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Abstract

In this paper, we propose a technique for video object
segmentation using patch seams across frames. Typically,
seams, which are connected paths of low energy, are utilised
for retargeting, where the primary aim is to reduce the im-
age size while preserving the salient image contents. Here,
we adapt the formulation of seams for temporal label prop-
agation. The energy function associated with the proposed
video seams provides temporal linking of patches across
frames, to accurately segment the object. The proposed en-
ergy function takes into account the similarity of patches
along the seam, temporal consistency of motion and spa-
tial coherency of seams. Label propagation is achieved with
high fidelity in the critical boundary regions, utilising the
proposed patch seams. To achieve this without additional
overheads, we curtail the error propagation by formulat-
ing boundary regions as rough-sets. The proposed approach
out-perform state-of-the-art supervised and unsupervised
algorithms, on benchmark datasets.

1. Introduction
Video object segmentation divides a video into compo-

nent objects, by spatially segmenting objects in every frame
i.e., the aim of object segmentation is to group pixels in
a video into spatio-temporal regions that exhibit coherence
in both appearance and motion [9]. The general problem
of video object segmentation becomes ill-posed because, i)
the number and types of objects in a video are unknown,
ii) videos do not generally consist of a single scene, iii) the
background in a video is not always well-behaved, since
variations in background cannot be modelled accurately.

Hence to well-define the problem of video object seg-
mentation, existing methods make two major assumptions
viz., 1) given video is composed of a single scene or ac-
tion. 2) The object being segmented is present across all
frames [6, 11, 13, 19]. In addition to this, segmentation re-
quires prior knowledge of the object to be segmented. Since
semantic object detection is itself an ill-posed problem and

Figure 1: Video seams are used to capture the motion of ob-
jects across frames. As can be observed, the path shown in
white connects patches across frames, to efficiently transfer
object labels.

because definition of correct objects varies between differ-
ent problems, existing approaches use one of the follow-
ing three criterion to circumvent object detection, i) label
key-frames which could be either initial frame or multiple
frames [2, 6, 8, 19] or ii) perform over segmentation (e.g.
based on super-pixels) and with user intervention, obtain the
final object segmentation [5,18,21] or iii) assume the focus
of video is a single object [11,13,22]. Apart from the initial
object detection problem object segmentation is a complex
problem since it needs to handle problems such as, abrupt
object motion, motion blur, compression artifacts, illumina-
tion and pose change of objects, non-rigid object structures,
occlusions, camera motion etc.

In this paper, we begin with user-defined object labels at
the beginning of a video and propagate these labels using
video seams. Existing approaches that deal with label trans-
fer have focused on establishing mappings between frames
via optic flow algorithms [8, 9] or long term point trajec-
tories [5, 12]. However these methods have not been able
to achieve satisfactory results for semantic label propaga-
tion [2, 7]. The shortcomings of these approaches include
lack of occlusion handling, high cost of multilabel MAP in-
ference, sparsity of robust mappings and label drift caused
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by rounding errors. These issues have led to the use of label
inference over short overlapping time windows as opposed
to a full length video volume [6, 19].

Our label propagation scheme is motivated by Avidan et
al.’s work [1], which utilised connected paths of low-energy
in images to re-size images. These seams were further ex-
tended by Rubinstein et al. [17] for video retargeting. An
illustration of how the proposed seams compare with ex-
isting formulations is shown in Fig. 1 and 2. In the existing
image or video resizing approaches, seams minimise energy
at pixel level by connecting pixels which minimise a cho-
sen energy function. In our proposed approach, we adapt
seams to connect p × p patches across frames, such that
the distance between these patches is minimised with an
additional constraint that seams in coherent regions move
coherently. To minimise the energy function accurately, we
adapt approximate nearest neighbour algorithm to compute
a mapping between two frames, thus forming seams by con-
necting patches across frames. Since seams minimise en-
ergy across all p × p patches temporally, every pixel in a
frame is contained in p2 seams with corresponding labels.
The final label for each pixel is assigned by examining the
probability distribution of all p2 labels. To decide the la-
bels of each pixel, we make use of rough sets, by which we
estimate if a pixel is in the positive, negative or boundary
region. A pixel belongs to the positive or negative region, if
it belongs or not to a label set respectively. A pixel is in the
boundary region if decision about pixel belonging to either
positive or negative regions cannot be taken reliably with
available information.

