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Abstract

Feature tracking in video is a crucial task in computer vi-
sion. Usually, the tracking problem is handled one feature
at a time, using a single-feature tracker like the Kanade-
Lucas-Tomasi algorithm, or one of its derivatives. While
this approach works quite well when dealing with high-
quality video and “strong” features, it often falters when
faced with dark and noisy video containing low-quality fea-
tures. We present a framework for jointly tracking a set
of features, which enables sharing information between the
different features in the scene. We show that our method
can be employed to track features for both rigid and non-
rigid motions (possibly of few moving bodies) even when
some features are occluded. Furthermore, it can be used
to significantly improve tracking results in poorly-lit scenes
(where there is a mix of good and bad features). Our ap-
proach does not require direct modeling of the structure or
the motion of the scene, and runs in real time on a single
CPU core.

1. Introduction
Feature tracking in video is an important computer

vision task, often used as the first step in finding struc-
ture from motion or simultaneous location and mapping
(SLAM). The celebrated Kanade-Lucas-Tomasi algo-
rithm [20, 25, 24] tracks feature points by searching for
matches between templates representing each feature
and a frame of video. Despite many other alternatives
and improvement, it is still one of the best video feature
tracking algorithms [1].1 However, there are several
realistic scenarios when Lucas-Kanade and many of its

1Feature tracking should be distinguished from object tracking, where
there has been significant progress in the development of novel algorithms
that significantly improve previous efforts.
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alternatives do not perform well: poor lighting conditions,
noisy video, and when there are transient occlusions that
need to be ignored. In order to deal with such scenarios
more robustly it would be useful to allow the feature points
to communicate with each other to decide how they should
move as a group, so as to respect the underlying three
dimensional geometry of the scene.

This underlying geometry constrains the trajectories of
the track points to have a low-rank structure; see [12, 18]
for the case when tracking a single rigid object under an
affine camera model, and [6, 28, 17, 13] for non-rigid mo-
tion and the perspective camera. In this work we will com-
bine the low-rank geometry of the cohort of tracked features
with the successful non-linear single feature tracking frame-
work of Lucas and Kanade [20] by adding a low-rank regu-
larization penalty in the tracking optimization problem. To
accommodate dynamic scenes with non-trivial motion we
apply our rank constraint over a sliding window, so that we
only consider a small number of frames at a given time (this
is a common idea for dealing with non-rigid motions [8,
23, 16]). We demonstrate very strong performance in rigid
environments as well as in scenes with multiple and/or non-
rigid motion (since the trajectories of all features are still
low rank for short time intervals). We describe experiments
with several choices of low-rank regularizers (which are lo-
cal in time), using a unified optimization framework that
allows real time regularized tracking on a single CPU core.

1.1. Relationship With Previous Work

Geometric structures (and low-rank structures in particu-
lar) have been effectively utilized for the problem of optical
flow estimation. Irani [19] showed how 3-d constraints
in the real world and various camera models imply the
existence of a low-rank constraint on the flow problem.
Brand extended Irani’s work to non-rigid motions, while
developing a robust, subspace-estimating, flow-based
tracker via an incremental singular value decomposition
with missing values as well as by learning an object
model [5, 4, 3, 6]. Torresani et al. [28] also extended Irani’s
work to non-rigid motions by applying rank-bounds for
recovering 3D non-rigid motions. More recently, Garg
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et al. [15] introduced hard subspace constraints for long
range optical flow estimation in a variational scheme. Garg
et al. [16] improved the performance of this former work
by making the constraint weak (as an energy regularizer),
using a robust energy term and allowing more general
basis terms. At last, Ricco and Tomasi [23] proposed a
Lagrangian approach for long range motion estimation that
allows more reliable detection of occlusion. It estimates a
basis for a low-dimensional subspace of the trajectories (as
in [16]) and employs a variational method to solve for the
best-fit coefficients of the motion trajectories in this basis.

