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Abstract
We present an image set classification algorithm based

on unsupervised clustering of labeled training and unla-
beled test data where labels are only used in the stopping
criterion. The probability distribution of each class over
the set of clusters is used to define a true set based simi-
larity measure. To this end, we propose an iterative sparse
spectral clustering algorithm. In each iteration, a proxim-
ity matrix is efficiently recomputed to better represent the
local subspace structure. Initial clusters capture the global
data structure and finer clusters at the later stages capture
the subtle class differences not visible at the global scale.
Image sets are compactly represented with multiple Grass-
mannian manifolds which are subsequently embedded in
Euclidean space with the proposed spectral clustering al-
gorithm. We also propose an efficient eigenvector solver
which not only reduces the computational cost of spectral
clustering by many folds but also improves the clustering
quality and final classification results. Experiments on five
standard datasets and comparison with seven existing tech-
niques show the efficacy of our algorithm.

1. Introduction
Image set based object classification has recently re-

ceived significant research interest [1, 2, 5, 10, 12, 17, 20,
28, 29, 30] due to its higher potential for accuracy and ro-
bustness compared to single image based approaches. An
image set contains more appearance details such as multi-
ple views, illumination variations and time lapsed changes.
These variations complement each other resulting in a bet-
ter object representation. However, set based classification
also introduces many new challenges. For example, in the
presence of large intra set variations, efficient representa-
tion turns out to be a difficult problem. Considering face
recognition, it is well known that the images of different
identities in the same pose are more similar compared to
the images of the same identity in different poses (Fig. 1).
Other important challenges include efficient utilization of
all available information in a set to exploit intra-set similar-
ities and inter-set dissimilarities.

Many existing image set classification techniques are
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Figure 1. Projection on the top 3 principal directions of 5 subjects
(in different colors) from the CMU Mobo face dataset. The natural
data clusters do not follow the class labels and the underlying face
subspaces are neither independent nor disjoint.

variants of the nearest neighbor (NN) algorithm where the
NN distance is measured under some constraint such as rep-
resenting sets with affine or convex hulls [8], regularized
affine hull [3], or using the sparsity constraint to find the
nearest points between image sets [30]. Since NN tech-
niques utilize only a small part of the available data, they
are more vulnerable to outliers.

At the other end of the spectrum are algorithms that rep-
resent the holistic set structure, generally as a linear sub-
space, and compute similarity as canonical correlations or
principle angles [26]. However, the global structure may
be a non-linear complex manifold and representing it with a
single subspace will lead to incorrect classification [2]. Dis-
criminant analysis has been used to force the class bound-
aries by finding a space where each class is more compact
while different classes are apart. Due to multi-modal na-
ture of the sets, such an optimization may not scale the inter
class distances appropriately (Fig. 1). In the middle of the
spectrum are algorithms [2, 24, 28] that divide an image set
into multiple local clusters (local subspaces or manifolds)
and measure cluster-to-cluster distance [24, 28]. Chen et
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Figure 2. Proposed algorithm:(a) Face manifolds of 4 subjects from CMU Mobo dataset in PCA space. (b) Each set transformed to a
Grassmannian manifold. (c) Data matrix and class label vector. (d) Iterative Sparse Spectral Clustering Algorithm: Proximity matrix based
on Sparse Least Squares, a novel fast Eigenvector solver and supervised termination criterion. (e) Each class element assigned a latent
cluster label. (f) Probability distribution of each class over the set of clusters. (g) Class probability distribution based distance measure.

al. [2] achieved improved performance by computing the
distance between different locally linear subspaces. In all
these techniques, classification is dominated by either a few
data points, only one cluster, one local subspace, or one ba-
sis of the global set structure, while the rest of the image set
data or local structure variations are ignored.

We propose a new framework in which the final classifi-
cation decision is based on all data/clusters/subspaces con-
tained in all image sets. Therefore, classification decisions
are global compared to the existing local decisions. For
this purpose, we apply unsupervised clustering on all data
contained in the gallery and the probe sets, without enforc-
ing set boundaries. We find natural data clusters based on
the true data characteristics without using labels. Set labels
are used only to determine the required number of clusters
i.e. in the termination criterion. The probability distribution
of each class over the set of natural data clusters is com-
puted. Classification is performed by measuring distances
between the probability distributions of different classes.

