than one camera to capture the scene simultane-
ously. Most importantly, they cannot handle cases when the
object has a complex interaction with light. The third cate-
gory includes the reflectance-based reconstruction methods.
A typical method uses scatter traces to recover the surface
of inhomogeneous transparent objects [15]. This method
needs to move the setup during the experiment. Since it is
very sensitive to the calibration of the light source and the
camera, the movement of the light source will introduce er-
rors to the results. Hence, the results are often difficult, if
not impossible, to reproduce. To our best knowledge, no
other researchers, including ourselves, were able to obtain
satisfactory results. The fourth category takes polarization
into account [13]. These methods use the property that the

object’s surface normal can be determined by the degree
of polarization of the light reflected from the object’s sur-
face. However, these methods can only be applied well
to a small group of objects that have a simple shape with
known refractive index. The fifth group uses a tomographic
method which usually requires the object to be suspended
in a highly toxic solution [20]. By matching the refractive
index of the solution with that of the transparent object, the
refractive effect can be minimized. A major issue is that
the solution is toxic and requires extreme caution during
experiments. Also, it may damage the object. The meth-
ods in the last category uses direct sampling by altering the
immersing medium. Both [10, 6] can be applied to recon-
struct challenging transparent objects with complex surface
structures. However, the major limitation is their invasive
process, which requires physical contact between the object
and the medium. For example, the method [10] immerses
the object into a fluorescent liquid, which may cause chem-
ical reaction with the object or even damage it. The method
[6] uses laser to heat up the surface and reconstructs the sur-
face by thermal images. The heating procedure alone can
be time-consuming and the heat may damage the object as
well. Specifically for specular objects, shape from specular-
ity is introduced to recover the texture and fine-scale shape
[22]. The method uses a BRDF/BTF measurement device to
recover surface normal as well as spatially varying BRDFs.
The limitation is that its setup is very complicated, which
requires camera, light source with moving aperture, colli-
mating lens assembly, beam splitter, and off-axis concave
parabolic mirror.

The method presented in [1] is probably the most related
to our method. In particular, the method combines the bi-
nary and frequency based structured light patterns to esti-
mate the pixel correspondences. The method consists of
two steps. In the first step, it partitions the projected pattern
into small rectangular tiles and establishes a corresponding
tile for each pixel in the image. An inter-tile binary cod-
ing scheme is presented to assign a unique code to each tile.
After that, an intra-tile coding strategy is used to resolve
the ambiguity inside each tile. Because of the their coding
techniques, the number of captured images is less than our
method which uses the frequency-based coding [24]. How-
ever, the method extract all the possible correspondences for
each pixel only and there is no further analysis of these cor-
respondences. Comparing to that, our method analyzes the
potential correspondences so that multiple layers of com-
plex objects can be extracted.

As discussed above, the traditional structured light
method requires a very simple setup but cannot be directly
applied to the 3D reconstruction of transparent and spec-
ular objects. The methods proposed specifically for trans-
parent objects have certain limitations. Therefore, our goal
is to combine the advantages of both. In particular, we
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Figure 2: (a) Experimental setup. (b) An illustration of mul-
tiple intersections.

present a new method to reconstruct the surface of trans-
parent objects with the structured light setup. The main
challenge for 3D reconstruction of transparent objects is
to find the correct correspondences for triangulation. The
goal of environment matting is to find the correct correspon-
dences between the displayed pattern and the captured im-
age. Zhu and Yang [24] introduce an elegant method called
the frequency-based environment matting method, which
was inspired by the fact that a time domain signal has a
unique decomposition in the frequency domain. After trans-
forming the captured signals into the frequency domain,
unique correspondences between the backdrop patterns and
the obtained images can be established. Our 3D reconstruc-
tion method incorporates this method and achieves very en-
couraging results.