In optical flow estimation the goal is to find displace-
ments of features between consecutive frames, while
assuming that the flow field is locally nearly constant. Al-
though the goal in the feature tracking problem is similar, it
does not require estimating the flow by enforcing the bright-
ness constancy constraint or a weaker version of it. The
subspace constraints above were translated by Irani [19] to
an image brightness constraint. However, small errors in the
flow field in each frame from this approach lead to the accu-
mulation of errors in the trajectories obtained by integrating
the flow. These errors are unacceptable for tracking. Weak
versions of this constraint for estimating flow along many
frames (as in [6, 23, 16]) require rather dense trajectories,
which represent continuous regions in the image frame.
Indeed, they are based on either continuous variational
methods [23, 16] (which often track all pixels in the image
domain) or careful model estimation [6] (which requires
sufficiently dense sampling from objects in the videos).

In tracking, one instead uses a formulation that allows
for very precise feature registration (like the Lucas-Kanade
tracker [20]), and there is no need to linearize the image to
solve an approximation to the feature displacement prob-
lem. It is desirable to have a sparse set of features and track
them only in local neighborhoods to allow real time imple-
mentation. There is not a canonical method for introducing
an explicit low rank constraint as in [19]. We will argue
below that any strict subspace constraint is not ideal in the
tracking problem and will promote a soft constraint. This
soft constraint is different than the ones advocated for flow
estimation in both [23] and [16] since they carefully learn
local basis elements and require dense feature sampling.

Torresani and Bregler [26] suggested the partial applica-
tion of hard low-rank constraints to improve tracking (ap-
plying rank bounds as in [28]). They rely on initial Lucas-
Kanade tracking [20] from which “reliable” features are
identified and used to estimate a model for the scene. They
used their constraint to re-track the “unreliable” features
(the trajectories are now confined to a known subspace).
Since they search in the space of trajectories, their mini-
mization strategy is completely different than ours. Their
tracker is also non-casual since it needs the full sequence to
start tracking, so a real-time implementation is not possible.

This work was extended in [27] to develop a causal tracker
in the same spirit that also does not rely on a set of “reli-
able” feature tracks. However, both methods require setting
the rank of the constraint a-priori and they impose the con-
straint over very long time spans (up to the entire sequence),
making the algorithms less applicable to dynamic scenes.

Buchanan and Fitzgibbon [8] continuously update a
non-rigid motion model over a sliding temporal window.
This motion model is used as a motion prior in a conven-
tional Bayesian template tracker for a single feature. The
local information is combined with weaker global low rank
approximation for the set of initial local trajectories (in
the spirit of [6, 23, 16], while different than the low rank
constraint of this paper). Similarly to [6] this low rank
constraint guides the tracking via Bayesian modeling.

Another line of work takes tracked feature points in
videos, and then uses the underlying subspace structure
of rigid bodies to segment different motions of such
bodies [12, 30, 11, 31, 14]. This is related to the large
body of work on recovering rigid or non-rigid structure
from motion; see [18] or [13] and the references therein.
However, these works are highly dependent on good
tracking and it would be desirable to simultaneously track
and segment motion, or exploit the subspace structure to
improve tracking prior to finding structure from motion.

2. On Low-Rank Feature Trajectories
Under the affine camera model, the feature trajectories

for a set of features from a rigid body should exist in an
affine subspace of dimension 3, or a linear subspace of
dimension 4 [12, 18]. However, subspaces corresponding
to very degenerate motion are lower-dimensional than
those corresponding to general motion [18].

Feature trajectories of non-rigid scenarios exhibit signifi-
cant variety, but some low-rank models may still be success-
fully applied to them [6, 28, 17, 13, 16]. Similarly to [8, 16]
(though in a different setting) we consider a sliding tempo-
ral window, where over short durations the motion is simple
and the feature trajectories are of lower rank. The restric-
tion on the length of feature trajectories can also help in sat-
isfying an approximate local affine camera model in scenes
which violate the affine camera model. In general, depth
disparities give rise to low-dimensional manifolds [18]
which are only locally approximated by linear spaces.