To sum up, the current approach combines video seams,
approximate nearest neighbour fields (ANNF) and rough
sets to perform video object segmentation. In the next sec-
tion we will present a brief overview of existing video seg-
mentation techniques, followed by, detailed explanation of
video seams, ANNF maps and rough sets in section 3. The
proposed approach is described in section 4, followed by
experiments in section 5. Setion 6 concludes with a brief
note on future directions.

2. Related Work
Video object segmentation can be broadly classified into

following two categories:
1) Unsupervised segmentation, aims at autonomously
grouping pixels in a video, which are visually and motion-
wise consistent. Recent techniques, as summarised by Xu
et al. [21], have been inspired by super-pixels in images
and focus on merging image super-pixels, based on mo-
tion consistency to form space-time super-pixels [5,18,21].
In cases with clear boundaries between objects and back-
ground, the super-voxels are semantically meaningful, how-
ever in real world videos, the results are over-segmented and
require additional knowledge, for example in the form of

human intervention, to achieve object level segmentation.
The second widely developed unsupervised segmentation
algorithms start with a goal of detecting the primary object
in a video and to delineate it from the background in all
frames [11, 13, 22]. As it is evident from the formulation,
this approach requires the full video or at least a bunch of
frames to analyse and work with the assumption that there is
only a single object present throughout the video. Recently,
Zhang et al. [22] merged both super-pixels and foreground
object segmentation to obtain accurate unsupervised object
segmentation.
2) In Semi-Supervised segmentation, first frame or key
frames are user labelled and the object is segmented in
the remaining frames. Badrinarayanan et al. [2] proposed
a probabilistic graphical model for propagating labels in
video sequences, which used multi-frame labelling, typi-
cally at the start and end of the video. Expectation maximi-
sation is used to propagate labels across frames along with
random forest classifiers. Similarly, Budvytis et al. [6] also
used mixture of trees graphical model for video segmenta-
tion. This approach transferred labels provided by the used,
via a tree structured temporal linkage between super-pixels
from the first to the last frame of a video sequence.

Fathi et al. [8] proposed an algorithm for video seg-
mentation using harmonic functions and an incremental
self-training approach, which iteratively labels the least un-
certain frame and updates similarity metrics. Using active
learning models for providing guidance to user on what
to annotate in order to improve labelling efficiency. This
method was able to achieve accurate pixel level object seg-
mentation. Another off-line algorithm was proposed by Tsai
et al. [19] using multi-label Markov Random Fields. Seg-
mentation was achieved by finding the minimum energy la-
bel assignment across frames. One of the drawbacks with
off-line segmentation methods is the large memory require-
ment. In comparison to such off-line methods the proposed
approach is based on a sequential processing and has very
low memory requirements.

3. Background
This section starts with an introduction of seams for

videos and computation of seams using modified ANNF
maps. A brief introduction of rough sets is also provided
before proceeding to explain the proposed approach in next
section.

3.1. Seams in a Video

Avidan et al. proposed seam carving [1] to perform im-
age resizing/retargeting by introducing the concept of seams
in an image. The aim of seam carving is to reduce size of an
image by removing seams from an image instead of remov-
ing a row or column of data. Seams are connected paths of
low energy in an image [1], i.e. the sum of gradients along
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Figure 2: Comparison of seams. (a) Seams used for image
retargeting [1] (b) Seams used for video retargeting [17].
The proposed seams are shown in Fig. 1.

the seam path is minimised. this happens since the energy
function for retargeting, is conventionally based on spatial
gradient of image. In other words seams conventionally pass
through planar regions and avoid major edges when retar-
geting to preserve the salient regions in an image. Similar
idea of minimising gradient energy is also used for video re-
targeting [17], where the seams are connected both spatially
and temporally. The seams in an image are of size [width, 1]
or [1, height] when reducing height and width respectively.
Whereas the seams in a video are of size [width, 1, f ] or
[1, height, f ] when reducing height and width respectively.
Here, ‘f ’ indicates the total number of frames in the video,
since for video retargeting, seams are connected both spa-
tially and temporally. Figure 2 illustrates how seams con-
nect regions of low energy when retargeting images and
videos, in comparison, Fig. 1 shows the proposed seams
which minimise energy temporally.

