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Abstract

Image deblurring to remove blur caused by camera
shake has been intensively studied. Nevertheless, most
methods are brittle and computationally expensive. In this
paper we analyze multi-image approaches, which capture
and combine multiple frames in order to make deblur-
ring more robust and tractable. In particular, we compare
the performance of two approaches: align-and-average
and multi-image deconvolution. Our deconvolution is non-
blind, using a blur model obtained from real camera motion
as measured by a gyroscope. We show that in most situ-
ations such deconvolution outperforms align-and-average.
We also show, perhaps surprisingly, that deconvolution does
not benefit from increasing exposure time beyond a certain
threshold. To demonstrate the effectiveness and efficiency of
our method, we apply it to still-resolution imagery of nat-
ural scenes captured using a mobile camera with flexible
camera control and an attached gyroscope.

1. Introduction
Image blur due to camera shake is one of the main rea-

sons people discard their photos. Camera shake becomes
critical in low-light situations, where long exposure times
are required, or when the camera motion is amplified by
telephoto optics. To reduce the amount of blur caused by
camera shake, two approaches are commonly used: align-
and-average and image deblurring. Although they aim to
solve the same problem, they are built on different capture
strategies. Align-and-average captures multiple blur-free
but noisy images using a short exposure time, and merges
them after alignment. On the other hand, image deblurring
uses a long exposure time to capture a clean but blurry im-
age and recovers the sharp image using deblurring. How-
ever, there exists a middle ground between two extreme
ends of capture strategy. A set of images can be captured
with intermediate exposure time, hence some small amount
of blur, and jointly deconvolved to recover the latent image.

In this paper, we propose a multi-image deblurring sys-
tem that combines two existing techniques: gyroscope-

based camera motion estimation and non-blind multi-image
deconvolution. A burst of images is captured while the gy-
roscope data is recorded simultaneously. We use a drift cor-
rection method to remove bias from our gyroscope data. By
measuring camera motion and the scene as accurately as we
can, we improve the robustness of deconvolution.

A key question about any multi-image deblurring
method is: for a given total capture time, how many im-
ages should be captured, and what should their exposure
times be? Shorter exposures suffer from worse read noise
and photon shot noise, while longer exposures suffer from
increased handshake blur. To model this tradeoff, we define
a noise amplification factor γ, which quantifies the increase
in noise after multi-image deconvolution is performed. We
show that for long exposures, γ grows linearly with expo-
sure time. As a result, increasing exposure time does not
help because additional blur cancels the increased signal to
noise ratio (SNR) due to less photon shot noise in the longer
exposure.

Based on this observation, we compare the performance
of align-and-average and multi-image deblurring to find
the best capture strategy in various photographic situations.
With the help of simulation, we show how performance is
affected by factors such as scene brightness, focal length
of optics (hence field of view), sensor read noise, exposure
time, analog gain, number of shots, and so on. We then
formulate guidelines to help users to determine how to cap-
ture and process images to get the best output in real-world
situations.

2. Related Work
Blind image deblurring methods suffer from lack of in-

formation to recover the latent image. Even with the help of
multiple images or image priors, blind methods are consid-
ered brittle. Joshi et al. [3] proposed an effective solution
by using an inertial measurement unit to directly measure
camera motion. We adopt their method for motion estima-
tion, but with two modifications. First, we only use gyro-
scope data, not accelerometer data, because rotation is the
dominant factor that causes blur [7]. Second, our method
performs the drift correction on gyroscope data; otherwise,



accumulated bias causes non-negligible drift when long ex-
posure times are used.

Comparing the capture strategies for camera motion de-
blurring has been studied by Zhang et al. [9]. Their analysis
concludes that align-and-average works better than single-
image deconvolution. Boracchi and Foi [1] made the similar
observation that restoration error of single-image deconvo-
lution stabilizes after reaching a minimum. However, these
results are limited to the single-image approach, while we
focus on the case when multiple images are used.

