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Abstract

The world is full of objects with complex reflectances,
situated in complex illumination environments. Past work
on full 3D geometry recovery, however, has tried to han-
dle this complexity by framing it into simplistic models of
reflectance (Lambetian, mirrored, or diffuse plus specular)
or illumination (one or more point light sources). Though
there has been some recent progress in directly utilizing
such complexities for recovering a single view geometry, it
is not clear how such single-view methods can be extended
to reconstruct the full geometry. To this end, we derive a
probabilistic geometry estimation method that fully exploits
the rich signal embedded in complex appearance. Though
each observation provides partial and unreliable informa-
tion, we show how to estimate the reflectance responsible
for the diverse appearance, and unite the orientation cues
embedded in each observation to reconstruct the underlying
geometry. We demonstrate the effectiveness of our method
on synthetic and real-world objects. The results show that
our method performs accurately across a wide range of
real-world environments and reflectances that lies between
the extremes that have been the focus of past work.

1. Introduction
The beauty of our world is due in part to the interaction

of complex reflectances and rich illumination environments.
Past work on full 3D geometry estimation has focused on
compressing this complexity to fit simplistic models. Re-
flectance is often assumed to be Lambertian, mirrored, or
diffuse plus specular; and illumination is assumed to be sim-
ple, often a single point light source. Recently there has
been some progress in directly exploiting the complexity
of real-world appearance to recover a single-view geometry
estimate [16]. It is not clear, however, how such single-view
methods can be extended to reconstruct the full geometry.

The foundation of multi-view stereo is the notion of pho-
tometric consistency. For Lambertion objects, for example,
multiple observations enable us to divide up the object space

and test each voxel for consistency with the observation im-
ages [20]. That is, due to the viewpoint independent appear-
ance of Lambertian materials, a voxel that truly contains the
surface must have the same appearance when projected into
each of the images. If the object has a more complex re-
flectance, by controlling the illumination we may deduce
per-pixel orientations (surface normals) for each of the ob-
servations. We can then impose an analogous orientation
consistency metric [5]. Though there have been many other
ways to express the notion of consistency (some of which
are discussed below) each is made possible through a sim-
plistic model of illumination or reflectance that excludes
many real-world settings.

In this paper, we introduce a method that uses what we
can directly (and passively) acquire (a dozen calibrated im-
ages of the object and a panorama of the illumination envi-
ronment) to estimate what we cannot (the reflectance prop-
erties and full 3D geometry of the object). The main con-
tribution of this work is a probabilistic 3D geometry and
reflectance estimation method that fully exploits the com-
plexity of non-trivial reflectance and non-trivial illumina-
tion. We use a triangular mesh model to link the observa-
tions, so that orientation cues embedded in each observation
can be combined to constrain the position of each facet.

The appearance of a pixel in an image provides a mul-
timodal distribution of possible orientations, the shape of
which depends on the illumination environment and the re-
flectance properties of the object. Those pixels reflecting
unique scene components (like the sun) provide stronger
constraints, while those reflecting less descriptive compo-
nents (like the sky or a tree) provide weaker constraints.
Such weak constraints, however, become strong when the
orientation distributions of multiple observations corrobo-
rate a tighter range of orientations. Our overall method is to
jointly optimize reflectance and shape by keeping one fixed
as the other is optimized. To model the reflectance we use
the Directional Statistics BRDF model [12, 14]. We use sil-
houette intersection as a starting point.

We test our method quantitatively on synthetic data and
real-world objects. The synthetic experiments show that our
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method performs well in a wide range of real-world illu-
mination environments and for a wide range of real-world
reflectances. To perform quantitative real-world evalua-
tion, we introduce a new data-set containing four objects of
which we have acquired ground-truth geometry and images
in three diverse indoor and outdoor locations.

2. Related work
The field of multi-view geometry estimation has received

a great deal of attention over the years [19]. Here we will
focus only on those methods that have some important sim-
ilarity to our method.

