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Abstract

Capturing and understanding visual signals is one of the
core interests of computer vision. Much progress has been
made w.r.t. many aspects of imaging, but the reconstruc-
tion of refractive phenomena, such as turbulence, gas and
heat flows, liquids, or transparent solids, has remained a
challenging problem. In this paper, we derive an intuitive
formulation of light transport in refractive media using light
fields and the transport of intensity equation. We show how
coded illumination in combination with pairs of recorded
images allow for robust computational reconstruction of dy-
namic two and three-dimensional refractive phenomena.

1. Introduction
Imaging and recovering refractive surfaces and volumes

has been an active area of computer vision research for
decades. Whereas some applications seek reconstructions
of geometry or reflectance of natural phenomena, such as
gases, fluids, solids, or flames [12], others evaluate aerody-
namic properties of vehicles [26], or synthesize composites
of captured phenomena and renderings [35]. Reconstruct-
ing phenomena with complex refractive properties, how-
ever, is a very challenging problem.

Existing solutions can be roughly classified as intrusive
or non-intrusive methods. For example, intrusive methods
cover objects of interest with diffuse coatings [7] or im-
merse them in fluorescent liquids [9] whereas non-intrusive
methods measure the distortion of a reference pattern by the
refractive phenomenon [22, 34, 24, 3, 1].

In this paper, we propose a non-intrusive technique that
builds on the transport of intensity equation (TIE) [28, 27].
Derived using wave optics models with coherent illumina-
tion, the TIE is known in the optics community and has ap-
plications in phase microscopy. We present a new derivation
of the TIE using incoherent light fields, which makes it intu-
itive and practical for computer vision applications. Further,
we modify widely-used TIE acquisition setups by introduc-
ing coded illumination that facilitates improved robustness
of tomographic refractive volume reconstructions. Finally,
we evaluate the proposed computational imaging system in
simulation and with a range of physical experiments.

2. Related Work

Fluid and Phase Imaging Imaging and reconstructing
fluids is a diverse area of research. An overview of tech-
niques such as particle image velocimetry and other flow
estimation techniques can be found in [19]. Phase con-
trast microscopy and differential interference contrast are
standard techniques in microscopy [23]. Schlieren photog-
raphy is a non-intrusive way of encoding refractive phe-
nomena as changes in intensity or color of a captured im-
age [26]. Traditionally, this is done with intricate optical se-
tups; modern approaches combine optical flow with coded
backgrounds [6]. More recently, coded 4D light field illumi-
nation has been shown to replace both complicated optical
setups in traditional setups and expensive computation in
background-oriented Schlieren methods [32, 33].

A popular technique for phase imaging with coherent il-
lumination is the transport of intensity equation (TIE) [28,
27]. Using a first or higher-order [31] approximation of
the light transport operator, 2D phase information of an ob-
ject can be reconstructed from a focal stack containing two
or more images. An interpretation of these techniques in
phase-space was presented in [25]. The methods discussed
in this paper build on existing coherent TIE formulations,
but derive forward and inverse methods using incoherent
light fields along with optical coding schemes to make these
techniques practical for computer vision applications.
Refractive and Specular Surface Reconstruction In the
computer vision community, refractive surface recovery has
been an extremely active area. A recent survey [12] presents
a comprehensive overview of the field, whereas [17] classi-
fies the problem space based on required acquisition setup
and number of refractive events. A body of work has
tackled the problem using a shape from distortion ap-
proach [22, 34, 24, 3, 1]. Active, coded illumination can be
used instead of observing the distortion of static calibration
patterns [21]. A simple approach to acquiring surfaces with
complex reflectance properties is to either apply a diffuse
coating and scan them with standard techniques [7] or to
immerse [9] or dye [11] objects of interest with fluorescent
substances. However, these are highly intrusive approaches.
Finally, polarization properties can also be observed to in-
fer information about refraction [20, 10]. Our approach is
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related to other shape from distortion techniques that use
active illumination, but we introduce the TIE to computer
vision, enhance it with coded illumination, and combine it
with tomographic volume reconstruction.

Refractive Tomography When imaging three-
dimensional, inhomogeneous refractive volumes, con-
ventional surface reconstruction techniques usually fail.
Computed tomography methods [16], however, have been
adopted to recover volumes of flames [13], gases [2, 15],
and solids [30, 29]. The main difference between these
methods is whether the tomographic reconstruction is
performed from observed light attenuation [13, 30] or
refraction [2, 29, 15].