At last, even in the case of multiple moving rigid objects,
the set of trajectories is still low rank (confined to the union
of a few low rank subspaces). In all of these scenarios the
low rank is unknown in general.

3. Feature Tracking
Notation: A feature at a location z1 ∈ R2 in a given

N1 ×N2 frame of an N1 ×N2 ×N3 video is characterized



by a template T , which is an n× n sub-image of that frame
centered at z1 (n is a small integer, generally taken to be
odd, so the template has a center pixel). If z1 does not have
integer coordinates, T is interpolated from the image. We
denote Ω = {1, ..., n}×{1, ..., n} and we parametrize T so
that its pixel values are obtained by {T (u)}u∈Ω.

A classical formulation of the single-feature tracking
problem (see e.g., [20]) is to search for the translation x1

that minimizes some distance between a feature’s template
T at a given frame and the next frame of video translated by
x1; we denote this next frame by I . That is, we minimize
the single-feature energy function c(x1):

c(x1) =
1

n2

∑
u∈Ω

ψ (T (u)− I(u+ x1)) , (1)

where, for example, ψ(x) = |x| or ψ(x) = x2. To apply
continuous optimization we view x1 as a continuous vari-
able and we thus view T and I as functions over continuous
domains (implemented with bi-linear interpolation).

3.1. Low Rank Regularization Framework

If we want to encourage a low rank structure in the
trajectories, we cannot view the tracking of different
features as separate problems. For f ∈ {1, 2, ..., F}, let
xf denote the position of feature f in the current frame (in
image coordinates), and let x = (x1,x2, ...,xF ) ∈ R2F

denote the joint state of all features in the scene. We define
the total energy function as follows:

C(x) =
1

Fn2

F∑
f=1

∑
u∈Ω

ψ (Tf (u)− I(u+ xf )) , (2)

where Tf (u) is the template for feature f . Now, we can
impose desired relationships between features in a scene by
imposing constraints on the domain of optimization of (2).

Instead of enforcing a hard constraint, we add a penalty
term to (2), which increases the cost of states which are
inconsistent with low-rank motion. Specifically, we define:

C̄(x) = α

F∑
f=1

∑
u∈Ω

ψ (Tf (u)− I(u+ xf )) + P (x), (3)

where P (x) is an estimate of, or proxy for, the dimen-
sionality of the set of feature trajectories over the last
several frames of video (past feature locations are treated as
constants, so this is a function only of the current state, x).
Notice that we have replaced the scale factor 1/(Fn2) from
(2) with the constant α, as this coefficient is now also re-
sponsible for controlling the relative strength of the penalty
term. We will give explicit examples for P in section 3.2.

This framework gives rise to two different solutions,
characterized by the strength of the penalty term (definition

of α). Each has useful, real-world tracking applications. In
the first case, we assume that most (but not necessarily all)
features in the scene approximately obey a low rank model.
This is appropriate if the scene contains non-rigid or mul-
tiple moving bodies. We can impose a weak constraint by
making the penalty term small relative to the other terms.
If a feature is strong, it will confidently track the imagery,
ignoring the constraint (regardless of whether the motion is
consistent with the other features in the scene). If a feature
is weak in the sense that we cannot fully determine its true
location by only looking at the imagery, then the penalty
term will become significant and encourage the feature to
agree with the motion of the other features in the scene.

In the second case, we assume that all features in the
scene are supposed to agree with a low rank model (and de-
viations from that model are indicative of tracking errors).
We can impose a strong constraint by making the penalty
term large relative to the other terms. No small set of fea-
tures can overpower the constraint, regardless of how strong
the features are. This forces all features to move is a way
that is consistent with a simple motion. Thus, a small num-
ber of features can even be occluded, and their positions
will be predicted by the motion of the other features in the
scene. We further explain these two scenarios and demon-
strate them with figures in the supplementary material.