The concept of photometric consistency (discussed
above) has played a role in many methods [10, 20, 22]. Pons
et al. [17] extended the notion using patch-based compar-
isons instead of a simple single-voxel intensity comparison
giving flexibility to changes in radiance. Jin et al. [6, 7]
moved the concept beyond Lambertian reflectances to a dif-
fuse plus specular model by measuring the rank of the radi-
ance tensor field across many (∼ 40) images. In this work
we go further by working under complex natural illumi-
nation, with the more general DSBRDF reflectance model
[12, 14], and with a more sparse (∼ 12) set of images.

Hernàndez et al. [5] use photometric stereo to convert
each observation location into a reliable geometry observa-
tion in the form of a surface normal field by taking sev-
eral pictures under a moving point light source. Treuille et
al. [21] allow for arbitrary BRDFs, but assume that the re-
flectance is known by observing the appearance of a sphere
of the same material. By comparing the change in appear-
ance of each point on the object with that of each point on
the sphere, they also arrive at a reliable surface normal field
for each observation location. Both methods then estimate
the 3D geometry that is consistent with the newly created
geometry observations. Though our overall approach is to
also use orientation clues from the observations, we do so
without controlling the illumination, and without such lim-
iting assumptions about the reflectance properties of the ob-
ject. In order to extract orientation cues in this setting, we
turn to recent work in shape from shading.

In the Lambertian case, significant progress has been
made due to the observation that natural illumination may
be sufficiently approximated with the parametric spherical
harmonics representation. Work by Johnson and Adelson
[8] uses this to deduce the surface orientations, and albedo
of an object. Barron and Malik [2, 3] showed further that the
illumination parameters and specular highlights of the ob-
ject can also estimated. For complex reflectance, however,
no such approximation of the illumination can be made.
The extreme case of mirrored reflectance, for example, di-
rectly reflects the inherently non-parametric environment
surrounding the object.

In the case of such mirrored reflectance, Adato et al. [1]

observe the flow of the reflected, yet unknown, illumination
environment for a known relative movement of the environ-
ment to deduce the shape of the object. In order to effec-
tively rotate the environment, however, this method requires
that the relationship between the camera and the object be
fixed, and be able to move together.

For the non-Lambertian case, in recent work we showed
how the appearance of a point on the object can give only
a multi-modal, non-parametric distribution of possible ori-
entations [16]. Strong priors can then be imposed to reduce
the ambiguity, and estimate the single-view geometry. Our
primary contribution in this work is a canonical way to com-
bine these complex distributions from separate observations
to extract the geometry (and reflectance) of the object.

3. Bayesian shape and reflectance estimation
The appearance of an object is due to the illumination,

viewing conditions, shape of the object, and its reflectance.
We assume the illumination is known but uncontrolled nat-
ural illumination L, the object material has an isotropic re-
flectance function, and that it has been segmented from the
background. We also assume that we have multiple im-
ages I = {I1, . . . , IM} from calibrated cameras. These
assumptions can be met using existing work (SfM may be
sufficient if the surrounding environment is feature-rich).

Our primary contribution is a probabilistic framework
for estimating the remaining components—the geometry
G, and reflectance Ψ. We formulate this as the maximum a
posteriori (MAP) estimate of the posterior distribution

p(G,Ψ|I) ∝ p(I|G,Ψ)p(G)p(Ψ) , (1)

where the likelihood p(I|G,Ψ) quantifies how consistent
the geometry and reflectance are with the observations, and
the priors p(G) and p(Ψ) encode practical constraints.

In order to find the geometry and reflectance that opti-
mize the posterior, we adopt an iterative approach, keeping
one fixed while estimating the other. In the next sections
we describe precisely how we represent the geometry G,
and the reflectance Ψ and how we estimate them, we then
discuss the overall optimization strategy and some imple-
mentation considerations.