Our method is closely related to [29] by employing the
TIE, but we follow [15] by applying a regularizer based on
Fermant’s principle to the tomographic reconstruction. To
the best of our knowledge, this is the first time that the TIE is
derived in the geometrical optics domain using a light field
notation. We also augment the TIE with coded illumination
that allows us to estimate ray-ray correspondences for more
robust tomographic reconstructions.

3. Image Formation and Reconstruction

3.1. Light Propagation in Refractive Media

Using a geometrical optics model, the propagation of
light in materials with a heterogeneous refractive index field
n is governed by the Eikonal equation or ray equation of ge-
ometrical optics [4]:

∂

∂s

(
n
∂x

∂s

)
= ∇n. (1)

As illustrated in Figure 1, x is the lateral position of a light
ray on some plane that is defined to be zero along the optical
axis and s is its trajectory through the medium. We can
write this as two ordinary differential equations [14]:

n
∂x

∂s
= ν

∂ν

∂s
= ∇n. (2)

The local direction of propagation is ν. Equation 2 states
that the change in direction a light ray undergoes in the
medium is equal to the lateral gradient of the refractive in-
dex field.

Using the notion of light fields [18], we can describe the
effects of a refractive medium to an arbitrary distribution of
light rays in an intuitive manner. A light field l(x, ν) fully
defines a radiance distribution using rays as its primitives,
that are parameterized by a position x and the propagation
direction ν = tan(θ), where θ is the angle of propagation.
We use an intuitive 2D light field notation throughout the
paper; full 4D formulations and extended illustration can be
found in the supplement.

The refraction of a light field l(−)(x, ν) incident on a thin
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Figure 1. Ray schematic. Collimated illumination is refracted by a
thin surface. The resulting intensity is measured at two distances,
z and z+∆z. The transport of intensity equation relates the refrac-
tive surface gradients with the difference of those measurements,
allowing the surface to be recovered.

refractive object is then

l(x, ν) = l(−) (x, ν −∇n(x)) , (3)

where l(x, ν) is the light field on the same location but after
refraction. As illustrated in Figure 1, the refractive event
basically shifts the angles of the light field. For volumetric
index fields, one must trace a light ray through the volume
along its curved trajectory c. From the Eikonal equations,
we know that the outgoing angle of a ray is

νout = νin +

∫
c

∇n(x, z)ds, (4)

for any ray with incident angle νin. The volumetric refrac-
tion a light field undergoes is expressed as

l0(x, ν) = l
(−)
0

(
g(x, ν), ν −

∫
c

∇n(x, z)ds

)
, (5)

where g(x, ν) is a general function describing the lateral
displacement of a ray by the refractive volume.

We note that this formulation neglects effects such as
reflection, absorption, scattering, diffraction, and disper-
sion. The refractive volume is assumed to be differentiable.
Abrupt changes in a refractive index field, such as at the
intersection of air and water, will be smoothed out in this
formulation unless an additional sparse gradient prior is em-
ployed, as suggested in Section 3.4.

3.2. Transport of Intensity

The transport of intensity equation (TIE) [28, 27] is of-
ten used in the optics community to model light propaga-
tion through refractive index fields using a first-order ap-
proximation of the transport operator. Whereas formula-
tions exist using wave models of light, this section derives
what we believe to be the first formulation of the TIE using
light fields as a geometrical optics model.

Let us consider transport of a light field in free space
from z by a distance ∆z. This is a shear along the spatial
coordinates:

lz+∆z (x, ν) = lz (x−∆zν, ν) . (6)



Following Semichaevsky and Testorf [25], the propagation
operator can be approximated to first order using a Taylor
expansion:

lz (x−∆zν, ν) ≈ lz (x, ν)−∆zν
∂

∂x
lz (x, ν) . (7)

We note that this is a good approximation under paraxial
assumptions, i.e. when the light field is propagating with
small deviations along the optical axis z. Higher-order ap-
proximations can be employed if this is not the case [31].

The transport of intensity equation requires two intensity
measurements to be taken at a slight axial distance ∆z be-
tween each other. These can be recorded with a bare camera
sensor or by photographing a white, diffuse screen with a
conventional camera. The intensity on some axial position
z is defined as the projection of a light field over angular
domain Ων :

Iz (x) =

∫
Ων

lz (x, ν) dν. (8)

Combining Equations 6, 7 and 8 yields an expression for
the image intensity measured at z + ∆z:

Iz+∆z (x) ≈
∫

Ων

lz (x, ν) dν −∆z

∫
Ων

ν
∂

∂x
lz (x, ν) dν.