The proposed framework is generic and applicable to any
unsupervised clustering algorithm. However, we propose an
improved version of the Sparse Subspace Clustering (SSC)
algorithm [6] for our framework. SSC yields good results
if different classes span independent or disjoint subspaces
and is not directly applicable to the image-set classification
problem where the subspaces of different classes are nei-
ther independent nor disjoint. We propose various improve-
ments over the SSC algorithm. We obtain the proximity
matrix by sparse least squares with more emphasis on the
reconstruction error minimization than the sparsity induc-
tion. We perform clustering iteratively and in each iteration
divide a parent cluster into small number of child clusters
using the NCut objective function. Coarser clusters cap-
ture the global data variations while the finer clusters, in the
later iterations, capture the subtle local variations not visi-
ble at the global level. This coarse to fine scheme allows
discrimination between globally similar data elements.

The proposed clustering algorithm can be directly used
with the set samples however, we represent each set with a
Grassmannian manifold and perform clustering on the man-
ifold basis matrices. This strategy reduces computational
complexity and increases discrimination and robustness to
different types of noise in the image sets. Using Grass-
mann manifolds, we make an ensemble of spectral classi-
fiers which further increases accuracy and gives reliability
(confidence) of the label assignment.

Our final contribution is a fast eigenvector solver based
on the group power iterations method. The proposed algo-
rithm iteratively finds all eigenvectors simultaneously and
terminates when the signs of the required eigenvector co-
efficients become stable. This is many times faster than
the Matlab SVDS implementation and yields clusters of
the same or better quality. Experiments are performed on
three standard face image-sets (Honda, Mobo and Youtube
Celebrities), an object categorization (ETH 80), and Cam-
bridge hand gesture datasets. Results are compared to seven
state of the art algorithms. The proposed technique achieves
the highest accuracy on all datasets. The maximum im-
provement is observed on the most challenging Youtube
dataset where our algorithm achieves 11.4% higher accu-
racy than the best reported.

2. Image Set Classification by Semi-supervised
Clustering

Most image-set classification algorithms try to enforce
the set boundaries in a supervised way i.e. label assignment
to the training data is often manual and based on the real
world semantics or prior information instead of the under-
lying data characteristics. For example, all images of the
same subject are pre-assigned the same label despite that
the intra subject dissimilarity may exceed that of inter sub-
ject. Therefore, the intrinsic data clusters may not align well
with the imposed class boundaries.



Wang et. al. [24, 28] computed multiple local clusters
(sub-sets) within the set boundaries. Subsets are individu-
ally matched and a gallery class containing a subset max-
imally similar to a query subset becomes the label winner.
This may address the problem of within set dissimilarity but
most samples do not play any role in the label estimation.

We propose to compute the set similarities based on the
probability distribution of each data-set over an exhaustive
number of natural data clusters. We propose unsupervised
clustering to be performed on all data, the probe and all the
training sets combined without considering labels. By do-
ing so, we get natural clusters based on the inherent data
characteristics. Clusters are allowed to be formed across
two or more gallery classes. Once an appropriate number of
clusters are obtained, we use labels to compute class proba-
bility distribution over the set of clusters.

Let nk be the number of natural clusters and nc be the
number of gallery classes. For a class ci having ni data
points, let pi ∈ Rnk be the distribution over all clusters:
∑
nk

k=1 pi[k] = 1 and 1 ≥ pi[k] = ni[k]/ni ≥ 0, where ni[k]
are the data points of class ci in the k-th cluster. Our ba-
sic framework does not put any condition on nk however,
we argue by Lemma 2.1 that an optimal number of clusters
exist and can be found for the task of set label estimation.
The derivation of Lemma 2.1 is based on the notion of ‘con-
ditional orthogonality’ and ‘indivisibility’ of clusters as de-
fined below. We assume that classes ci and cj belong to the
gallery (G) with known labels while cp is the probe set with
unknown label.