3.1. Shape from reflectance

First we will describe our method for estimating the
shape of the object using images of the object, the illumina-
tion environment, and the current reflectance Ψ as input.

3.1.1 What each image tells us

Let us begin with a single pixel Ix in a single image I ∈ I .
For example, consider the pixel of Fig. 1c circled in orange.
The appearance of this pixel is due to the reflectance Ψ, the



(a) Illumination (b) Reflectance map (c) Observation (d) Likelihoods for color-coded example pixels (brighter is more likely)

Figure 1. Orientation likelihood spherical panoramas The illumination (a) and reflectance combine to form a complex reflectance map
(b). When this is compared with the observed appearance of a pixel in an observation (c), we arrive at a non-parametric distribution of
orientations (d). The green circles denote the true orientation of the corresponding pixels (sorted left to right, and color coded).

illumination environment L, and the underlying orientation
Nx of the corresponding surface point, with some added
Gaussian noise of uniform variance,

Ix = E(Ψ,L,Nx) +N (0, σ2) . (2)

The likelihood thus takes the form of a Gaussian centered on
the predicted irradiance Ex. Here we use the log-intensities
to remain sensitive to subtle detail as well as highlights,

p(Ix|Nx) = N
(

ln(Ix)| ln(Ex), σ2
)
. (3)

The orientation Nx (the only free parameter) determines
what hemisphere of light will be modulated by the re-
flectance and integrated to form the appearance. As shown
in Fig. 1b, since the predicted irradiance is a function of
Nx (which itself can be expressed in 2D spherical coordi-
nates Nx = (θx, φx)), we can visualize it as a 2D spherical
panorama. Note that only the half of the image correspond-
ing to the camera-facing hemisphere is filled in, while the
self-occluded half is shown in light gray.

The likelihood may be visualized similarly, by comput-
ing Eq. 3 for each orientation of a spherical panorama.
Three examples are shown in Fig. 1d where brighter values
correspond to higher-probability orientations. Note how ex-
amples 1 and 3 have no clear minimum; the true orientation
of the underlying surface point (which is indicated with a
green circle) can seldom be directly inferred by appearance.

3.1.2 A unified coordinate frame

In the single image (SfS) case, the next step would be to de-
termine the most likely orientations for each pixel. Ambigu-
ous distributions like the ones in Fig. 1d make this problem
under-constrained. Adding a smoothing constraint [16] can
help, but will fail when whole regions have ambiguous ap-
pearances. Learned constraints on surface curvature [3] ad-
dress this, but cannot account for depth-discontinuities.

It is here that multiple observations become essential
since each observation serves as separate constraint on the
distribution of possible orientations. In order to compare
observations from different images, however, we must first
provide a means to link regions from different images to the
same physical location on the object surface.

Fig. 2 illustrates how a single geometry model can be
used to coordinate the observations. In the middle of the

figure we see the ground-truth object circumscribed by a
coarse geometry estimate. If we take a single point p, and
project it into each of the observations images Im ∈ I we
may then compute the likelihood density for that point as a
product of the separate observations

p(Ip|Np) =
∏
m∈Ωp

p(Imp |Np) , (4)

where Imp is the appearance of the projected point p in im-
age m, and Ωp is the set of images that can view the point.
Note that p(Imp |Np) is identical to Eq. 3, but for a back-
projected surface point.

Two examples are shown in Fig. 2. In the case on the
left (a), the imaged point p is quite close to the true ge-
ometry. A direct consequence of that is that the actual im-
aged appearance is of the same surface point in both I1 and
I4. The orientation distributions for these two observations
therefore overlap nicely, and the resulting distribution for
the point is concentrated, with a small (bright) region.

On the right side of the example mesh, we see the pro-
jection of a point q that is far removed from the true sur-
face. The consequence of this is that the two imaged ap-
pearances attributed to this point are actually of different
points of the real object. Since the imaged geometry for
image I5 is oriented upwards, and the imaged geometry in
I7 is oriented downwards, their orientation distributions are
unlikely to overlap. In this case we can see that the resulting
distribution exhibits no clear orientation for the point q.