(9)
A forward finite differences approximation of intensity
along the optical axis z is then

∂Iz (x)

∂z
≈ Iz+∆z (x)− Iz (x)

∆z
(10)

Hence, combining Equations 8, 9, and 10 yields:
∂Iz (x)

∂z
≈ −

∫
Ων

ν
∂

∂x
lz (x, ν) dν, (11)

which is the foundation of the transport of intensity equa-
tion. Semichaevsky and Testorf [25] refer to the quantity∫

Ων
νlz (x, ν) dν as the first-order angular moment of the

light field.

3.3. TIE-based Refractive Object Reconstruction

Using Equation 11, we can derive the transport of inten-
sity equation for both thin and volumetric refractive phe-
nomena. However, collimated incident illumination is re-
quired, i.e. l(−)

0 (x) = δ (ν) I (x). Following Equation 3,
the light field after refraction by a thin object is given as

l0 (x, ν) = δ (ν −∇n (x)) I (x) . (12)

The right-hand side of Equation 11 now becomes

−
∫

Ων

ν
∂

∂x
l0 (x, ν) dν

= − ∂

∂x

(
I (x)

∫
Ων

νδ (ν −∇n (x)) dν

)
= − ∂

∂x
(I (x)∇n (x)) , (13)
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Figure 2. Tomographic volume reconstruction. The volumetric re-
fractive index field is observed from multiple camera perspectives.
A transport of intensity equation is solved for each independently.
The resulting projections of the volume are then processed using
computed tomography to recover the volume.

resulting in the transport of intensity equation for thin re-
fractive phenomena:

∂I (x)

∂z
= − ∂

∂x
(I (x)∇n (x)) . (14)

This formulation is closely related to the wave models de-
rived in [28, 27] and to interpretations in phase-space [25].
Figure 1 illustrates the described setup using a ray diagram.

Imaging and reconstructing volumetric refractive index
fields is also possible. Again, for collimated incident light
l
(−)
0 (x, ν) = δ(ν)I(x), this results in a variant of the TIE:

∂I (x)

∂z
= − ∂

∂x

(
I(x)

∫
c

∇n(x, z)ds

)
. (15)

3.4. Tomographic Volume Reconstruction

For the specific case of imaging volumetric refractive in-
dex fields, the TIE (Eq. 15) can only be solved for the ac-
cumulated amount of refraction that each ray underwent in
the volume. This is a projection of all refractive index gradi-
ents along the optical path

∫
c
∇n(x, z)ds. As illustrated in

Figure 2 and proposed in previous work (e.g., [2, 15, 29]),
computed tomography methods [16] (e.g., the simultaneous
algebraic reconstruction technique (SART)) can be used to
solve for the volumetric index field from projections cap-
tured from different camera perspectives. For this purpose,
the refractive index field is represented as a linear combi-
nation of i = 1 . . . k basis functions φi with associated
weights αi, leading to the following expression:∫

c

∇nds =

∫
c

(∑
i

αiφi

)
ds =

∑
i

αi

(∫
c

φids

)
.

(16)
Common choices for φi are cubic voxels or radially sym-
metric basis functions [2]; in either case, the number of
basis functions is equal to the number of unknown voxels.



Using this formulation in hand, Equation 15 can be solved
independently for multiple different camera perspectives to
give one projection of the 3D index field each. Stacking all
resulting projections in a vector b ∈ Rl, l being the total
number of all camera pixels, allows us to formulate a tomo-
graphic reconstruction problem that solves for the unknown
coefficients α ∈ Rk

b = Φα+ Γ (α) . (17)

Here, column i of matrix Φ ∈ Rl×k contains the precom-
puted light path integrals over the basis functions

∫
c
φids

for some measurement. An additional visual hull restriction
and total variance regularizer Γ (·) can be employed if the
equation system is ill-posed. The visual hull can be used
to determine the basis functions with possibly nonzero co-
efficients [2] and the regularizer is a direct 3D extension of
the commonly-used 2D TV regularizer. Detailed explana-
tion can be found in the supplement. Equation 17 can be
computed with any standard linear solver.