3. Proposed Method
3.1. Setup

To clearly explain our method, the setup is discussed
first. Shown in Fig. 2a, our setup is similar to the tradi-
tional structured light setup. The projector and the camera
are located on the same side of the object. The object is put
in front of a black cloth to minimize the interference of re-
flected light from the background. Since the reconstruction
is based on reflection, the relative positions of the projector,
the camera and the object need to be adjusted so that the
camera can receive as much reflected light as possible.

3.2. Environment matting

The first step of the proposed method is modified from
the frequency-based environment matting method [24].

3.2.1 Pattern Design

The projected patterns are designed as follows

I(i, t) = [cos(2π · (i+ 10) · t) + 1] · 120 (1)

where each pixel position on the patterns has an intensity
I(i, t), which varies with i and t. Here, t is the “time” index,
and ranges from 0 to 1, with an interval of 1/675, denoting
675 images in total. Interested readers should refer to [24]
for details of generating patterns.

3.2.2 Analyzing the captured images

In order to accelerate the processing time, we manually ex-
tract the region of interest. Since the scene is fixed, our
method is applied only to the region of interest.

The images are stacked and analyzed in the frequency
domain. The key property of frequency, which is also the
reason for using the frequency analysis, is that the fre-
quency of a signal only relies on the source that creates it,
and is not changed by the medium. According to [24], fre-
quency analysis has two additional desirable properties: ¶
Different frequencies of a signal will show up in the fre-
quency domain. · It is robust to noise. More details are
described in [24] for analyzing the captured images.

We apply the Discrete Fourier Transform to transform
the signal from the time domain into the frequency domain.
Then the local maxima of the power spectrum are found in
order to use the corresponding frequencies to locate the po-
sitions from which the original light paths originate. The
reason to find the local maxima is because all these peaks
have most of the contributions to the converged point and so
they are all selected as candidates of the “first-order reflec-
tions,” which correspond to the points on the front surface
of the object. The reason of not choosing the global max-
imum as the first-order reflection is because the object is
transparent, and a major portion of light is transmitted into
the object. Only a small portion is reflected directly from
the surface. Hence, the first-order reflected light may not
contain the most energy, and so in the corresponding power
spectrum, it may not be the maximum globally. However,
comparing to the power spectra of other neighbouring pix-
els, the first-order reflection should be locally maximum.

After finding the local maxima of the power spectrum,
their corresponding frequencies can be determined. These
frequencies uniquely locate a group of potential correspon-
dences on the projected pattern for each image pixel. Us-
ing linear triangulation, a set of 3D points can be computed
from all the potential correspondences. These 3D points are
candidates of points on the surface of the object, but only
one of them is correct, which is the desired first-order re-
flection point. We select the first-order reflection point from
these candidates using a new labelling procedure.

3.3. Labelling

Fig. 2b is an illustration of multiple intersections. The
converged pixel P0 and the camera center C can define only
one direction,~i, while the projector center Pj with the con-



tributing pixels in the pattern can determine multiple direc-
tions, ~o1, ~o2, ~o3 and ~o4. These directions intersect the in-
coming direction at P1, P2, P3, and P4.

Among these intersections, intuitively the one closest to
the camera center should be the first-order reflection point.
However, there is an exception. Although P4 is closer to the
camera than P1, it is not the first-order reflection point. Be-
cause as shown in Fig. 2b, the direction ~o4 first refracts into
the object, and after several refractions and reflections, a
part of the light gets into the camera through pixel P0. How-
ever, in reality, this scenario is quite rare, and even when it
happens, the contribution may be so small that it may not
satisfy the local maximum selection criterion. Hence, P4 is
not likely chosen as one of the candidates.

Now the conclusion is that the first-order reflection point
should be the closest one to the camera center, a labelling
method is used to select the point among all the candidates.
We use a method inspired by Chen et al. [4] to do labelling.