Conditional Orthogonality Distribution of class ci is con-
ditionally orthogonal to the distribution of a class cj w.r.t the
distribution of probe set cp if

(pi ⊥c pj)pp
∶= ⟪(pi ∧ pp), (pj ∧ pp)⟫ = 0 ∀(ci, cj) ∈ G,

(1)
where ∧ is the logical AND operation and ⟪⋅⟫ is the inner
product. If both operands of ∧ are non-zero then the result
will be 1 otherwise result will be 0.

Indivisible Cluster A cluster k∗ is indivisible from the
probe set label estimation perspective if

pi[k
∗
] ∧ pj[k

∗
] ∧ pp[k

∗
] = 0 ∀(ci, cj) ∈ G. (2)

A cluster is ‘indivisible’ if either exactly one gallery class
has non zero probability over that cluster or the probability
of probe set is zero.

Lemma 2.1 Optimal number of clusters for the set labeling
problem are the minimum number of clusters such that all
gallery class distributions become orthogonal to each other
w.r.t the probe set distribution.

n∗k ≜ min
nk

(pi ⊥c pj)pp ∀ci, cj ∈ G (3)

We only discuss an informal proof of Lemma 2.1. The con-
dition (3) ensures all clusters are indivisible, therefore in-
creasing the number of clusters beyond n∗k will not yield
more discrimination. For nk < n∗k, there will be some clus-
ters having overlap between class distributions, hence re-
ducing the discrimination. Thus n∗k are the optimal number
of clusters for the task at hand.

Once the optimality condition is satisfied, all clusters
will be indivisible. Existing measures may then be used
for the computation of distances between class-cluster dis-
tributions. For this purpose, we consider Bhattacharyya and
Hellinger distance measures. We also propose a modified
Bhattacharyya distance which we empirically found more
discriminative than the existing measures.
Bhattacharyya distance (Bi,p) between a class ci ∈ G and
the probe-set cp, having pi(k) and pp(k) probability over
the k-th cluster is

Bi,p = − ln
n∗k

∑

k=1

√

pi(k)pp(k). (4)

In (4), ln(0) ∶= 0, therefore 0 ≤ Bi,p ≤ 1.
Hellinger distance is the `2 norm distance between two

probability distributions

Hi,p =
1

√

2

¿

Á
Á
ÁÀ

n∗
k

∑

k=1

(

√

pi[k] −
√

pp[k])2, (5)

Modified Bhattacharyya Distance (BMi,p) of gallery class
ci with probe class cp is given by

B
M
i,p = − ln⟪

√
pi,

√
pi ⋅ (pi ∧ pp)⟫⟪

√

pp,
√

pp ⋅ (pi ∧ pp)⟫,
(6)

where (⋅) in this definition is a point-wise multiplication
operator and have precedence over inner product.

Lemma 2.2 Bhattacharyya distance is upper bounded by
the modified Bhattacharyya distance: BMi,p ≥ Bi,p

Proof simply follows from Cauchy Schwartz inequality:

B
M
i,p ≥ − ln⟪

√
pi,

√

pp⟫.

At the extreme cases, when the angle between the two dis-
tributions is 0 or 90o, BMi,p = Bi,p, while for all other cases
B
M
i,p > Bi,p. Note that the factors forced to be zero in BMi,p

by introducing the ∧ operator are automatically canceled
in Bi,p. Performance of the three measures was experimen-
tally compared and we observed that BMi,p achieves the high-
est accuracy.

3. Spectral Clustering
The basic idea is to divide data points into different clus-

ters using the spectrum of proximity matrix which repre-



sents an undirected weighted graph. Each data point cor-
responds to a vertex and edge weights correspond to sim-
ilarity between the two points. Let G = {Xi}

g
i=1 ∈ R

l×ng

be the collection of data points in the gallery sets. Here,
ng = ∑

g
i=1 ni are the total number of data points in the

gallery. The i-th image set has ni data points each of dimen-
sion l. The gallery contains g sets and nc classes: g ≥ nc,
Xi = {xj}

ni

j=1 ∈ R
l×ni . Each data point xj could be a fea-

ture vector or simply the pixel values.
Let cp = {xi}

np

i=1 ∈ R
l×np be the probe-set with a dummy

label nc+1. We make a global data matrix by appending all
gallery sets and the probe set: D = [G cp] ∈ R

l×nd , where
nd = ng + np. The affinity matrix A ∈ R

nd×nd is computed
as

Ai,j =

⎧
⎪⎪
⎨
⎪⎪
⎩

exp
−∣∣xi−xj ∣∣22

2σ2 if i ≠ j
0 if i = j.