3.2. Specific Choices of the Low-Rank Regularizer

There is now a large body of work on low rank reg-
ularization, e.g., [10, 9, 21]. We will restrict ourselves
to showing results using three choices for P described
below. Each choice we present defines P (x) in terms of a
matrix M . It is the 2(L + 1) × F matrix whose column
f contains the feature trajectory for feature f within a
sliding window of L+ 1 consecutive frames (current frame
and L past frames). Specifically, M = [mi,j ], where
(m0,f ,m1,f )T is the current (variable) position of feature f
and (m2l+1,f ,m2l+2,f )T , l = 1, ..., L contains the x and y
pixel coordinates of feature f from l frames in the past (past
feature locations are treated as known constants). One may
alternatively center the columns of M by subtracting from
each column the average of all columns. Most constraints
derived for trajectories (assuming, for instance, rigid
motion) actually confine trajectories to a low rank affine
subspace (as opposed to a linear subspace). Centering the
columns of M transforms an affine constraint into a linear
one. Alternatively, one can forgo centering and view an
affine constraint as a linear constraint in one dimension
higher. We report results for both approaches.

Explicit Factorizations

A simple method for enforcing the structure constraint is to
writeM = BC, whereB is a 2(L+1)×dmatrix, andC is



a d×F matrix. However, as mentioned in the previous sec-
tion, because the feature tracks often do not lie exactly on a
subspace due to deviations from the camera model or non-
rigidity, an explicit constraint of this form is not suitable.

However, an explicit factorization can be used in a
penalty term by measuring the deviation of M , in some
norm, from its approximate low rank factorization. For
example, if we let

M = UΣV T (4)

denote the SVD of M , we can take P (x) in (3) to be
||BC −M ||∗, where B is the first three or four columns
of U , and C is the first three or four rows of ΣV T . Then
this P corresponds to penalizing M via

∑F
i=d+1 σi, where

σi = Σii is the i’th singular value of M . As above, since
the history is fixed, U , Σ, and V T are functions of x.

This approach is the closest analogue of [19] in the track-
ing setting, next to an explicit rank constraint. It assumes
knowledge of the low-rank d. For simplicity, we assume a
local rigid model and thus set d = 3 when centering M and
d = 4 when not centering (following [12, 18]).

Nuclear Norm

A popular alternative to explicitly keeping track of the best
fit low-dimensional subspace to M is to use the matrix
nuclear norm and define

P (x) = ‖M‖∗ = ‖σ‖1. (5)

This is a convex proxy for the rank ofM (see e.g., [10, 9]).
Here σ = (σ1 σ2 . . . σ2(L+1)∧F )T is the vector of
singular values of M , and || · ||1 is the l1 norm. Unlike
explicit factorization, where only energy outside the first d
principal components of M is punished, the nuclear norm
will favor lower-rank M over higher-rank M even when
both matrices have rank ≤ d. Thus, using this kind of
penalty will favor simpler track point motions over more
complex ones, even when both are technically permissible.

Empirical Dimension

Empirical Dimension [22] refers to a class of dimension
estimators depending on a parameter ε ∈ (0, 1]. The
empirical dimension ofM is defined to be:

d̂ε(M) :=
‖σ‖ε
‖σ‖( ε

1−ε )
. (6)

Notice that we use norm notation, although ‖ · ‖ε is only
a pseudo-norm. When ε = 1, this is sometimes called the
“effective rank” of the data matrix [29].

Empirical dimension satisfies a few important proper-
ties, which are verified in [22]. First, empirical dimension

is invariant under rotation and scaling of a data set. Ad-
ditionally, in the absence of noise, empirical dimension
never exceeds true dimension, but it approaches true
dimension as the number of measurements goes to infinity
for spherically symmetric distributions. Thus, dε is a
true dimension estimator (whereas the nuclear norm is a
proxy for dimension). To use empirical dimension as our
regularizer, we define P (x) = dε(M).