3.3.1 Energy function

Generally, a labelling method is to label all the candidates,
define an energy function based on their properties, and
choose the labelling that minimizes the total energy. Similar
to [4], the energy function is defined based on the Markov
Random Field as

E(fp) =
∑
p∈P

Dp(fp) +
∑

{p,q}∈N

Vp,q(fp, fq), (2)

where p is a pixel within the region of interest in the cap-
tured image, fp is a label of pixel p, and fp ∈ L, where L
denotes the label space, which contains indices of the corre-
spondences of the same pixel in the image. Dp(fp) denotes
the data term of the cost of assigning label fp to pixel p. P
is the pixel space of region of interest. N denotes the neigh-
boring pixels of pixel p. Vp,q(fp, fq) is the smoothness term
of the cost of assigning fp and fq to two neighbouring pix-
els p and q, respectively. The details of the data term and
the smoothness term are described below.

3.3.2 Data term

The data term is defined by the distance from the triangu-
lated point to the camera center. Since the first-order re-
flection point is the closest triangulated point to the camera
center, the data term exploits this property. In the proposed
method, the triangulation is first conducted and the intersec-
tions are obtained as candidates for the first-order reflection
point. Since the 3D coordinates of intersections are in the
camera coordinate system, it is easy to calculate the distance
from each intersection to the camera center using

Dp(fp) =

√ ∑
i=x,y,z

(fpi − Ci)2, (3)

where fpi denotes the ith value of the 3D coordinates of the
pixel p, after assigning the label fp to it. Ci is the ith value
of the 3D coordinates of the camera center, which is chosen
as the origin of the coordinate system.

3.3.3 Smoothness term

In Eq. 2, Vp,q(fp, fq) represents the smoothness term. With-
out loss of generality, it is assumed that the reconstructed
object does not have sudden changes in shape, so that the
smoothness property can be used. The smoothness term of
a pixel with each of its neighbor is calculated using

Vp,q(fp, fq) = |Dp(fp)−Dq(fq)|, (4)

whereDp(fp) is the data term of label fp. |·| denotes the ab-
solute value, indicating the difference of the distances from
the camera center to the two triangulated points. The pixel q
is one of the neighbors of the pixel p in the captured image.
In this paper, each pixel is assumed to have 8 neighbors.

3.3.4 Minimizing the energy function

The energy function is minimized using the classical graph
cuts method. According to the results from [19], the ex-
pansion move algorithm introduced by [3] gives faster and
better results than other methods in general. Hence, it is
chosen to minimize the energy function.

3.4. Post-processing

After labelling, the first-order reflection points can be de-
termined and assembled to reconstruct the surface of the
object. However, normally the camera has a higher reso-
lution than the projector, and the farther the pattern is cast,
the wider each pixel from the pattern covers. Hence, we
not only need to find correspondences from the camera to
the projector, but also need to do the “reverse.” Hence, for
each pixel in the pattern, we find which pixels in the camera
are mapped to it and use the average position as the correct
correspondence of the captured image.

4. Experimental Results
In our experiments, seven objects are used in the re-

construction. Materials such as crystal, plastic, glass and
metal have been tried. Structures such as solid object with
parallel surfaces, solid objects with multiple faces, objects
with complex surface structures, objects with double lay-
ers, and objects with inner substances that have different
refractive indices have also been reconstructed. The classi-
cal gray code method is used to do 3D reconstruction and
the results are accordingly compared with those using the
proposed method. Another comparison is with the ground
truth. To obtain the ground truth of a transparent object, a
cosmetic face powder is mixed with water as “paint” and
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Figure 3: Star trophy. (a) The object. (b)(c) The recon-
struction result using our method, seen from the front and
left side. (d)(e) The ground truth, seen from the front and
left. (f)(g) The result before labelling, seen from the front
and left. (h)(i) The result using the gray code method, seen
from the front and left.

gently brushed onto the object. After the paint is dried, the
gray code method is used to reconstruct the “opaque” object
and the result is used as the ground truth. When the object
has detailed structures, the paint may occlude such features,
in which case, only the picture of the object is used as the
ground truth for qualitative evaluation.