(7)

From A, a degree matrix D is computed

D(i, j) =

⎧
⎪⎪
⎨
⎪⎪
⎩

∑
nd

i=1A(i, j) if i = j
0 if i ≠ j,

(8)

Using A and D, a Laplacian matrix L is computed

Lw =D−1/2AD−1/2. (9)

Let E = {ei}
nc

i=1 be the matrix of nc smallest eigenvectors
of Lw. The eigenvectors of the Laplacian matrix embed the
graph vertices into a Euclidean space where NN approach
can be used for clustering. Therefore, the rows ofE are unit
normalized and grouped into nc clusters using kNN.

3.1. Proximity Matrix As Sparse Least Squares

Often high dimensional data sets lie on low dimensional
manifolds. In such cases, the Euclidean distance based
proximity matrix is not an effective way to represent the ge-
ometric relationships among the data points. A more viable
option is the sparse representation of data which has been
used for many tasks including label propagation [4], dimen-
sionality reduction, image segmentation and face recogni-
tion [11]. Alhamifar and Vidal [6] have recently proposed
sparse subspace clustering which can discriminate data ly-
ing on independent and disjoint subspaces.

A vector can only be represented as a linear combination
of other vectors spanning the same subspace. Therefore, the
proximity matrices based on linear decomposition of data
points lead to subspace based clustering. Representing a
data point xi as a linear combination of the remaining data
points D̂ = D/xi ensures that zero coefficients will only
correspond to the points spanning different subspaces. Such
a decomposition can be computed with least squares

αi = (D̂
⊺
D̂)

−1
D̂
⊺xi, (10)

where α are the linear coefficients. We are mainly con-
cerned with the face space which is neither independent nor
disjoint across different subjects. Therefore, introducing a
sparsity constraint on α ensures that the linear coefficients
from less relevant subspaces will be forced to zero:

α∗i ∶= min
αi

(∣∣xi − D̂αi∣∣
2
2 + λ∣∣αi∣∣1) . (11)

The first term minimizes the reconstruction error while the
second term induces sparsity. This process is repeated for
all data points and the corresponding αi are appended as
columns in a matrix S = {αi}

nd

i=1 ∈ R
nd×nd . Some of

the α coefficients may be negative and in general S(i, j) ≠
S(j, i). Therefore, a symmetric sparse LS proximity matrix
is computed as A = ∣S∣ + ∣S⊺∣ for spectral clustering.

3.2. Iterative Hierarchical Sparse Spectral Clusters

Conventionally, sparse spectral clustering is performed
by simultaneous partitioning of the graph into nk clus-
ters [6]. We argue that iterative hierarchical clustering has
many advantages. In each iteration, we divide the graph
into very few partitions/clusters (four in our implementa-
tion). If a cluster is not indivisible (2), we recompute the
local sparse LS based proximity matrix only for that clus-
ter and then re-compute the eigenvectors. Note that we do
not reuse a part of the initial proximity matrix, because the
sparse LS gives a different matrix due to reduced number
of candidates. The new matrix highlights only local con-
nectivity as opposed to global connectivity at the highest
level. Coarser clusters capture the large global variations
while the finer clusters, obtained later, capture the subtle in-
ter class differences which may not be visible at the global
scale. As a result, we are able to locally differentiate be-
tween data points which were globally similar. Moreover,
as we explain next, in the case of simultaneous partition-
ing, an approximation error accumulates which adversely
affects the cluster quality, whereas the iterative hierarchical
approach enables us to obtain high quality clusters.