Empirical dimension is governed by its parameter, ε. An
ε near 0 results in a “strict” estimator, which is appropriate
for estimating dimension in situations where you have little
noise and you expect your data to live in true linear spaces.
If ε is near 1 then dε is a lenient estimator. This makes it
less sensitive to noise, and more tolerant of data sets that
are only approximately linear. In all of the experiments
we present, we use ε = 0.6, although we found that other
tested values also worked well.

3.3. Implementation Details

We fix L = 10 for the sliding window and let ψ(x) = |x|
in (3). We use this form for ψ so that all terms in the total
energy function behave linearly in a known range of values.
If our fit terms behaved quadratically, it would be more
challenging to balance them against a penalty term. We
also tested a Huber loss function for ψ and have concluded
that such a regularization is not needed.

We fix a parameter m for each penalty form (selected
empirically - see the supplementary material for our
procedure), which determines the strength of the penalty.
The weak and strong regularization parameters are set as
follows:

αweak =
1

mn2
and αstrong =

1

mFn2
. (7)

The weak scaling implies that a perfectly-matched feature
will contribute 0 to the total energy, and a poorly-matched
feature will contribute an amount on the order of 1/m to
the total energy. The penalty term will contribute on the
order of 1 to the total energy. Since we do not divide the
contributions of each feature by the number of features,
the penalty terms contribution is comparable in magnitude
to that of a single feature. The strong scaling implies that
the penalty term is on the same scale as the sum of the
contributions of all of the features in the scene.

Minimization Strategy

The total energy function we propose for constrained
tracking is non-convex since the contributions from the
template fit terms are not convex (even if P is convex);
this is also the case with other feature tracking methods,
including the Lucas-Kanade tracker. We employ a 1st-order
descent approach for driving the energy to a local minimum.

To reduce the computational load of feature tracking,
some trackers use 2nd-order methods for optimization (see



[1]). This works well when tracking strong features, but
in our experience it can be unreliable when dealing with
weak or ambiguous features. Since we are explicitly trying
to improve tracking accuracy on poor features we opt for a
1st-order descent approach instead.

The simplest 1st-order descent method is (sub)gradient
descent. Unfortunately, because there can be a very large
difference in magnitude between the contributions of strong
and weak features to our total energy, our problem is not
well-conditioned. If we pursue standard gradient descent,
the strong features dictate the step direction and the weak
features have very little effect on it. Ideally, once the
strong features are correctly positioned, they will no longer
dominate the step direction. If we were able to perfectly
measure the gradient of our objective function, this would
be the case. In practice, the error in our numerical gradient
estimate can be large enough to prevent the strong features
from ever relinquishing control over the step direction. The
result is that in a scene with both very strong and very weak
features, the weak features may not be tracked.

To remedy this, we compute our step direction by blend-
ing the gradient of the energy function with a vector that
corresponds to taking equal-sized gradient descent steps
separately for each feature. We use a fast line search in
each iteration to find the nearest local minimum in the step
direction. This compromise approach allows for efficient
descent while ensuring that each feature has some control
over the step direction (regardless of feature strength).

Because the energy is not convex, it is important to
choose a good initial state. We use a combination of two
strategies to initialize the tracking: first, we generate our
initial guess of x by registering an entire frame of video
with the previous (at lower resolution). Secondly, we use
multi-resolution, or pyramidal tracking so that approximate
motion on a large scale can help us get close to the minimum
before we try tracking on finer resolution levels (see [2]).

We now explain the details of the algorithm. Let I de-
note a full new frame of video and let xprev be the concate-
nation of feature positions in the previous frame. We form a
pyramid for I where level 0 is the full-resolution image and
each higher level m (1 through 3) has half the vertical and
half the horizontal resolution of level m − 1. To initialize
the optimization, we take the full frame (at resolution level
3) and register it against the previous frame (also at reso-
lution level 3) using gradient descent and an absolute value
loss function. We initialize each features position in the cur-
rent frame by taking its position in the previous frame and
adding the offset between the frames, as found through this
registration process). Once we have our initial x, we begin
optimization on the top pyramid level. When done on the
top level, we use the result to initialize optimization on the
level below it, and so on until we have found a local mini-
mum on level 0. On any given pyramid level, we perform