3.5. Incorporating Light Path Approximation

Unfortunately, the actual ray paths through the vol-
ume are usually unknown. Common assumptions include
straight ray approximation [29] or approximating the path
by a single refractive event close to the center of the vol-
ume [2]. Ji et al. [15] recently proposed a method that opti-
cally acquires the correspondences between light rays inci-
dent on the volume and the same, but refracted rays emerg-
ing on the other side using light field probes [32]. These
ray-ray correspondences have been demonstrated to achieve
higher-quality reconstructions by imposing Fermat’s princi-
ple as a regularizer to the tomography problem. We believe
this to be an effective way of constraining the possible set
of solutions for volumetric refractive index fields.

Establishing ray-ray correspondences in the proposed
framework is straightforward: instead of illuminating the
sample object with uniform collimated light, i.e. I(x) =
const, we can code the intensity distribution I(x) such
that ray-ray correspondences can be estimated using optical
flow. We employ a simple color gradient, although more
sophisticated illumination patterns, such as gray codes, are
possible. We note that ray-ray correspondences require both
position and direction of an incident ray to be matched with
one of the refracted rays. Whereas [15] achieve this using
4D light field probes, our method relies on collimated illu-
mination thereby unambiguously identifying incident rays
using purely spatial illumination codes.

4. Analysis and Evaluation
In this section, we evaluate the proposed methods. We

proceed by simulating and evaluating system parameters
and noise resilience for coded acquisition and reconstruc-
tion of a thin, two-dimensional refractive object. We also
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Figure 3. Reconstruction of thin refractive object. Two images,
separated by distance ∆z, are captured (top) and processed to re-
cover the refractive index (bottom, right).

show tomographic reconstructions of three-dimensional
volumetric scenes, both for homogeneous and inhomoge-
neous refractive index fields. Finally, we compare our
method with previous work.

Thin Refractive Object Figure 3 illustrates the setup of
a synthetic experiment. A thin refractive object distorts the
incident collimated illumination, which is then measured at
two different distances from the sample object. By solv-
ing the transport of intensity equation (Eq. 14), we can re-
cover the refractive index field. Figure 3 shows two recon-
structions with different levels of iid Gaussian sensor noise.
For this experiment, the object is simulated to be 4× 4 cm,
the incident illumination is coded with a simple color gradi-
ent, and the refractive index varies smoothly between 1 and
1.0003. Equation 14 is solved by converting the measured
color images to grayscale.

Reconstruction performance w.r.t to sensor noise and
a varying distance ∆z is further evaluated in Table 1.
Whereas the peak signal-to-noise ratio (PSNR), measured
between 3D ground truth index field and reconstruction, im-
proves with a decreasing distance in the absence of noise,
the subtle changes in images recorded at such small dis-
tances are easily perturbed by noise. An optimal tradeoff
has to be found depending on the employed camera’s noise
characteristics.

Homogeneous Volumetric Refractive Index Field To
recover a full, three-dimensional refractive index field, mul-
tiple projections of the volume need to be captured from
different perspectives. We simulate a voxelized bunny with
a refractive index of 1.4 surrounded by air in Figure 4. Im-
age pairs are recorded from eight different camera perspec-
tives and individually processed with Equation 14 to yield



Sensor Noise Standard Deviation σ
∆z in cm 0 0.02 0.03 0.035 0.040 0.045

0.25 28.1 22.5 19.8 20.8 17.9 16.3
0.75 28.3 26.4 24.9 22.0 19.3 17.9
1.5 27.2 26.2 25.5 23.8 21.1 21.0
3 24.5 23.8 22.8 21.9 19.8 18.8

Table 1. Evaluation of resilience to sensor noise and variations in
distance between the two captured images. Reconstruction errors
are given in peak signal-to-noise ratio (PSNR). Based on these
simulations, we see that a smaller distance is favorable for lower
sensor noise, but larger distances are more resilient to noise.

Figure 4. Reconstruction of a homogeneous refractive volume.
From left: target object, projections reconstructed via Eq. 14
from eight different perspectives, tomographically-reconstructed
3D volume.

projections of the refractive index volume. Using the tomo-
graphic reconstruction method outlined in Equation 17, we
can recover the refractive volume.

Inhomogeneous Volumetric Refractive Index Field
Using the fuel injection dataset DFG SFB 382
(www.volvis.org), we evaluate the proposed method
for an inhomogeneous refractive index field. Figure 5
shows a 3D rendering of the volume (left) as well as
individual slices (right). We simulate acquisition by seven
equally-spaced perspectives in a half ring setup. From each
perspective, two images are recorded at slightly different
axial positions (one shown in Fig. 5, left); their difference
is used to solve for the 2D projection of the refractive index
field via Equation 14. The coded illumination allows for
ray-ray correspondences to be estimated using optical flow
(Fig. 5, left), which makes a tomographic reconstruction
of the 3D volume more robust. For this experiment,
we employ a 3D total variation (TV) regularizer for the
reconstruction (Eq. 17) and assume that the surrounding
medium has the refractive index of air.