Let al and ar be the two disjoint partitions. We want
to find a graph cut that minimizes the sum of edge weights
∑i∈∣al∣,j∈∣ar ∣A(i, j) across the cut. MinCut is easy to imple-
ment but it may give unbalanced partitions. In the extreme
case, minCut may separate only one node from the remain-
ing graph. To ensure balanced partitions, we minimize the
normalized cut NCut objective function [25, 7]

1

Val
∑

i∈∣al∣,j∈∣ar ∣
A(i, j) +

1

Var
∑

i∈∣al∣,j∈∣ar ∣
A(i, j), (12)

where Val is the sum of all edge weights attached to the
vertices in al. The objective function increases with the de-
crease in the number of nodes in a partition. Unfortunately,
the minCut using the NCut objective function is NP hard
and only approximate solutions can be computed using the



spectral embedding approach. It has been shown in [25]
that the eigenvector corresponding to the second smallest
eigenvalue (e2) of

Lsym =D−1/2
(D −A)D−1/2 (13)

provides an approximate solution to a relaxed NCut prob-
lem. All data points corresponding to e2(i) ≥ 0 are assigned
to al while the remaining ones to ar. Similarly, e3 can
further divide each cluster into two more clusters and the
higher order eigenvectors can be used for further partition-
ing the graph into smaller clusters. However, the approxi-
mation error accumulates degrading the clustering quality.

Although good quality clusters can be obtained using the
iterative approach, it requires more computations because
the proximity matrix and eigenvector computations must
be repeated at each iteration. If the data matrix D is di-
vided into four balanced partitions each time, the size of the
new matrices are 16 times smaller. Since the complexity of
eigenvector solvers is O(n3

d), the complexity reduction in
the next iteration is O((

nd

4
)
3
)) for each sub-problem. The

depth of the recursive tree is log4(nd), however the pro-
posed supervised stopping criteria does not let the iterations
to continue until the end, rather the process stops as soon
as all clusters are indivisible. A computational complexity
analysis of the recursion tree reveals that the overall com-
plexity of the eigenvector computations remains O(n3

d).

4. Computational Cost Reduction
We propose two approaches for computational complex-

ity reduction of spectral clustering. The first approach re-
duces the data by embedding each image set on a Grass-
mann manifold and then using the manifold basis vectors to
represent the set. The second approach is a fast eigenvec-
tor solver which quickly computes approximate eigenvec-
tors using an early termination criterion of sign changes.

4.1. Data Reduction by Grassmann Manifolds

Eigenvectors computation of large Laplacian matrices
Lsym ∈ R

nd×nd incurs high computational cost. Often
a part of the data matrix D or some columns from Lsym
are sampled and eigenvectors are computed for the sampled
data and extrapolated for the rest [7, 22, 18]. Approximate
approaches provide sufficient accuracy for computing the
most significant eigenvectors but are not as accurate for the
least significant eigenvectors which are actually required in
spectral clustering. In contrast, we propose to represent
each set by a compact representation and clustering to be
performed on the representation instead of the original data.

Our choice of image set representation is motivated from
linear subspace based image-set representations [28, 26].
These subspaces may be considered as points on Grassman-
nian manifolds [9, 10]. While others performed discrimi-
nant analysis on the Grassmannian manifolds or computed

manifold to manifold distances, we perform sparse spectral
clustering on the Grassmannian manifolds.

A set of λ-dimensional linear subspaces of Rn, n =

min(l, nj) and λ ≤ n, is termed the Grassmann mani-
fold Grass(λ,n). An element Y of Grass(λ,n) is a λ-
dimensional subspace which can be specified by a set of λ
vectors: Y = {y1, ..., yλ} ∈ R

l×λ and Y is the set of all
their linear combinations. For each data element of the im-
age set, we compute a set of basis Y and the set of all such
Y matrices is termed as the non-compact Stiefel manifold
ST (λ,n) ∶= {Y ∈ Rl×λ ∶ rank (Y) = λ.}. We arrange
all the Y matrices in a basis matrix B which is capable of
representing each data point in the image set by just using
λ of its columns. For the i-th data point in j-th image set
xij ∈ Xj , having Bj as the basis matrix, xij = Bjα

i
j , where

αij is the set of linear parameters with ∣αij ∣o = λ. For the case
of known Bj , we can find a matrix αj = {α1

j , α
2
j ,⋯α

ni

j }

such that the residue approaches zero

min
αj

(

ni

∑

i=1

∣∣xij −Bjα
j
i ∣∣

2
2) s.t. ∣∣αj ∣∣o ≤ λ . (14)