3.1.3 Surface patches

Now that we have seen how to unite multiple observations
to derive tighter orientation distributions, we may finally
turn our attention to recovering a full 3D model. By fo-
cusing on the facets of the model f ∈ G, we provide a way
to use orientation cues to deduce the full 3D geometry. The
goal then is to morph the points of the mesh, so that the
facet orientations are consistent with the observations.

In order to take full advantage of higher-resolution ob-
servation images, we take J uniformly distributed samples
from a facet and average them (in our case J = 6),

p(Imf |Nf ) = c

J∑
j=1

wj · p(Imf,j |Nf ) , (5)
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Figure 2. Nonparametric orientation consistency When a point on the mesh (dashed) is accurate, the observations will agree (a), resulting
in a dense orientation distribution with a clear peak (bright region). When the point is not yet well aligned, the observations will disagree
(c), resulting in a flat, near-zero distribution.

where the weights wj (
∑
wj = 1) are higher for samples

near the center of the facet, and c is to ensure the distribution
integrates to one. This sampling is done by division of the
barycentric parametrization of the facet, and the weights are
set equal to the minimal barycentric coordinate value. Here,
Imf,j indicates a specific pixel—the jth sample of facet f in
observation m. The final likelihood for the facet is then the
product of the per-image distributions (as in Eq. 4),

p(I|Nf ) =
∏
m∈Ωf

p(Imf |Nf ) . (6)

3.1.4 Probabilistic shape estimation

Now that we have described how to form the likelihood for
a single facet, we may express the full likelihood of Eq. 1,
as the product over all facets,

p(I|G) =
∏
f∈G

p(I|Nf ) . (7)

Finally, we place three priors on the mesh itself, p(G) =
pc(G)pa(G)pe(G). The first prior is inspired by recent
work on minimal surface constraints [3]. To propagate the
shape of accurate regions to those far removed from the true
surface (as in Fig. 2c), we encourage the local curvature to
be constant. This is approximated as the variance of the an-
gles between the normal of each facet and those of the facets
a certain distance away

pc(G) ∝
∏
f∈G

exp
{
βcVar

[
arccos(Nf ·Nf,n)

]}
, (8)

where βc controls the strength of the prior. The set of nor-
mals {Nf,n} over which the variance is computed contains
those facets that are a certain distance from the facet itself.
To impose the prior only on the immediate neighborhood,
for example, facets that share a single point in common with
f can be used. To impose the prior more globally, facets that
lie on the subsequent rings surrounding f may be used. In
section 4, we describe our use of this prior.

The remaining two priors are due to our implicit assump-
tions about the triangles that make up the mesh. Our area
prior pa(G) helps ensure that the triangles all have roughly
the same size by comparing their area A(f) to their initial

mean a and variance σ2
a,

pa(G) =
∏
f∈G

N (A(f)|a, βaσ2
a) , (9)

where βa controls the strength of the prior. Our final
prior pe(G) additionally helps ensure that the triangles are
roughly equilateral so that samples within each triangle may
be assumed to be relatively nearby on the actual surface,

pe(G) ∝
∏
f∈G

exp
{
βeVar

[
fe
]}

, (10)

where fe is the length of an edge e of the facet, and again
βe controls the strength of the prior.

3.1.5 Parameterizing the distribution

Recall that the facet likelihoods p(If |Nf ) are non-
parametric in that they depend on the inherently non-
parametric illumination environment. Because of this, a di-
rect optimization is intractable (the visualizations in Fig. 2
are themselves discrete approximations). In order to opti-
mize without performing an exhaustive search, we need a
way to faithfully parametrize the distribution while provid-
ing a way to avoid local minima.