The reconstruction quality of the proposed 3D tomo-
graphic method w.r.t. the number of camera perspectives
is evaluated in Table 2. As expected, an increasing number
of perspectives makes the volumetric reconstruction more
robust and leads to lower root-mean-square errors (RMS)
and peak signal-to-noise ratios (PSNR). The proposed re-
construction is similar to SART [16]. Whereas direct in-
version methods, such as filtered backprojection using the
Radon transform, could be significantly faster, these are
only applicable when a dense set of projections of a full-
ring setup are available. We also implemented the methods
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Figure 5. Volumetric reconstruction. Left: fuel dataset (ground
truth), one of the two images captured at slightly different axial
positions, their difference, and estimated optical flow from coded
illumination. Right: slices of original volume, reconstructed vol-
ume, and error.

Simulation Errors w.r.t. Number of Cameras
# of cameras 3 5 8 16 32

Proposed RMS 0.051 0.049 0.041 0.036 0.030
Method PSNR 25.8 26.25 27.77 28.85 30.57

Atcheson RMS 0.067 0.060 0.054 0.045 0.040
et al. 2008 PSNR 23.43 24.41 25.37 27.03 27.98

Ji RMS 0.057 0.053 0.045 0.041 0.036
et al. 2013 PSNR 24.49 25.81 26.75 28.22 29.30

Table 2. Evaluation of tomographic reconstruction using a varying
number of cameras in a half-ring setup. Compared to Atcheson
et al. [2] and Ji et. at [15], the proposed method always performs
better under the simulated conditions.

proposed by Atcheson et al. [2] and Ji et. at [15]. The re-
sults show that our method has a higher RMS/PSNR than
theirs for all simulated configurations. This is intuitive, be-
cause we follow [15] by using a light path approximation
prior but our setups allows us to capture higher-resolution
data. Additional results and comparisons can be found in
the supplement.

5. Implementation
Hardware Figure 6 shows our prototype capture de-
vice. We use a Texas Instruments LightCrafter as a pro-
grammable light source, which provides a resolution of
608×684 pixels and three primary color channels. A lens is
mounted at its focal distance to the projector and collimates
the projected optical code – a simple color gradient – which
then rear-illuminates the refractive sample. A beam splitter
separates the optical path on the other side of the sample
such that two intensity projections at distances spaced by
1cm can be imaged by two machine vision cameras (Point-
Grey Flea2-08S2, 1024 × 768 px) simultaneously. The re-
fractive sample is mounted on a rotation stage; for volumet-
ric reconstructions, multiple images are captured showing
the sample from different perspectives.



Figure 6. Prototype capture device. A collimated projector pro-
vides coded illumination that is refracted by the sample and im-
aged on the other side of the setup.

Calibration Both TIE and tomographic volume recon-
struction require precise image registration. For this pur-
pose, we use standard camera calibration techniques [5] to
correct for intrinsic distortions. Further, we register the two
captured images using features observed in a calibration im-
age displayed by the projector.

Software After this one-time calibration procedure, the
system simultaneously records calibrated image pairs with
a resolution of 450× 450 pixels. For thin refractive object,
we further down-sample them to 256 × 256 pixels and use
a Fast Poisson Solver (http://cs.nyu.edu/˜harper/
poisson.htm) to solve Equation 14. This solver is imple-
mented in Matlab and takes approx. 76 seconds on an In-
tel i7 PC with 8 GM RAM. For volumetric refractive index
fields, we use the CVX toolkit [8] to solve Equation 17. Re-
covered volumes are discretized to 64×64×64 voxels. A re-
construction from eight different perspectives takes approx.
3 minutes. Both the Poisson solver and the tomographic re-
construction could be significantly accelerated using more
advanced algorithms.

6. Experimental Results

In this section, we describe a number of experiments we
have performed with the prototype setup described in the
previous section.