Since `1 can approximate `o, we can estimate both αj and
Bj iteratively by using the following objective function [16]

min
αj ,Bj

(

1

nj

nj

∑

i=1

1

2
∣∣xij −Bjα

i
j ∣∣

2
2 s.t. ∣∣αij ∣∣1 ≤ λ) . (15)

The solution is obtained by randomly initializing Bj and
computing αj , then fixing αj and computing Bj . The size
of Bj ∈ Rl×Λ is significantly smaller than the correspond-
ing image set Xj∈R

l×nj . Representing each image set with
Λ basis vectors reduces the data matrix from nd × nd to
Λg×Λg, which significantly reduces the computational cost.
Additionally, we observe that this representation also pro-
vides significant increase in the accuracy of the proposed
clustering algorithm because the underlying subspaces of
each class are robustly captured in B leaving out noise.

4.2. Fast Approximate Eigenvector Solver

The size of Laplacian matrix still grows with the number
of subjects. To reduce the cost of eigenvector computations,
we propose a fast group power iteration method which finds
all the eigenvectors and eigenvalues simultaneously, given
sufficient number of iterations. The proposed algorithm al-
ways converges and has good numerical stability.

The signs of the e2 eigenvector coefficients (correspond-
ing to the minimum non-zero eigenvalue) of Lsym provides
an approximate solution to a relaxed NCut problem [25].
Therefore, if we get the correct signs with approximate
magnitude of the eigenvectors, we will still get the same
quality of clusters. We exploit this fact in our proposed
eigenvector solver and terminate the iterations when the
number of sign changes falls below a threshold.



Power iterations algorithm is a fundamental technique
for eigenvalues and eigenvectors computation [31]. A ran-
dom vector v is repeatedly multiplied by the matrix L and
normalized. After k iterationsAv(k) = λ v(k), where v(k) is
the most dominant eigenvector of L and λ the correspond-
ing eigenvalue. To calculate the next eigenvector, the same
process is repeated on the deflated matrix L.

Group power iteration method can be used for the com-
putation of all eigenvectors simultaneously. A random ma-
trix Vr is iteratively multiplied by L. After each multiplica-
tion, a unit normalization step is required by division with
V ⊺
r Vr which converges to a diagonal matrix as Vr converges

to an orthonormal matrix. To stop all columns from con-
verging to the most dominant eigenvector, an orthogonal-
ization step is also required. We use QR decomposition for
this purpose: V (k)r R

(k)
r = V

(k)
r . A simple group power it-

eration method will have poor convergence properties [31].
To overcome this, we apply convergence from the left and
the right sides simultaneously by computing the left and the
right eigenvectors (see Algorithm 1). We observe that Al-
gorithm 1 always converges to the correct solution and has
better numerical properties than the group power iteration.

For the proposed spectral clustering, only the signs are
important. Therefore, in Algorithm 1, we replace the eigen-
value convergence based termination criterion with stabi-
lization of sign changes criterion between consecutive iter-
ations as follows

∆S = ∑(V (k)r > 0) ⊕ (V (k−1)
r > 0), (16)

where ⊕ is the XOR operator. 0⊕1 = 1, 1⊕0 = 1, 0⊕0 = 0,
1 ⊕ 1 = 0. We empirically found that most of the signs
become stable after very few iterations (≤ 4).

5. Ensemble of Spectral Classifiers
Representing image sets with Grassmannian manifolds

facilitates formulation of an ensemble of spectral classifiers.
Different random initializations ofB0

j in (15) may converge
to different solutions resulting in multiple image set repre-
sentations. In addition to that, we also vary the dimension-
ality of manifolds and compute a set of manifolds for each
class. The proposed spectral classifier is independently ap-
plied to the manifolds of the same dimensionality over all
classes and the inter class distances are estimated. We fuse
the set of distances using mode fusion and also by sum rule.
In mode fusion, the probe set label is estimated individu-
ally for each classifier and the label with the maximum fre-
quency is selected. In sum fusion, minimum distance over
the cumulative distance vector defines the probe set label.