3. Image Formation with Camera Motion
The principal drawback of using a short exposure time

in low light is image noise. Lengthening the exposure de-
creases noise, but increases handshake blur. It is therefore
important that we define a noise model that allows us to
handle handshake blur. We begin by describing an image
noise model for when the camera is stable, then we extend
it to include the effect of camera motion.

3.1. Image Noise Model

Given analog gain g and exposure time t, with scene
brightness Φ, we use a linear imaging model to describe
raw pixel values of image Y as the sum of noise-free image
X and the Gaussian noise N with standard deviation σN .
Specifically, the SNR of a captured image Y is written as

SNR(Y ) =
X

σN
=

c1gtΦ√
c2g2tΦ + g2σ2

r0 + σ2
r1

. (1)

where c1 and c2 are conversion factors, with σ2
r0 and σ2

r1
representing the variance of readout noise applied before
and after analog amplification, respectively [2].

3.2. From Camera Motion to Image Blur

Let’s extend this image noise model to incorporate cam-
era motion while assuming no motion of objects in the
scene. With camera motion, a point in the scene contributes
to multiple pixels along the motion path. We assume also
that camera motion is dominated by rotation − a common
assumption in image stabilization systems, and valid for
sufficiently distant scenes. This allows us to represent the
off-axis angular rotation at point r as

R∆θ
o {r} = R∆θ(r − o) + o (2)

where R∆θ is a 3-axis rotation matrix for angular rotation
∆θ, and o = (ox, oy, oz)

T is the rotation center. If a rota-
tion ∆θ(ts, tt) is applied during time window [ts, tt], then
jth pixel pj = (xj , yj)T in the image plane is shifted to
(xj ′, yj ′)T by the following relation:

α(xj ′, yj ′, 1)T = MfR
∆θ(ts,tt)
o {M−1

f (xj , yj , 1)T } (3)

where α is an unknown scaling factor andMf is the camera
intrinsic matrix, which depends mainly on focal length f .

Given this model for rotation, the rotation-blurred image Y
can be formulated as the sum of the time integration of all
geometrically transformed latent images during the expo-
sure window [ts, tt] plus noise. We assume a local window
of blurry image Yi around pj contains uniform blur, which
is represented as

Yi = Kj
i ⊗X +Ni (4)

where Kj
i is the 2-D blur kernel, ⊗ is the 2-D convolution

operator and i denotes the input image index when multi-
ple images are available. The kernel Kj

i is specified by the
exposure window [tis, t

i
t], which can be expressed in terms

of capture parameters. The two ends of the window are de-
fined as tis = t1s+(i−1)tft and tit = tis+texp, where texp is
the exposure time of a single shot and the frame time tft is
the gap between frames. Note that all entries in Kj

i sum to
one. Also, t1s, the time when the first exposure starts, is set
as the reference time so that relative rotation between input
images are preserved in the kernel.

4. Modeling the Performance of Non-Blind
Multi-Image Deconvolution

When the blur kernel is available, the latent image can be
recovered via non-blind multi-image deconvolution. Mod-
eling the performance of this deconvolution is not trivial
because two factors are mixed together: camera shake blur
and the scene. Although it is hard to estimate the influence
of the scene on deconvolution, modeling the effect of blur
is tractable in the non-blind case.

In this section, we derive a noise amplification factor that
quantifies the performance of deconvolution based on the
characteristics of this blur. Wiener deconvolution [8] is a
standard frequency domain method for estimating a latent
imageX from a blurry image Yi where the image formation
model is given as Equation 4. By minimizing the expecta-
tion of squared estimation error E

∣∣X̄ − X ∣∣2, we get

X̄ =

∑n
i=1

1
σ2
Ni

K∗iYi∑n
k=1

1
σ2
Nk

|Kk|2 + 1/ |X |2
(5)

where X̄ is the optimum estimate of X , Ki is the known
blur kernel, n is the number of images, X , X̄ , Ki, and
Yi denote the Fourier transforms of X , X̄ , Ki, and Yi,
respectively, |X |2 is the power spectrum of X , Ni is the
white Gaussian noise in the frequency domain with vari-
ance σ2