When adapting seams to video segmentation, we en-
counter the following drawbacks, with conventional formu-
lation:
1) Energy function: In retargeting, a gradient based energy
function is used since the objective is to avoid removing
salient objects. This any major edges, while in segmenta-
tion, an object is defined by its boundaries and textures, and
seams which avoid such regions are not helpful. Hence we
modify the energy function, as explained in section 4, eq.
(3), such that it captures the motion of objects, instead of
energy function based on gradients.
2) Seam sizes: The seams in videos span the width or height
of the frames, while an object is a sub-region in a frame and
does not span the whole width/height. In other words, for
seams to be able to capture the motion of object, they need
to be at object level. To handle this, we define seams as paths
of size p×p×f which connect patches across frames. Here,
p is patch size and f is total number of frames in a video.
3) Seam coherency: When retargeting, there is no relation-
ship between seams, a reason for avoiding relationship be-
tween seams is that removing excessive information from
adjacent locations creates artifacts after resizing. On the
other hand, adjacent seams within an object must be coher-

ent to accurately model object motion.
4) Connectivity: While retargeting, though a seam is con-
nected both spatially and temporally, only the 8-connected
neighbourhood of the pixel contained in the seam is consid-
ered for propagating/connecting the seam. When modelling
object motion, a patch need not always be overlapping, i.e.
motion more than one pixel also needs to be captured effi-
ciently.

3.2. Approximate Nearest Neighbour Field

To efficiently propagate labels using seams, one crite-
rion is that patches along a seam must be similar. This ob-
jective is in line with approximate nearest neighbour field
algorithms, like PatchMatch [3], FeatureMatch [15,16] and
Coherency Sensitive Hashing [10]. The aim of such algo-
rithms is: “For a pair of images (target and source), for every
p× p patch in the target image, find the closest patch in the
source image (minimum Euclidean distance, or any other
appropriate measure).” The optimisation function in the ex-
isting ANNF map algorithms is based solely on the patch
distance, and to improve the accuracy of mapping between
two images, the coherency of images is exploited i.e., if two
patches are similar in a pair of images then their neighbour-
ing patches will also be similar.

In computing the ANNF mapping between two frames in
a video, from image It to image It−1, the energy function
is defined as the Euclidean distance between patches:

(1)E′i,j,t(x, y) = ||It(i, j)p − It−1(x, y)p||2
It(i, j)p be a p × p patch at (i, j) in image It, which maps
to p × p patch at (x, y) in image It−1, It−1(x, y)p, if E′ is
minimised, and we denote this mapping as It(i, j):

It(i, j) = (x, y)⇔ argmin
x,y

E′i,j,t(x, y) (2)

For computing video seams, we adapt existing ANNF
computation methods [15, 16]. In these methods E′ is ap-
proximately minimised, by searching for nearest neighbour
among all patch in It−1, for every patch in image It. To
speed up the search every patch in image It and It−1
are represented with lower dimension features. The lower-
dimension feature representation for each patch, helps in us-
ing fast nearest-neighbour algorithms, like kd-tree. To ap-
proximate a p × p patch, the colour information is cap-
tured by using the mean of R(ed), G(reen) and B(lue)
channels, the direction information is captured using mean
of x-, y-gradient, the first two frequency components of
Walsh Hadamard bases [4] and the maximum value of the
patch. The advantage of these features is that they are ex-
tremely efficient to compute using integral images [20]. Fur-
thermore, lower dimension representation using these pro-
posed features, is much more accurate for computing ANNF
maps, in comparison to standard dimension reduction tech-
niques like PCA and random projection [15].



Figure 3: The boundary of a label set is formalised by rough
sets.

3.3. Rough Sets

In label propagation and video object segmentation, label
sets are conventionally modelled as crisp sets, i.e. if p is any
pixel in image I and X is an object label.