6. Experimental Evaluation
Evaluations are performed for image-set based face

recognition, object categorization and gesture recogni-
tion. The SPAMS [21] package is used for sparse cod-

Algorithm 1 Fast Eigen Solver: Group Power Iteration
Input: L ∈ R

n×n, εL
Output: U,V {Eigenvectors}, Λ {Eigenvalues}
V
(0)
r = I(n,n) {Identity matrix}

Λ(0) = L, δΛ = 1
while δΛ ≥ εL do
V
(k)
l ← L⊺V (k−1)

r

V
(k)
l ← V

(k)
l /(V

(k)⊺
l V

(k)
l )

V
(k)
l R

(k)
l ← V

(k)
l {left qr decomposition}

V
(k)
r ← V

(k)
l

V
(k)
r ← V

(k)
r /(V

(k)⊺
r V

(k)
r )

V
(k)
r R

(k)
r ← V

(k)
r {right qr decomposition}

Λ(k) ← V
(k)
r LV

(k)⊺
l

δΛ = ∣∣diag(Λ(k) −Λ(k−1)
)∣∣2

end while
U ← V

(k)
r , V ← V

(k)
l

ing. Comparisons are performed with Discriminant Canon-
ical Correlation (DCC) [26], Manifold-Manifold Distance
(MMD) [28], Manifold Discriminant Analysis (MDA) [24],
linear Affine and Convex Hull based Image Set Dis-
tance (AHISD, CHISD) [8], Sparse Approximated Near-
est Points [30], and Covariance Discriminative Learning
(CDL) [27]. The same experimental protocol is used for
all algorithms. The codes of [8, 26, 28, 30] were provided
by the original authors.

6.1. Face Recognition using Image-sets

Our first dataset is the You-tube Celebrities [19] which
is very challenging and includes 1910 very low resolution
videos (of 47 subjects) containing motion blur, high com-
pression, pose and expression variations (Fig. 3c). Faces
were automatically detected, tracked and cropped to 30×30
gray-scale images. Due to tracking failures, our sets con-
tained fewer images (8 to 400 per set) than the total number
of video frames. The proposed algorithm performed best on
HOG features. Five-fold cross validation experiments were
performed where 3 image sets were randomly selected for
training and the remaining 6 for testing.

Each image-set was represented by two manifold-sets by
using λ = {1,2} in (15). Each set has 8 classifiers with di-
mensionality increasing from 1 to 8. Recognition rates of
the ensembles of each dimensionality are compared with
both fusion schemes in Fig. 4a. No-fusion case shows the
average accuracy of the individual classifiers over the five
folds. Note that mode fusion achieves the highest accuracy
and performs better than sum fusion because error does not
get accumulated. Hierarchical clustering is compared with
one-step clustering in 4b which shows the superiority of the
hierarchical approach. The performance of the proposed
eigenvector solver is compared with the Matlab sparse SVD
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Figure 3. Two example image-sets from (a) Honda, (b) CMU
Mobo and (c) You-tube Celebrities datasets. (d) ETH 80 dataset.
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Figure 4. You-tube dataset: (a) Comparison of different spectral
ensemble fusion schemes. (b) Comparison of one step and the it-
erative clustering (No Fusion). (c-d) Accuracy and execution time
comparison of the proposed fast eigen-solver with Matlab SVDS.
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Figure 5. Mobo dataset: Comparison of (a) hierarchical with (b)
one-step spectral clustering.

(svds) in Fig. 4c. We observe more accuracy due to better
quality embedding of Grassmannian Manifolds in the Eu-
clidean space by the proposed solver. In terms of execu-
tion time, our eigenvector solver is around 4 times faster
than SVDS (Fig. 4d). This demonstrates the efficacy of
our eigenvector solver for the purpose of spectral cluster-
ing. The maximum accuracy of our algorithm is 83% and
the average accuracy is 76.4±5.7% using BMi,p (6) distance
measure (1). To the best of our knowledge, this is the high-
est accuracy to date reported on this dataset.

Table 1. Average recognition rates over 10-folds on Honda, MoBo,
& ETH80, 5-fold on YouTube and 1-fold on Cambrage dataset.