Ni
= nunvσ

2
Ni

, where nu and nv are the number
of pixels in each dimension in the frequency domain. By
Parseval’s theorem, we can calculate total mean square er-
ror (MSE) between X and X̄ over the whole image in the



frequency domain as

MSE(X̄) =
1

n2
un

2
v

∑
u,v

1∑n
k=1

1
σ2
Nk

|Kk|2 + 1/ |X |2
. (6)

To get some insight into this deconvolution procedure,
let’s consider the case when all input images are captured
with the same exposure time t and analog gain g. In this
case, assume that the noise statistics for all images are iden-
tical, σ2

Ni
= σ2

N . If we assume no prior on the image statis-
tics, as is the case for an unbiased optimal estimator, then
Equation 6 reduces to

MSE(X̄) = γ
σ2
N

n
(7)

where γ is the noise amplification factor defined as

γ =
1

nunv

∑
u,v

1
1
n

∑n
i=1 |Ki(u, v)|2

(8)

and corresponding SNR is given by

SNR(X̄) =

√
n
√
γ

c1gtΦ√
c2g2tΦ + g2σ2

r0 + σ2
r1

. (9)

Note that γ quantifies the increase in high frequency noise
when average power spectrum of the blur kernels is inverted
in the deconvolution, and this factor is only dependent on
the characteristics of the blur applied to the system.

When image priors are used in deconvolution, the
restoration error depends on the statistics of the scene, and a
frequency domain analysis is not possible. When such pri-
ors are used, we instead empirically measure performance
by estimating MSE in the spatial domain, assuming the
ground truth scene is available.

5. Characterization of Real Blur Caused by
Camera Motion

In this section we focus on understanding handshake blur
in real-world situations. Our main tool for this analysis will
be the noise amplification factor defined in Section 4. The
main challenge is that the blur is affected by various factors:
exposure settings (exposure time, frame-to-frame time, and
number of shots), user, type of camera (weight, grip type,
optics, and pixel size), and so on. To explore this high-
dimensional parameter space, we use simulation to build
an empirical model based on real measurements of camera
shake.

As a start, we built a database of camera shake by col-
lecting 100 sequences of real camera motion. Each user
was asked to hold a tablet steady for a 20-second exposure,
while we recorded images and gyroscope streams. This
database allows us to create independent samples of cam-
era motion by randomly selecting a small slice from a gyro-
scope stream. Then, we can simulate various image capture
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Figure 1: Average noise amplification factor γ̄ measured
from simulation based on real camera motion. Each plot
shows how γ̄ varies when a different parameter is changed
as denoted by the plot captions. (a) shows γ̄ while (b)-(f)
plot the ratio between γ̄ and per-image exposure time texp.
Note that the ratio becomes constant for long exposures in
all cases, which means that γ̄ increases linearly with texp.
The relation comes from the fact that the blurs become un-
correlated. (f) shows that consecutive blur kernels are un-
correlated when texp is longer than ∼50ms.

scenarios, and evaluate γ̄, the noise amplification factor av-
eraged over different camera shakes.

Figure 1 shows how average noise amplification factor γ̄
is related to exposure time under various combination of
parameter settings. When texp is very small, γ̄ is close
to 1 because no blur exists as shown in Figure 1a. Note
that γ̄ increases with exposure time as image becomes more
blurry. However, more images reduces γ̄ because miss-
ing frequency components in an image can be preserved in
other images, which is visualized in Figure 2. The impor-
tant observation is that γ̄ grows linearly with texp as shown
in Figure 1b: the ratio between γ̄ and texp remains constant
if the exposure time per shot is long enough. This relation
is more obvious when n is large, and was consistently ob-
served among different users and independent of the cam-



Image 1 2 3 4 5 6 7 8

(a) Blur kernels and their power spectra
n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8

(b) Average power spectrum of n images
n=1 n=2 n=4 n=8

(c) Multi-image deconvolution applied to n images

Figure 2: An example of n-image deconvolution. (a) The
top row shows a set of eight consecutive blur kernels from a
single instrumented handheld capture, and the bottom row
visualizes their power spectrum. Note that different shapes
of blur capture different frequency information. (b) Multi-
image deconvolution is applied using n images without any
priors, to show the improvement when more images are
used. As these power spectra show, adding more images
fill in missing frequency components. Although no prior is
used, the output images in (c) are not severely degraded by
noise when at least two images are used.