To do so, we first pick a finite set of L orientations {N l}
by uniformly sampling the unit sphere. We then encode the
distribution as a mixture of Von Mises-Fisher distributions
centered at these orientations. The concentration (spread)
of each distribution κl is proportional to the probability of
the corresponding orientation N l as computed by Eq. 6 (in
our case κl = 200 · p(Nf ) ),

papprox(If |Nf ) ∝
L∑
l=1

C(κl) exp
{
κlN

l ·Nf

}
(11)

where C(κl) is a normalization constant.
This formulation has several benefits. The original dis-

tribution may have large areas with the same probability
due to textureless regions of the illumination environment
leading to ambiguous gradients. The parameterized distri-
bution, on the other hand, will have a zero gradient only
at local maxima and minima. Additionally, the value of L
may be adjusted to avoid local maxima. In our case we set
L = 1024 and increase it by 128 each iteration.



3.2. Reflectance from shape

Now we will describe our method for estimating the re-
flectance using images of the object, the illumination envi-
ronment, and the current geometry estimate G as input.

3.2.1 The directional statistics BRDF model

To model the reflectance function, we adopt the Directional
Statistics Bidirectional Reflectance Distribution Function
(DSBRF) model, introduced by Nishino [14, 15] and later
extended by Lombardi and Nishino [12] to estimate re-
flectance in natural illumination. The model offers a com-
pact representation of isotropic BRDFs and is naturally
paired with a simple, data-driven prior.

Using a linear camera, the irradiance E(Ψ,L,Nx) is

Ex=

∫
%(t(ωi, ωo); Ψ)L(ωi) max(0,Nx · ωi)dωi, (12)

where t is a function that transforms the incoming ωi and
outgoing ωo angles into the alternate BRDF parameteriza-
tion variables θd and θh. The reflectance function is ex-
pressed as a sum of lobes

%(λ)(θd, θh;κ(λ), γ(λ)) =∑
r

exp
{
κ(r,λ)(θd) cosγ

(r,λ)(θd)(θh)
}
− 1 , (13)

where the halfway vector parameterization (i.e., (θh, φh)
for the halfway vector and (θd, φd) for the difference vec-
tor) [18] is used. κ(λ) and γ(λ) are functions that encode the
magnitude and acuteness of the reflectance, respectively, of
lobe r along the span of θd for a particular color channel
λ. These curves are modeled as a log-linear combination of
data-driven basis functions,

κ(r,λ)(θd) = exp
{
bµ(θd;κ, r, λ) +

∑
i

ψibi(θd;κ, r, λ)
}
,

γ(r,λ)(θd) = exp
{
bµ(θd; γ, r, λ) +

∑
i

ψibi(θd; γ, r, λ)
}
,

where bµ is the mean basis function, bi is the ith basis
function, and ψi are the DSBRDF coefficients. We may
compute these basis functions from a set of measured re-
flectance functions using functional principal component
analysis (FPCA).

3.2.2 Probabilistic reflectace estimation

In order to estimate the parameters Ψ we continue with our
probabilistic formulation of Eq. 1. Here, the likelihood is
the same as above, though the geometry, and hence the sur-
face orientations of the facets Nf , are kept fixed,

p(I|Ψ) =
∏
f∈G

∏
m∈Ωf

N
(

ln(Imf )| ln(Em
f ), σ2

)
, (14)

(a) Initial (b) Mid-way (c) Final (d) True

Figure 3. Shape optimization iterations

where Ωf is again the set of images in which facet f ap-
pears, and Imf refers to the appearance at the center of the
facet in image m, and Em

f refers to its predicted irradiance.
We utilize the prior by Lombardi and Nishino [12],

which encourages the coefficients ψi ∈ Ψ of the eigen-
functions to be within the distribution of observed re-
flectances,

p(Ψ) ∼ N (0, βΨΣΨ), (15)

where the covariance ΣΨ is computed from the MERL
database [13], and the scalar βΨ controls the prior strength.