optimization by iteratively computing a step direction and
conducting a fast line search to find a local minimum in the
search direction. We impose a minimum and maximum on
the number of steps to be performed on each level (mini
and maxi, respectively). Our termination condition (on a
given level) is when the magnitude of the derivative of C̄
is not significantly smaller than it was in the previous step.
To compute our search direction in each step, we first com-
pute the gradient of C̄ (which we will call DC̄) and set a =
−DC̄. We then compute a semi-normalized version of a.
This is done by breaking it into a collection of 2-vectors (el-
ements 1 and 2 are together, elements 3 and 4 are together,
and so on) and normalizing each of them. We then re-
combine the normalized 2-vectors to get b. We blend awith
c to compute our step direction. Algorithm 1 summarizes
the full process. Source code for our implementation of this
algorithm will be available on the first authors web page.

Algorithm 1 Optimization of rank-penalized energy

Input: xprev, I , T f f ∈ {1, 2, ..., F},M , α, mini, maxi
Output: x

Initialize x = xprev + [∆x,∆x, ...,∆x]T where ∆x is
the result of registering I against the previous frame.
for m = 3 : 0 do
x← (1/2)mx
‖DC̄‖old ←∞
for i = 1 : maxi do

Let a← −DC̄
for f = 1 : F do
yf ← [a(2f − 1),a(2f)]T

bf ← yf/|yf |
b← [bT1 , b

T
2 , ..., b

T
F ]T

c← 0.5a+ 0.5b
x = x+ cd where d is output of line search
if ‖DC̄‖ > 0.99‖DC̄‖old and i > mini then

Exit for loop early
else

Assign ‖DC̄‖old = ‖DC̄‖
x← 2mx

Return x

Efficiency and Complexity

We have found that our algorithm typically converges in
about 20 iterations or less at each pyramid level (with fewer
iterations on lower pyramid levels). In our experiments, we
used a resolution of 640-by-480 (we have also done tests
at 1000 × 562), and we found that 4 pyramid levels were
sufficient for reliable tracking. Thus, on average, less than
80 iterations are required to track from one frame to the
next. A single iteration requires one gradient evaluation and
multiple evaluations of C̄. The complexity of a gradient



evaluation is k1Fn
2 + k2LF

2, and the complexity of an
energy evaluation is k3Fn

2 + k4L
2F (details are given

in the supplementary material). Our C++ implementation
(which makes use of OpenCV) can run on 35 features of
size 7-by-7 with a temporal window of 6 frames (L = 5)2

on a 3rd-generation Intel i5 CPU at approximately 16
frames per second. SIMD instructions are used in places,
but no multi-threading was used, so faster processing
rates are possible. With a larger window of L = 10 our
algorithm still runs at 2-5 frames per second.

4. Experiments
To evaluate our method, we conducted tests on several

real video sequences in circumstances that are difficult for
feature tracking. These included shaky footage in low-light
environments. The resulting videos contained dark regions
with few good features and the unsteady camera motion
and poor lighting introduced time-varying motion blur.

In these video sequences it proved very difficult to
hand-register features for ground-truth. In order to present
a quantitative numerical comparison we also collected
higher-quality video sequences and synthetically degraded
their quality. We used a standard Lucas-Kanade tracker
on the non-degraded videos to generate ground-truth (the
output was human-verified and corrected). We therefore
present qualitative results on real, low-quality video
sequences, as well as quantitative results on a set of
synthetically degraded videos.

4.1. Qualitative Experiments on Real Videos

In our tests on real video sequences containing low-
quality features, single-feature tracking does not provide
acceptable results. When following a non-distinctive
feature, the single-feature energy function often flattens
out in one or more directions. A tracker may move in
any ambiguous direction without realizing a better or
worse match with the features template. This results in the
tracked location drifting away from a features true location
(i.e. “wandering”). This is not a technical limitation of
one particular tracking implementation. Rather, it is a
fundamental problem due to the fact that the local imagery
in a small neighborhood of a feature does not always
contain enough information to deduce the features motion
between frames. This claim can be verified by attempting
to hand-register low-quality features by only looking at a
small neighborhood of the features last known location.