era’s focal length.
We can explain this trend mathematically for large n and

t as follows. Let’s define the average power spectrum of
blur kernel as

P̄t =
1

ni

∑
i

|Ki,t|2 (10)

where Ki,t denotes ith sample of blur kernel for exposure
time t, Ki,t is the Fourier transform of Ki,t, ni is the num-
ber of samples, and assume P̄t converges for large ni. Let’s
think of an image as the sum of first and second-half images
with the same exposure time of 1

2 t. Then, we can split the
blur kernel Ki,t into two as

Ki,t =
1

2

(
Ki1,

t
2

+Ki2,
t
2

)
(11)

where i1 and i2 denotes the index corresponds to first and
second-half of i, respectively. Then, the power spectrum of
Ki,t can be approximated as

|Ki,t|2 ≈
1

4

(∣∣∣Ki1, t2 ∣∣∣2 +
∣∣∣Ki2, t2 ∣∣∣2

)
(12)

if we assume the crosscorrelation term is negligible because

no blur (γ̄ = 1) large blur (γ̄ ∝ t)
read noise
dominant SNR ∝

√
ngt SNR ∝

√
ng
√
t

photon noise
dominant SNR ∝

√
nt SNR ∝

√
n

Table 1: Summary of the performance of multi-image de-
convolution in various capture situations.

consecutive blur kernels become uncorrelated for relatively
long t. Then, we get the recursive relation for average power
spectrum P̄t = 1

2 P̄ t
2

, which leads to γ̄n,t = 2γ̄n, t2 for large
n. This shows the linear relation for large n and t:

γ̄n,t ∝ t. (13)

To verify the assumption that blurs are uncorrelated for
large t, we evaluate γ̄ by using the approximation in Equa-
tion 12, and compare it with the curve shown in Figure 1b
for n = 16. Figure 1f shows that they agree well when ex-
posure time is longer than ∼50ms, and proves the assump-
tion. Figure 1d shows another effect that uncorrelated blurs
have on γ̄: uncorrelated blurs reduce γ̄ compared to cor-
related ones because they preserve frequency components
that are complementary to each other. Longer frame-to-
frame time makes the blurs less correlated, which results in
smaller γ̄ shown in Figure 1d. Note that we can generally
assume blurs are uncorrelated after a certain time for any
camera or any user. Thus, the linear relation in Equation 13
holds for any camera shake for large n and t.

6. Analysis of Capture Strategies
6.1. Performance of Capture Strategies

With the blur model obtained in Section 5, we evalu-
ate the image quality after multi-image deconvolution is ap-
plied. To begin, let’s consider the case in which the perfor-
mance is modeled by the blur applied to system, without as-
suming any image priors. The relationships between output
SNR and various capture parameters can be obtained from
Equation 9 and Equation 13, and are summarized in Table 1.
The first row in Table 1 assumes that read noise after ampli-
fication is dominant. Note that if no blur exists (first column
of Table 1), then the analysis reduces to the case of align-
and-average. When photon noise is dominant and large blur
is involved (lower right cell of Table 1), then the SNR does
not improve with exposure time, because additional blur in-
troduced during the exposure cancels the improvement in
SNR due to reduced shot noise in input images. In other
words, longer exposures are preferable, at least to the point
where handshake blur becomes intolerable, and if read noise
is dominant, then this switchover point happens at a longer
exposure time.