4. Optimization and implementation
Our overall optimization scheme alternates between

computing the Gaussian noise variance σ2, and estimat-
ing the the maximum a posteriori (MAP) estimate of the
reflectance parameters Ψ and then geometry G. This three-
step optimization framework is iterated until convergence,
typically around 6 iterations. To find the MAP estimate of
the reflectance parameters Ψ and geometry G we minimize
the corresponding log-posteriors using gradient descent. So
that a single set of prior weights can be used, all images are
scaled by a constant factor so that the mean intensity of the
illumination environment is 1.

To bootstrap the process, the first step is to extract a
rough estimate for the object geometry. As many other au-
thors have done, we assume that the objects have been seg-
mented from the background, enabling us to leverage the vi-
sual hull work of Laurentini [11] to initialize our geometry
estimate. The mesh is then re-triangulated using the Pois-
son reconstruction [9], and small triangles are collapsed to
help standardize the area of the triangles. The result of this
step is shown in Fig. 3a. With an initial geometry estimate
in place, we then perform the first reflectance estimation it-
eration. The prior weight βΨ is set to 2−3.

When refining the geometry we adopt one additional
time-saving approximation. We assume that each camera
is far enough away from the object that the mean viewing
direction is sufficiently close to the actual per-pixel view-
ing direction (i.e., orthographic camera). This assumption
allows us to pre-compute a single reflectance map for the
camera pose that applies to every point in the image, accel-
erating the computation of Eq. 3.

The geometry estimation iterations follow a coarse-to-
fine approach in that the scale of curvature-based smoothing
prior defined in Eq. 8 is iteratively reduced by picking the
set of facets over which the variance is computed. Initially,
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Figure 4. Synthetic data. Our synthetic data are formed by ren-
dering 10 shapes [8] with 7 real-world BRDFs (bottom) [13] under
5 real-world natural illumination environments (top) [4].

the set is chosen to contain the facets that are a distance
of 3 triangles away. In subsequent iterations, this number
is decreased, until only the facets sharing a point with the
triangle influence its local curvature constraint. The prior
weights are set to βc = 2, βa = 1 and βe = 0.5.

Throughout the optimization process we take into ac-
count occlusion when computing which images Ωf contain
a facet. We do not, however, model any global light trans-
port effects such as shadows or interreflection. Addition-
ally, samples that are observed at grazing angles (an angle
greater than 75◦ from the viewing direction) are discarded.
This threshold was chosen to avoid overly constrained like-
lihood distributions in the case of the geometry refinement,
and misleading grazing angle reflectance properties in the
case of reflectance estimation. Finally, in order to keep vol-
ume and centering near constant, we center and resize the
result after each iteration.

5. Experimental evaluation
We evaluate our method quantitatively on two databases:

a synthetic database, and a new real-world data-set with
ground-truth geometry. Since there are no other methods
that recover full 3D shape with arbitrary reflectance in nat-
ural illumination, we cannot include any direct comparison.

To quantify the accuracy of our geometry estimates we
compute the distance of each point on the estimated geom-
etry to the ground-truth object. We then compute the root-
mean-squared (RMS) error as a percentage of the bounding
box diagonal length of the ground truth object. If, for ex-
ample, the true object fits in a box with a meter diagonal, an
error of 1.0% indicates a RMS error of 1cm.