In these situations, our method infers the global motion
of the scene from the observable features and uses it to
assist in locating the low-quality features. This yields better
overall tracking results in hard-to-track videos. Fig. 1 shows

2Accuracy for L = 5 is only slightly worse than for L = 10 and
enables faster processing. See the supp. material for a brief comparison.

(a) Dark Scene on frame 1 (b) Lucas Kanade - frame 30

(c) Dark Scene on frame 1 (d) Our method - frame 30

Figure 1: Results of tracking features in real low-light
video. Most of the features wander significantly with
the Lucas Kanade tracker. Our method provides better
results on the low-quality features.

(a) Lucas Kanade after 10 frames

(b) Our method after 10 frames

Figure 2: Characteristic results of the OpenCV
Lucas-Kanade tracker vs our method in our syntheti-
cally degraded video experiment. The correct feature
locations (according to the Lucas-Kanade tracker on
the non-degraded video) are shown in red. Tracker-
computed feature locations are shown in green.



Table 1: Mean L1 trajectory error after 30 frames of tracking. Lower is better.

Video Number Average
1 2 3 4 5 6 7 8

Tr
ac

ke
r

KLT 959.6 2484.0 958.3 1242.4 1630.2 1391.4 2105.0 4387.6 1894.8
1st-Order Descent 92.5 137.8 159.5 273.2 87.5 198.4 70.6 685.7 213.2
LDOF 508.0 408.6 898.5 385.2 104.9 122.3 256.1 721.3 425.6
Multi-Tracker - Emp Dim - Uncentered 104.1 139.3 128.8 241.9 75.2 136.9 58.8 305.5 148.8
Multi-Tracker - Emp Dim - Centered 102.9 115.3 108.3 226.8 69.7 128.6 54.1 292.5 137.3
Multi-Tracker - Nuc Norm - Uncentered 106.8 134.0 131.7 243.9 73.4 132.6 58.4 293.9 146.8
Multi-Tracker - Nuc Norm - Centered 103.5 137.7 141.5 243.9 73.4 135.5 60.3 341.0 154.6
Multi-Tracker - Exp Fact - Uncentered 103.4 169.7 131.3 246.1 74.6 134.3 62.5 307.3 153.7
Multi-Tracker - Exp Fact - Centered 102.9 167.0 129.1 245.0 73.2 133.4 58.9 302.5 151.5

Table 2: Average number of frames between feature re-initializations. Higher is better.

Video Number Average
1 2 3 4 5 6 7 8

Tr
ac

ke
r

KLT 10.6 7.8 13.5 9.6 7.6 9.5 7.8 2.0 8.6
1st-Order Descent 38.9 30.3 68.7 27.7 34.0 41.1 44.1 3.9 36.1
LDOF 8.8 12.0 13.7 20.4 25.5 68.4 23.1 6.7 22.3
Multi-Tracker - Emp Dim - Uncentered 73.4 35.3 111.5 55.6 70.2 102.3 63.7 14.0 65.8
Multi-Tracker - Emp Dim - Centered 74.3 38.2 111.5 58.5 69.1 104.4 65.6 14.0 67.0
Multi-Tracker - Nuc Norm - Uncentered 77.2 35.3 108.4 53.8 62.1 105.5 68.5 13.6 65.6
Multi-Tracker - Nuc Norm - Centered 78.2 33.8 114.9 54.3 66.9 109.0 65.6 13.8 67.1
Multi-Tracker - Exp Fact - Uncentered 76.2 34.3 114.9 54.3 66.9 98.3 68.5 13.6 65.9
Multi-Tracker - Exp Fact - Centered 74.3 34.8 111.5 53.0 68.0 109.0 65.6 14.3 66.3

characteristic results from our tests. Several real videos are
included in the supplemental material with results from the
OpenCV Lucas Kanade tracker, and from our method.