4.1. Qualitative results

The objects used for the experiments include a star tro-
phy, a cone trophy with multiple faces, a big vase, a small
vase, an anisotropic metal cup, a plastic cup with two layers
and a plastic bottle with a green dishwashing liquid in it.

For the star trophy (Fig. 3) and the cone trophy with
multiple faces (Fig. 4), the objects are solid and transpar-
ent with no inner structure. When the patterns are projected
to the object, most of the light goes through it and gets re-
flected by the background. The reflection from the surface
of the object is interfered by the reflection from the back of a
surface and also from the background. In addition, because
the object has sharp edges, the highlight is strong and can-
not be avoided, and also can interfere with selecting first-
order reflection candidates. The traditional methods using
structured light fail because of the complex optical interac-
tions, shown in Fig. 3h, 3i, 4h and 4i. However, using the
proposed method, good results can be acquired (Fig. 3 and
4). The surface of the objects is reconstructed smoothly, al-
though there are a few small holes in the results, because
of the highlight. For pixels with strong highlight, their in-
tensities have little variations. Hence, when transformed to
the frequency domain, the magnitude of corresponding fre-
quency can be as low as noise. Hence, the pixels in the
highlight region may be wrong or no correspondence may
be obtained.

Fig. 5 shows the reconstruction results of a small vase
that has detailed “pineapple” textures on the surface. Strong

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 4: Cone trophy with multiple faces. (a) The ob-
ject. (b)(c) The reconstruction result using our method, seen
from the front and left side. (d)(e) The ground truth, seen
from the front and left side. (f)(g) The result before la-
belling, seen from the front and right. (h)(i) The result using
the gray code method, seen from the front and left.

highlights from these structures can be observed. Because
of the complex surface structures, it is very hard to find an
appropriate setup so that the camera can receive most of the
surface reflections. Hence, the lack of captured reflection
is a major challenge for 3D reconstruction. According to
Fig. 5, the detailed structures are reconstructed. The er-
rors are mainly caused by highlights. Because of the high-
lights, wrong correspondences are introduced, leading the
results to be poor. However, the results using our method
are still much better than that using the gray code method.
Another experiment with a big vase is conducted and the re-
sults are shown in the supplemental material. The big vase
also has detailed structures on the surface, such as bamboos
and leaves. Our results illustrate that the proposed method
can reconstruct details on the surface, and the results are
better than those using the gray code method.

The plastic cup shown in the supplemental material is
quite challenging to be reconstructed because it has two lay-
ers. The second layer (the inner one) has strong reflections,
which are quite close to that from the first layer. Since the
frequencies after the Discrete Fourier Transformation are
also quite similar, it is very hard to detect the real first-order
reflections. Although the reconstructed surface is smooth
and the detailed “wave” of the surface is preserved, big
holes can be observed. Comparing with the results before
the labelling procedure, the big holes come from wrong cor-
respondences. However, comparing to the results using the
gray code method, our method is much better.

The reconstructed results of a plastic bottle with a green
dishwashing liquid inside are also shown in the supplemen-
tal material. The dishwashing liquid is transparent and since
it has a different refraction index from the plastic bottle, re-
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Figure 5: Small vase. (a) The object. (b)(c)(d) The recon-
struction result using our method, seen from the front, left
side, and right side. (e)(f) The result before labelling, seen
from the front and left. (g)(h) The result using the gray code
method, seen from the front and left.

fraction and reflection happen at the interface between the
bottle and the liquid. For the results using our method, the
holes in the middle indicate the points there received too
strong highlight to be reconstructed. The holes on both
sides of the object are due to the high curvature on the
surface and the camera did not receive enough reflections
from this part. According to the results shown in the sup-
plemental material, the proposed method has better results
than those using the compared method.