5.1. Synthetic data evaluation

The ideal illumination environment in which to estimate
the geometry of a Lambertian object is one with a few, dif-

M O A N W G P mean
P 0.44% 0.46% 0.53% 0.59% 0.52% 0.47% 0.49% 0.50%

G 0.49% 0.51% 0.57% 0.53% 0.67% 0.57% 0.52% 0.55%

F 0.50% 0.51% 0.61% 0.59% 0.60% 0.59% 0.59% 0.58%

E 0.52% 0.60% 0.57% 0.56% 0.60% 0.98% 0.68% 0.64%

U 0.65% 0.53% 0.66% 0.65% 0.74% 0.71% 0.95% 0.70%

mean 0.52% 0.54% 0.59% 0.58% 0.63% 0.66% 0.64% 0.60%

E
nv

ir
on

m
en

ts

Reflectances

(a) Geometry errors

M O A N W G P mean
P 0.90 0.27 0.61 0.92 0.56 0.21 0.37 0.56

G 0.57 0.22 1.20 1.08 0.55 0.24 0.32 0.55

F 0.67 0.26 0.75 1.19 0.50 0.20 0.32 0.50

E 0.82 0.22 1.17 1.13 0.47 0.26 0.48 0.48

U 0.75 0.25 1.72 0.92 0.60 0.23 0.36 0.55

mean 0.75 0.25 1.17 1.08 0.55 0.23 0.36 0.55

E
nv

ir
on

m
en

ts

Reflectances

(b) Reflectance errors

Table 1. Synthetic results summary Each cell shows the average
RMS geometry or reflectance error across the 10 blobs for an illu-
mination (row) and reflectance (column) combination. The head-
ers correspond to the bold letters in Fig. 4. For quick inspection,
lower errors are given a brighter background coloring. The last
row and column are means. 9 images are used in each scenario.

ferently colored point light sources. The resulting appear-
ance will depend exclusively on the relative angles between
the surface point orientations and the lights. Such an il-
lumination environment would, however, provide a hope-
lessly sparse set of orientation cues for a mirrored object, as
only a few points on the object would reflect any light at all.
For a mirrored object, on the other hand, the ideal illumina-
tion environment is one in which each orientation reflects a
unique illumination value. Lambertian reflectance, in this
case, would hopelessly blur such detail. Real-word illu-
minations and reflectances, however, lie in between these
extremes. In order to test the role of reflectance and illumi-
nation in shape estimation, we have performed hundreds of
experiments with a wide range of real-world environments
and BRDFs.

Fig. 4 gives an overview of our synthetic data. Note the
bold letters, as they are used as indexes in Table 1. Each
of the 10 blobs from the Blobby Shapes database [8] is ren-
dered in 5 publicly available illumination environments [4]
with 7 different measured BRDFs from the MERL database
[13]. When training the reflectance model and prior, the
ground-truth BRDF is omitted to ensure a fair evaluation.

Table 1 gives an overview of our geometry and re-
flectance estimates when 9 images are used. On the left we
analyze the geometry error for each of the 35 different il-
lumination and reflectance combinations (averaged over the
10 shapes). Each of the rows and columns correspond to the
illumination environments and reflectances shown in Fig. 4,
respectively. The last row, and column show averages for
the corresponding illumination or reflectance.
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Figure 5. Real-world novel-view results The first two columns in each section compare full appearance, while the last three are rendered
with a diffuse model to highlight geometric differences with the initial estimate and ground truth. The center images show the captured
illumination environment and the recovered reflectances rendered on spheres with a moving point light.

The consistency of results within each column of Table
1b shows clearly that certain reflectances are harder to ac-
curately estimate than others. Most notably, the two metals
Alum-Bronze (A) and Nickel (N) show the highest errors.
These materials exhibit some uncommon grazing angle re-
flectance properties that are difficult to recover. Other, re-
flectances such as Orange-Paint (O) and Green-Acrylic (G),
however, are consistenly more accurately estimated.

Table 1a shows the geometry results. As a baseline,
these numbers should be compared with the mean initial
RMS error of 1.19%, so even in the worst case the error
is being reduced significantly. The worst geometry estima-
tion result, with a RMS error of 0.98%, comes from the
Green-Acrylic (G) reflectance in the Ennis (E) illumina-
tion environment. This is likely due to the lack of green
in the scene, making the appearance due primarily to the
light coming from the doorway in the center. Due to the
diverse, and smoothly varying color, intensity, and texture
of the scene, the Pisa (P) illumination environment gives
the best performance overall with a mean RMS of 0.50%.
Only one reflectance is challenging in this environment—
Nickel (N), which has only a weak diffuse component. The
best reflectance, Gold-Metallic-Paint (M), has the best of
both worlds—strong diffuse, and moderate specular com-
ponents. This enables the appearance to capture both low-
frequency and high-frequency detail of the illumination.