4.2. Experiments on Synthetically Degraded Videos

For this experiment, we collected 8 video sequences of
variable length in favorable lighting conditions. We used a
Lucas Kanade tracker to track many features and manually
verified and corrected the individual trajectories. Features
come and go in these sequences (we do not assume all
features persist through the entire sequence). These videos
include 6 rigid environments as well as one video with mul-
tiple rigid bodies (video 7) and one video with a deformable
body (video 8). The sequences range in length from 97
frames to 289 frames. On average, they are 210 frames
each and contain over 6000 feature-frames each (this is the
sum of each tracked features lifespan, measured in frames).

We degraded each video sequence by first darkening
and adding noise to each frame, followed by applying a
strong Gaussian blur to each frame. After this we added
additional Gaussian noise. Adding noise before and after
blurring gave the effect of noise at different scales (harder
to deal with than per-pixel noise only). The test videos are
included in the supplementary material.

For our comparison, we ran each tracker in two different
modes. In the first mode we initialized each feature with
its ground-truth location and re-initialized features when
they wandered more than 10 pixels from ground truth. We
recorded the average number of frames between feature re-
initializations. In the second mode, we only tracked the fea-
tures that were visible in frame 0, and features were never
re-initialized. We looked at the mean L1 difference between

the output trajectories and ground truth after 30 frames.
As a reference, we compared against the pyramidal

Lucas Kanade tracker in the current OpenCV release
(2.4.3). For a more recent comparison, we used LDOF
(Large Displacement Optical Flow [7]) to generate dense
flow fields for each sequence and we interpolated these
flow fields to generate long-run trajectories for features. We
also implemented our own single-feature gradient descent
tracker (with an absolute value loss function). We present
results for our rank-constrained tracker with the three
previously introduced penalty functions. For each penalty
function we present results with and without centering
the history matrix M . In this experiment, whenever our
algorithm is run with the penalty term, we use a weak
constraint. All trackers were run on grayscale video. The
results of this experiment are presented in Tables 1 and 2.
An additional set of tests (on shorter video sequences) is
included in the supplementary material.

4.3. Analysis of Results

From Tables 1 and 2, we can see that imposing our weak
rank constraint significantly improves overall tracking abil-
ity, with all three rank regularizers that we tested showing
improved tracking performance. Comparing the Lucas
Kanade results to the results of our single-feature gradient
descent tracker, we see a very large gap in performance.
The core differences between these two algorithms are
the definitions of ψ (squared error vs. absolute value) and
the method of optimization employed. This performance
difference supports our previous claim that the 2nd-order
optimization technique used to accelerate convergence
in the Lucas Kanade algorithm can be unreliable when



tracking poor-quality features.

5. Conclusion
Rank constraints have been successfully applied to

several problems in computer vision, including motion
segmentation and optical flow estimation. We have ex-
panded on this previous work by developing a feature
tracking framework which allows these constraints to be
reliably used to assist in the tracking of features in rigid
environments as well as in more general, non-rigid settings.
The framework we presented permits these constraints to be
imposed forcefully, allowing one to track features on a rigid
object even if some features are occluded, or weakly, where
the constraints are only used to help locate poor-quality
features that cannot be tracked on their own. We showed
that the weak constraint can yield significant gains in track-
ing performance, even in non-rigid scenes (with multiple
or deformable objects) The framework we presented is
completely causal and does not require explicitly modeling
structure or motion in a scene. Furthermore, the algorithm
we proposed is not prohibitively computationally expensive
(real-time performance has been achieved). Our results
provide evidence that when tracking features in low-quality
video (especially in a rigid or semi-rigid scene), a 1st-order
descent scheme is more robust than 2nd order methods
used in standard Lucas-Kanade trackers, and applying rank
regularizers to track a cohort of features results in better
performance than classical single-feature tracking.
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