Our method can be applied to a large range of ob-
jects. Not only for opaque objects and transparent objects,
but also for specular objects with anisotropic surfaces, our
method can produce quite acceptable results. In the supple-
mental material, we present the reconstructed results of an
anisotropic metal cup. We can easily observe the holes in
the middle and on the sides of the results using the gray code
method. This is because the surface reflects light anisotrop-
ically, and the intensities of these reflections are wrongly
interpreted when finding the correspondences. Comparing
to the results of the gray code method, our results have much
smaller holes and smoother reconstructed surface.

4.2. Quantitative results

Two very challenging objects are used for the quantita-
tive results. The first one is the star trophy shown in Fig. 3.
The second is the cone trophy (Fig. 4), with multiple faces.

Eq. 5 defines the root mean square (RMS) error of the
correspondences of the results of our method. (x, y) de-
notes the point in the patterns that has a corresponding pixel
in the captured images, and the corresponding pixel is in
floating point format and is within the region of interest.
CF (x, y) denotes the pixel in the captured images, which

corresponds to (x, y) in the patterns using our method.
CT (x, y) denotes the pixel in the captured image of the
ground truth, which corresponds to (x, y) in the patterns.
NF is the number of the points (x, y) which have corre-
sponding pixels within the region of interest in the captured
images. The root mean square error of correspondences for
the gray code is defined similarly. According to Eq. 5, only
corresponding pixels within the region of interest are com-
pared to the ground truth. For pixels that are outside of the
region of interest, since there is no corresponding pixel in
the ground truth to be compared with, they are ignored in
the comparison.

CF RMS error =

√√√√ 1

NF

x=1024,y=768∑
x=1,y=1

(
CF (x, y)− CT (x, y)

)2
(5)

In addition to the RMS errors, another way to illustrate
the quantitative results is shown in Eq. 6, which are used
to show the “score” of the frequency-based method and
the gray code method. In Eq. 6, NF means the number
of the corresponding pixels within the region of interest
using the frequency-based method. Nall denotes the to-
tal number of the corresponding pixels within the region
of interest of the ground truth. NF

Nall
denotes the fraction

of the correspondences within the region of interest to be
reconstructed by the frequency-based method. The larger
the value of NF

Nall
, the higher the reconstructed resolution

of the results. CF RMS error denotes the RMS error of
the correspondences within the region of interest using the
frequency-based method compared with that of the ground
truth. The smaller the value of CF RMS error, the better
the result. The combination of NF

Nall
and CF RMS error,

which is ScoreF correspondences, illustrates the results of
the correspondences using our method compared with that
of the ground truth, with consideration of the resolution.
The higher the value of ScoreF correspondences, the better
the result.

ScoreF correspondences =

NF

Nall

CF RMS error
(6)

In addition to comparing correspondences, the distances
from the reconstructed points to the camera center are also
compared. Eq. 7 defines the root mean square error of the
distances for the results of our method. The notations are
similar to those of Eq. 5 and Eq. 6. DF (x, y) denotes the
distance from the reconstructed point on the surface to the
camera center using our method.

DF RMS error =

√√√√ 1

NF

x=1024,y=768∑
x=1,y=1

(
DF (x, y)−DT (x, y)

)2
(7)

ScoreF distances =

NF

Nall

DF RMS error
(8)



Our method Gray code
Number of recon-
structed points

15580 16301

RMS error of the
correspondences

4.0570 17.0101

Score based on
correspondences

0.1130 0.0282

RMS error of the
distances

102.1415 856.9114

Score based on
distances

0.0045 5.5991×10−4

Table 1: Comparison between our method and the gray code
method for star trophy reconstruction.

Table 1 shows the comparison results of the star trophy
reconstruction results using our method and the gray code
method with that of the ground truth. Although the gray
code method has a higher resolution of the reconstruction
result, it has a much higher RMS error than that of using
our method. For our method, the RMS error is not as small
as expected. The reason is because around the edges of the
object, strong highlight makes the reconstruction incorrect
for this part. For the holes with no 3D information in the re-
construction results, no comparison is made and the results
in these holes are neglected. For the wrongly reconstructed
points using the gray code method, since the ground truth
does not have corresponding pixels for them to compare
with, these corresponding pixels are also neglected. The
score based on the correspondences and the score based on
the distances show that the results of our method are much
better than that of the gray code method.