Honda MoBo ETH80 You-Tube Cambr.
DCC 94.7±1.3 93.6±1.8 90.9±5.3 53.9±4.7 65.0
MMD 94.9±1.2 93.2±1.7 85.7±8.3 54.0±3.7 58.1
MDA 97.4±0.9 97.1±1.0 80.50±6.81 55.1 ±4.5 20.9

AHISD † 89.7±1.9 97.4±0.8 74.76±3.3 60.7±5.2 18.1
CHISD † 92.3±2.1 96.4±1.0 71.0±3.9 60.4±5.9 18.3
SANP 93.1±3.4 96.9±0.6 72.4±5.0 65.0±5.53 22.5
CDL 100±0.0 95.8±2.0 89.2±6.8 ∗62.2±5.1 73.4
Prop. 100±0.0 98.0±0.9 91.5±3.8 76.4±5.7 83.05
∗ CDL results are on different folds therefore, the accuracy

is less than that reported by [27]. †The accuracy of AHISD and
CHISD is less than in [8] due to smaller image sizes.

The second dataset is CMU Mobo [23] containing 96
videos of 24 subjects. Face images were re-sized to 40 ×
40 and LBP features were computed using circular (8, 1)
neighborhoods extracted from 8 × 8 gray scale patches [8].
We performed 10-fold experiments by randomly selecting
one image-set per subject as training and the remaining 3
as probe. We achieved a maximum accuracy of 100% and
average 98.0±0.93% (Table 1) which is the highest reported
so far.

Our final dataset is Honda/UCSD [13] containing 59
videos of 20 subjects with varying poses and expressions.
Histogram equalized 20×20 gray scale face image pixel
values were used as features [28]. We performed 10-fold
experiments by randomly selecting one set per subject as
gallery and the remaining 39 as probes. An ensemble of 15
spectral classifiers obtained 100% accuracy on all folds.

6.2. Object Categorization & Gesture Recognition
For object categorization, we use the ETH-80 dataset

containing images of 8 object categories each with 10 dif-
ferent objects. Each object has 41 images taken at differ-
ent views forming an image-set. We use 20×20 intensity
images for classifying an image-set of an object into a cate-
gory. ETH-80 is a challenging database because it has fewer
images per set and significant appearance variations across
objects of the same class. For each class, 5 random image
sets are used for training and the remaining 5 for testing. We
achieved an average recognition rate of 91.5±3.8% using an
ensemble of 15 spectral classifiers.

The Cambridge Hand Gesture dataset [15] contains 900
image-sets of 9 gesture classes with large intra-class varia-
tions. Each class has 100 image sets, divided into two parts,
81-100 used as gallery and 1-80 as probes [14]. Pixel val-
ues of 20×20 gray scale images are used as feature vectors.
Using an ensemble of 9 spectral classifiers, we obtained an
accuracy of 83.05% which is higher than the other algo-
rithms.

6.3. Robustness to Outliers
We performed robustness experiments in a setting sim-

ilar to [8]. Honda dataset was modified to have 100 ran-
domly selected images per set. In the first experiment, each
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Figure 6. Robustness to outliers experiment: (a) Corrupted gallery
case (b) Corrupted probe case.

gallery set was corrupted by adding 1 to 3 random images
from each other gallery set resulting in 19%, 38% and 57%
outliers. Our algorithm achieved 100% accuracy for all
three cases. In the second experiment, the probe set was
corrupted by adding 1 to 3 random images from each gallery
set. In this case, our algorithm achieved {100%, 100%,
97.43%} recognition rates. Our algorithm outperformed all
others. Fig. 6 compares our algorithm to the nearest 2 com-
petitors in both experiments i.e. CDL [27], SANP [30].

7. Conclusion
We presented an iterative sparse spectral clustering al-

gorithm for robust image-set classification. Each image-set
is represented with Grassmannian manifolds of increasing
dimensionality to facilitate the use of an ensemble of spec-
tral classifiers. An important contribution is a fast eigenvec-
tor solver which makes spectral clustering more efficient in
general. Instead of eigenvalue error, we minimize the sign
changes in our group power iteration algorithm which pro-
vides significant speedup and better quality clusters.
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