2D Reconstruction of Static Refractive Index Fields
Figure 7 shows results of static objects recovered with the
proposed technique. For this experiment, we drew charac-
ters on a thin glass1 plate using clear optical adhesive with
a refractive index of 1.48. Photographs of the target objects
are shown in the top row, whereas the center row shows re-
constructions of the refractive index field with a resolution
of 256 × 256. Please note that the objects are not actually
thin, so the reconstructions show integrals over the refrac-
tive index field as described by Equation 15. Height field
renderings of the reconstructions are shown in the bottom

1The glass plate has a refractive index of 1.51.

Figure 7. Reconstructions of refractive index fields. These charac-
ters are composed of clear optical adhesive with a refractive index
that is different from the underlying glass plate. By capturing two
differently-focused images from the same perspective, we can re-
cover 2D projections of the refractive index fields, as illustrated in
the center and bottom rows.

of Figure 7. The two focal planes are separated by a dis-
tance ∆z = 1 cm. Other system parameters are described
in Section 5.
2D Reconstruction of Dynamic Index Fields Using the
dual-camera setup described in Section 5, we can capture
dynamic scenes from a single perspective but focused at
two different axial planes. As shown in Figure 8, the hot
air plume of a candle can be captured and recovered using
the proposed method. Similar to the reconstructions of Fig-
ure 7, the transport of intensity equation actually computes
a two-dimensional projection of the three-dimensional re-
fractive index field. System parameters for this experiment
are identical to the previous one.
3D Tomographic Reconstruction of Static Index Fields
Finally, we also show a tomographic reconstruction of a
solid three-dimensional glass object in Figure 9. This is
captured from multiple perspectives by mounting it on a
rotation stage and recording photographs at seven settings
that are equally spaced apart by 30◦. The two focal planes
for each perspective are separated by a distance of ∆z =
0.5 cm. For each of the perspectives, we recover the 2D
projection of the volumetric refractive index field via Equa-
tion 15 and then solve the tomographic problem, i.e. Equa-
tion 17. The latter incorporates light path approximation
constraints using the ray-ray correspondences that are es-
timated from the illumination coding scheme described in
Section 3.5.

7. Discussion
In summary, we propose a technique to reconstruct two

and three-dimensional refractive index fields using a new,
geometrical optics formulation of the transport of intensity

http://cs.nyu.edu/~harper/poisson.htm
http://cs.nyu.edu/~harper/poisson.htm


Figure 8. Reconstructions of a dynamic refractive index field. Even the small differences in refraction caused by the heat above a candle
can be faithfully recovered via coded transport of intensity. In this experiment, we capture time-synchronized videos with two cameras
focused at different focal planes (shown for a single frame of the animation, top) and reconstruct each frame separately (bottom).

Figure 9. Three-dimensional tomographic reconstruction of a volumetric object (left). We capture pairs of photographs from seven per-
spectives (not shown) and recover the volumetric refractive index field as described in the text. Volume and surface renderings of the
reconstructions are shown from perspectives that are different from those captured.

equation. In addition to deriving it using light field nota-
tion, we enhance the models used in the optics community
by coded background illumination that allows us to incor-
porate more sophisticated regularizers, as recently proposed
in the computer vision community [15]. We evaluate the
proposed technique in simulation and demonstrate that it
achieves higher-quality three-dimensional, tomographic re-
constructions than alternative techniques. We also build a
prototype device and show reconstructions of static and dy-
namic refractive index fields.

7.1. Limitations

The proposed method makes a number of assumptions
that may not be met for arbitrary refractive objects. These
include the absence of reflection, scattering, diffraction, and
dispersion. Further, the projection of the refractive index
field is assumed to be differential, hence smooth. While the
transport of intensity equation inherently separates absorp-
tion from refraction, the proposed optical coding strategy
requires that the medium is either non-absorptive or that ab-
sorption is constant over the imaged area. Otherwise, the

optical flow may fail to recover precise ray-ray correspon-
dences.

Our prototype system has limitations as well. The finite
projector aperture provides rear-illumination that is not per-
fectly collimated and the optical codes are limited by the
minimal observable changes in pixel intensity and hue by
the camera. Dynamic scenes captured with a finite camera
exposure time may contain motion blur.

7.2. Future Work

In the future, we would like to experiment with an array
of cameras that captures dynamic, three-dimensional index
fields from multiple perspectives simultaneously. We could
reduce the number of required devices by using a single
light field camera for each perspective and synthesize mul-
tiple intensity projections at different focal distances. This
approach, however, would come at the cost of reduced im-
age resolution. Finally, capturing more than two intensity
projections from each perspectives can achieve better recon-
structions [31].
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