Table 2 shows the quantitative results of the cone trophy
reconstruction using our method and the gray code method
compared with the ground truth. For the gray code method,
only a small part in the middle failed to do the reconstruc-
tion. Hence, the RMS error of the correspondences and
the distances are quite close to the results of the frequency-
based method. Noticing that our method reconstructs more
points than the gray code method for this object. The strate-
gies to handle the holes and errors of the reconstruction are
the same as for the star trophy reconstruction results. The
score based on correspondences and the score based on the
distances show that the reconstruction results of our method
are better than that of the gray code method.

5. Discussions

There are some significant differences between our
method and the phase shifting methods. The major differ-
ence is that the phase shifting methods can only obtain one
correspondence for each image pixel, while our method can

Our method Gray code
Number of recon-
structed points

26799 21900

RMS error of the
correspondences

3.2900 4.0794

Score based on
correspondences

0.2683 0.1768

RMS error of the
distances

45.9847 43.2997

Score based on
distances

0.0192 0.0167

Table 2: Comparison between our method and the gray code
method for cone trophy reconstruction.

obtained multiple. The first step of our method applies the
frequency-based method to get all possible correspondences
for each pixel. The second step described in Sec. 3.3, which
is the major contribution of our method, extracts the layer
that the user wants. In our paper, we only show the results
of extracting the layer that is closest to the camera. How-
ever, the energy function can be modified to accommodate
for multiple layer extraction. For example, it can be mod-
ified to obtain the farthest layer which is the background.
Moreover, after we obtained the first layer, this layer can be
removed and by running our method again we can obtain
the second layer of the objects if there are multiple trans-
parent layers in the objects. To sum up, our method can
obtain multiple layers of an object because of the second
step which is our major contribution, while phase shifting
methods can obtain only one correspondence for each im-
age pixel.

Another advantage of our method is that it works on
transparent objects. Using one of the most advanced phase
shifting methods [9] as an example, it is noteworthy that
none of their experimental objects is completely transpar-
ent, to be more specific, only translucent. To reconstruct the
3D shape of completely transparent objects is much more
difficult because the light reflected by the object surface is
extremely weak. When the reflected light is strongly cor-
rupted by the light reflected from the background, the phase
shifting method would definitely fail.

Our method is based on the method presented in [24].
The major different between our method and [24] is the
labelling method presented in Sec. 3.3. First of all, the
frequency-based method is an essential step for our method
because it provides all possible correspondences for each
image pixel, where these correspondences can be from the
object surface or from the environment. After that, our
method extracts the first layer of the object. Furthermore,
our method can be modified to extract all the layers of a
multiple-layer transparent object.



6. Conclusions and Further Work

In this paper, a new frequency-based method to recon-
struct the surface of transparent and specular objects is in-
troduced. Using frequency analysis, complex light com-
position can be uniquely decomposed without optimization
and multiple correspondences between the camera and the
projector can be established. Because the proposed method
is based on frequency analysis, which is not effected by
noise, the method is robust to noise.

In order to select the correct first-order reflection corre-
spondence from the candidates, a new labelling method is
developed. The Markov Random Field is used to define the
energy function to be minimized based on the fact that the
first-order reflection point is the closest one to the camera
center.

Some experiments with different objects are conducted
and the results are presented and analyzed. For some very
challenging objects that previous methods can hardly recon-
struct, our method produces encouraging results. However,
for objects with high curvatures or highlighted points, the
results of our method are not as good as expected.

Future work can focus on two directions. One is to ac-
celerate the image capturing procedure. For our method, it
takes about 33 minutes to capture all the 1350 images. We
can use a camcorder to capture the images as in [24]. The
other direction is to use a turntable to reconstruct the whole
objects from different angles, which may address the issue
of highlights.
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