Let us now consider what effect image priors might have



in the analysis. We compare two approaches in removing
camera shake: align-and-average (AA) and multi-image de-
convolution (MD). We test both cases with and without as-
suming image priors. To make a fair comparison between
AA and MD when image priors are used, we apply an ad-
ditional denoising step on the output of AA by applying
Equation 5 with Ki = 1 and the Gaussian prior to sup-
press the same amount of noise as in MD. The simulation
is done on various scenes, and the performance is evalu-
ated by the peak signal-to-noise ratio (PSNR) which is av-
eraged over many trials with varying camera motions. Two
examples are shown in Figure 3, in which we assume eight
images are captured with a unity analog gain. We observe
that when the same parameters and image prior are used,
then MD performs better than AA as shown in Figure 3d
and 3f for the Gaussian prior. The improvement in PSNR
of MD approaches a horizontal asymptote as exposure time
becomes sufficiently long, as discussed in Section 5. In-
troducing a prior improves the PSNR but it does not sig-
nificantly change the relation to exposure time as shown in
Table 1. As a result, an analysis based on the noise amplifi-
cation factor can still help estimate the performance of MD
even when image priors are used.

6.2. Choosing Capture Strategies

Based on our analysis, a list of guidelines can be ob-
tained, which helps determine the best capture strategy and
reconstruction method for various environments. We as-
sume the user has control of n, g, and texp, and faces vari-
ability in scene statistics and dynamic range, and camera
noise model, optics, and so on. To understand the effect
of each factor, we performed simulation on the Cafe scene,
changing one axis of the parameter space at a time. Figure
4a shows that focal length strongly affects the range of ex-
posure times in which AA is effective because handshake
blur, which remains after AA, is worse for longer focal
lengths. This observation gives an upper bound on exposure
times appropriate for AA. On the other hand, a lower bound
on exposure exists because accurate alignment is predicated
on having low noise. AA is expected to work only when
these two conditions are satisfied. On the other hand, MD
prefers longer exposures to the point at which read noise
is negligible and handshake blur is intolerable. This point
comes at shorter exposure times if scenes are brighter or
more images are captured, as shown in Figure 4c and 4b.
In addition, when long exposures are used, texp should be
controlled to avoid over-exposing bright regions.

In many situations, AA is preferred to MD because the
former has lower computational cost. A good strategy is to
find a parameter set that gives desired image quality with
AA, although it may not be possible for certain scenes. Us-
ing higher analog gain or capturing more images helps im-
prove the performance of AA, but the choice of g and n is

(a) Cafe (b) Office
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Figure 3: The performance of align-and-average (AA) and
multi-image deconvolution (MD) with image priors. Two
example scenes are shown in (a)(b). The curves in (c)-(f) are
similar to Figure 1, but this time with priors. (c)(e) are ob-
tained with no prior applied, while (d)(f) show the improve-
ment when image priors are employed. The sparse prior
(S) shown with the blue curve gives slightly more improve-
ment than the Gaussian prior (G) in green. A small region
of output images for different exposure times is shown. The
insets in red boxes correspond to the output of AA while
green boxes correspond to the output from MD. The per-
formance follows the analysis in Table 1 even when image
priors are used.

also bounded by various factors. For example, the effective
range of analog gain is restricted by the presence of read
noise added before analog amplification. Also, the memory
buffer in the camera system, which is used to store captured
images before they are merged, has a limited size, restrict-
ing n from above. Finally, n is bounded by the total capture
time during which the photographer can expect the scene to
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Figure 4: The effect of changing each parameter on the per-
formance of align-and-average (red) and multi-image de-
convolution (green). Results are from simulation, and all
cases assume a Gaussian prior. Focal length strongly affects
the range where align-and-average is effective as shown in
(a). Other parameters shown in (b)-(d) change the ratio be-
tween read noise and photon noise.

hold still. These various limitations restrict the use of AA
in some environments, where MD can provide an alternative
with better performance.

7. Image Deblurring System
In addition to the foregoing analysis, which was based

largely on simulations, we have built a system for capturing
image and gyroscope data at high speed and applying our
deblurring methods. Our system supports a flexible cap-
ture configuration and records images and gyroscope data
simultaneously, and our software pipeline performs camera
motion estimation, drift correction, image deblurring, and
image post-processing.