5.2. Real-world data evaluation

To quantitatively evaluate our method on real-world ob-
jects we introduce a new data-set.1 The data-set contains
four objects imaged in three different indoor and outdoor
environments from multiple angles (approximately 18) us-
ing a tripod at two different heights. Along with the high-
dynamic-range (HDR) images, the data-set contains HDR
illumination maps acquired using multiple images of a steel
ball, and ground-truth 3D models of the objects acquired us-
ing a laser light-stripe range finder and manually finished.

Fig. 5 shows several results. For each result one or two
novel viewpoint renderings are shown, (i.e. viewpoints that
were not used in the estimation process). Diffuse render-
ings of the initial, final, and true geometry are included for
visual comparison. Note that the bottom side of the objects
is never visible to the camera due to the support structure.
As a direct consequence of this, objects with complex bases
result in higher error. Note also that imaging the illumi-
nation environment necessarily results in a low-pass filter
of the true illumination environment as fine detail is com-
pressed into coarse pixels. This has the impact of decreas-
ing the sharpness of highlights in the rendered results. Re-
call from Section 4 that we ignore observations at grazing
angles angles due to irregular reflectance properties, and po-

1Available at http://cs.drexel.edu/˜kon/multinatgeom

http://cs.drexel.edu/~kon/multinatgeom


tentially inaccurate object segmentation. Consequently, the
reflectance estimates exhibit some inaccuracy at such an-
gles. Overall the estimated reflectances are quite plausible,
as can be seen in the cascades and the re-rendered results.

The first illumination environment, a large hall, has a
modest amount of natural light coming from the top of the
scene, but is primarily illuminated by several lights placed
evenly throughout the environment. The milk bottle, though
a fairly simple shape, has the most challenging reflectance
due to its highly reflective glaze. Since the light at the top
of the scene is fairly low-frequency, the effect of this is less
dominant in the upward-facing portions of the object. Its
initial RMS error is 0.92% and its final error is 0.76%, a
17% reduction. In the toy horse example it is clear that
large regions included in the original visual hull have been
nicely carved away. Note especially the fine detail in the
mane and nose. Its initial error was 1.66% and its final is
1.20%, a 28% reduction.

The second environment is inside a home. Though the
windows provide the dominant source of light, within the
home are several additional light sources. The many peaks
of the shell geometry are revealed in the result, though self-
cast shadows (and some interreflection) reduce their clarity
somewhat. Note also in the lower view the large strip of er-
roneous material carved out on the right hand side. Its initial
error was 0.77% and its final is 0.73%, a 5% reduction. De-
spite its complex appearance, the reflectance of the piggy-
bank is a nearly ideal one; it filters no colors and is neither
too diffuse, nor too specular. Although it frequently exhibits
global illumination effects (shadows and interreflections),
its 13 views give sufficient context to carve out the concave
ears, and feet. Its initial error was 1.60% and its final is
0.81%, a 49% reduction.

6. Conclusion

In this paper we introduced a method to recover the full
3D geometry and reflectance of non-Lambertian objects sit-
uated in complex, natural illumination. Instead of framing
reflectance and illumination into simplistic models, we have
shown how to fully exploit the complexity. Though each ob-
servation provides unreliable and incomplete information,
by carefully combining them we are able to accurately re-
cover the geometry (and reflectance) of real-world objects.
Since this method does not require any expensive equip-
ment, it nicely fills the holes that have been left open by
past work in structure from motion and multiview stereo.
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