7.1. Hardware Platform

We implemented our capture application on an NVIDIA
Tegra 3 Android developer tablet. We modified the tablet to
rigidly attach an Atmel UC3-A3 Xplained and Invensense
MPU-6050 sensor board to obtain unfiltered raw sensor
data. The sensor data is sent to the tablet through a USB
connection at a maximum rate of 750 Hz. The tablet cap-
tures 5M-pixel raw data at a maximum rate of 4 fps. We em-
ploy standard photometric and geometric calibration proce-
dures to find the parameters of the image formation model.

(a) Blur kernels (b) Without correction (c) With correction

Figure 5: The effect of applying gyroscope drift correction
on image deblurring. (a) First four blur kernels of eight
blurry images are shown. The gap between the red and yel-
low kernels is due to drift. (b)(c) The output of image de-
blurring significantly improves when drift is corrected.

7.2. Camera Motion Estimation using Gyroscope

The sensor data from our gyroscope requires addi-
tional processing to estimate correct rotational motion de-
scribed in Section 3.2. In particular, the gyroscope suf-
fers from unstable bias, which appears as drift in the
rotational data. Moreover, this drift accumulates with
longer exposures. The standard deviation of the samples is
(0.21, 0.12, 0.17)◦/s, which produces more than a pixel of
deviation if the total capture time is longer than 1

6s for our
system. Also, there exists an unknown time delay between
image and gyroscope data.

We model the angular rotation by accumulating the in-
cremental changes given as

∆θ(t, t+ ∆t) = (ω(t+ td) + ωd)∆t (14)

where ω(t) is the rate of rotation measured with gyroscope,
td is the time delay, ωd is the bias which causes drift, and
∆t denotes the time interval between gyroscope samples.
Based on the model, we propose a drift correction algorithm
that is applied whenever capture takes place. The algorithm
estimates the time delay td, the bias ωd and the rotation
center o by comparing measured camera motion with im-
age data, where o is assumed to be constant during capture
and oz is zero. To begin, we find the input image Yiref that
is observed to be sharpest. This is done by estimating the
blur kernel of ith image at the image center and by picking
the one that has maximum spatial variance. Then, we find
nc image blocks that contain the region with strong cor-
ner response in Yiref and denote the center of the blocks as
cj . We formulate the kernel estimation as the minimization
problem in which the objective function is defined as

argmin
ωd,ox,oy,td

∑
i6=iref

∑
j

‖W j
i (Kj

iref
⊗Yi−Kj

i ⊗Yiref )‖2 (15)

where W j
i = wjwiW

jWi is the weight applied to each
block. The weight W j is the binary mask that selects the
local window around cj , Wi reflects the magnitude of gra-



dient in Yi, wj is the distance from cj to the image cen-
ter and wi = |i − iref | is the temporal distance from the
sharpest input image. The role of Wi is to avoid flat regions
that only contain noise. Also, wj and wi are introduced to
weight the region that is more affected by the drift and give
consistent estimation throughout the camera motion.

The optimization is done by using the coordinate de-
scent. First, we search for (ωd, ox, oy) in the multi-scale
pyramid. Then, td is estimated at the finest scale, followed
by refining other parameters based on new td. Each step
usually converges fast within 30 iterations. Figure 5 shows
the effect of the correction when eight images are captured
in 2s total. The deviation between the red and yellow ker-
nels show that the drift is actually quite significant.

7.3. Image Deblurring

Based on the camera motion estimated with gyroscope,
we perform non-blind multi-image deblurring, which is im-
plemented by applying multi-image deconvolution to small
image blocks. The scene is divided into 36 × 24 blocks
where each block covers about 2◦ of field of view, which
is assumed to contain uniform blur. Additional margin is
added based on the blur size to avoid boundary artifacts.

Multi-image deconvolution is done by minimizing the
objective function:

n∑
i=1

‖Yi −Ki ⊗X‖2 + λ ‖∇X‖α (16)

where λ is the regularization weight and ∇X is the gra-
dients of X . The minimization is done in two ways: fre-
quency domain division using the Gaussian prior and it-
erative minimization with the sparse prior [5]. Align-
and-average is a special case of multi-image deconvolution
when no blur is assumed. Our implementation utilizes gy-
roscope data for image alignment, which allows a fair com-
parison to deconvolution.

7.4. Handling Practical Issues

Determining the prior weight All deconvolution meth-
ods exhibit a trade-off between reducing noise level and re-
covering a sharp latent image, and this tradeoff is largely
controlled by the weight assigned to the prior. When we
have a good observation of scene that can be considered
as ground truth, for example, when we simulate or have
a tripod shot available, we search for the parameter λ in
the range [0.001, 1] which gives the smallest MSE with the
ground truth. Otherwise, we manually select one.

Rolling shutter correction Most image sensors embed-
ded in mobile devices adopt the electronic rolling shutter,
which means that each row in the image is actually cap-
tured at slightly different times. Since we capture more gy-
roscope samples than image frames, we can use a differ-
ent time slice from our gyroscope stream for each scanline.
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Figure 6: Verification of the simulation results in Section
6.1 using real images processed by our image deblurring
system. The performance matches the simulation for long
exposures closely, but when exposure time is short, the low
SNR of input images degrades the accuracy of camera mo-
tion estimation and hence of deconvolution.

When we generate blur kernels, the exposure time window
defined in Section 3.2 is shifted as

[tis, t
i
t] +

jy
ny
trs (17)

where trs is the time required to readout whole image, jy is
the image row of pixel j and ny is the image height [4].

Handling moving objects and over-exposed regions
Moving objects and over-exposed regions do not follow
our image formation model. After deconvolution, moving
objects may suffer from excessive blur and bright regions
often cause severe artifacts. Because multiple images are
available, these regions can be effectively detected. We
introduce an additional image blending operation [6] that
merges the denoised reference input image and deconvolved
image to hide possible artifacts and give more natural look.

8. Experimental Results
We performed an additional experiment to verify the

simulation results in Section 6.1 with real images. With
our tablet, eight images are captured from a single burst at
5M-pixel resolution. Each burst is deblurred, and its error
is averaged over 20 trials. Figure 6 shows the case in which
the Gaussian prior is applied. The results obtained with real
data agree with simulation for long exposures, while short
exposures show some gap because the low SNR of input im-
ages degraded the accuracy of camera motion estimation.

Now we show deblurred images obtained from our sys-
tem in Figure 7. Two examples are captured with per-shot
exposure time of 353ms and 177ms respectively. Our re-
sults show clear improvement over any input images, with
less blur and noise, and we recover more details compared
to align-and-average, with negligible artifacts. The running
time for generating a deblurred image in Figure 7 is about
24.5s for the Gaussian prior with our unoptimized CPU im-
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Two typical input images Align-and-average Gaussian prior Sparse prior

Figure 7: Deblurring results from our system. Eight images are captured from a single burst at 5M-pixel resolution, while
gyroscope data is recorded simultaneously. Each column in (a) and (b) shows two insets of an input image with their blur
kernels shown at 2× size. Note the difference in shape of blur in two insets, which demonstrates spatially-varying blur. Input
images are jointly deblurred with two different priors. The deblurred images in (d) and (e) removed handshake blur more
effectively than in (c), where the input images are aligned and averaged.

plementation. Drift correction takes 10.5s while rest of the
time is used for deconvolution. When the sparse prior is
used, running time is about 20 minutes.

9. Conclusion
In this paper, we presented an analysis of modeling the

performance of multi-image approaches for removing cam-
era shake, in which the model is based on the characteristics
of real blur. Guidelines are provided to help users capture
better images in real world situations. We also built a multi-
image deblurring system that utilizes gyroscope data, and
showed its effectiveness with real examples. Our key con-
clusion is that gyro-based deconvolution improves image
quality in very low light, and performs better than align-
and-average when read noise is dominant or analog gain has
already been maximized.

A limitation of our method is that moving objects in the
scene are not deblurred. Such objects can be restored sep-
arately using motion deblurring methods. Another interest-
ing direction would be to deliberately vary exposure times
among captures. This would allow us to capture scenes of
higher dynamic range at the same time we remove hand-
shake blur.
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