∀ p ∈ I, p ∈ X or p ∈ X ′

In such crisp sets, there is no modelling for the bound-
ary entities, i.e. crisp sets do not model {p ∈ I | p /∈
X and p /∈ X ′}. These are boundary pixels which can-
not be confidently classified to a label set or outside the
label set, i.e. these are pixels which may belong to a label
set but the confidence of belonging to the set is low. The
problem with formulating labels as crisp sets, arises when
the boundaries are mis-labelled and propagated. To handle
such mis-labelling, conventional labelling techniques war-
rant further optimisation to handle boundary pixels much
more accurately. To provide an objective form of analysing
these low confidence entities without any additional infor-
mation/optimisation, we make use of Rough sets as pro-
posed by Pawlak [14], and illustrated in Fig. 3.

In a rough set, the lower approximation or positive region
PX , is a union of all the entities which definitely belongs
to the target label set X , i.e. an entity will unambiguously
belong to a given label set if it belongs to PX .

PX = {p | p ⊆ X}

Similarly, the upper approximation PX , is union of all en-
tities which have non-empty intersection with the target set,
i.e. union of all entities that may possibly belong to the tar-
get set forms PX .

PX = {p | p ∩X 6= ∅}

Thus, the set U− PX constitutes the negative region, con-
taining all entities that can be definitely ruled out as mem-
bers of target label set.

∀ p ∈ I, p ∈ X ′ ⇔ p ∈ U− PX

In other words, an entity within the upper approximation is
a possible member of the target label set and an entity within

Figure 4: Difference betweenE′ andE.E′ does not require
connectivity or coherency of seams, i.e. orange patch in im-
age It (on left) can match to red patch in image It−1 (on
right). On the other hand E ensures connectivity of orange
patch across time. This is further enforced by coherency i.e.
seams through orange and yellow patches should flow to-
gether.

the lower approximation definitely belongs to the target la-
bel set. The boundary region, given by < PX − PX >,
consists of the entities that can neither be ruled in, nor ruled
out as members of the target label set X .

4. Algorithm

As discussed in previous section, we make use of video
seams to propagate labels temporally for object segmenta-
tion. A seam flows from patch in frame ‘t-1’ to patch in
frame ‘t’ when the following energy function, E, is min-
imised.

(3)
Ei,j,t(x, y) = σ1 ∗ ||It(i, j)p − It−1(x, y)p||2

+ σ2 ∗ ||(i, j)− (x, y)||2 + σ3

∗ Σ
δ,ε
||It(i, j)− It(i+ δ, j + ε)||2

Here, It is a frame at time ‘t’ and It−1 is a frame at ‘t-1’.
Ei,j,t(x, y) represents the energy between a p × p patch at
(i, j) in It and patch at (x, y) in It−1. As can be compared,
between E′ and E, the additional terms in eq. (3), enforce
connectivity and coherency of seams, as illustrated in Fig.
4.

In conventional ANNF mapping, eq. (1), there is no
||(i, j)− (x, y)||2 term, i.e. a patch in image It can match to
any patch in image It−1 as long as E′ is minimised. But in
a video there exists connectivity of patches across frames,
and to capture this relation, we penalise the energy function
based on how far is the matching patch in frame ‘t-1’ from
current location in frame ‘t’. Also to ensure adjacent seams
flow coherently, we introduce ||It(i, j)− It(i+ δ, j+ ε)||2,
which minimises the neighbourhood incoherence. This co-
herency term is not used in conventional ANNF mapping,
since more the incoherence in mapping between two im-
ages, the better is the accuracy of ANNF mapping [10]. It is
required that adjacent pixels move coherently, while prop-
agating labels, hence this term is introduced to minimise



It It−1

Figure 5: Initially It(i, j) = (x, y). By checking for seam
coherency, if Ei,j,t(u − δ, v − ε) < Ei,j,t(x, y) then
It(i, j) = (u − δ, v − ε), since this mapping provides a
better minima for the energy function ‘E’.

in-coherency of mapping, to accurately capture object mo-
tion.

Conventionally, the energy across a seam is minimised,
by piece-wise minimisation of the associated energy func-
tion. To connect seams across a video, we minimise E for
every patch, between every adjacent frame. That is, a seam
flows from patch (i, j) in frame It to patch at (x, y) in It−1
if E is minimised. This minimisation is performed in two
stages. For the first stage σ3 is set to 0, i.e. we optimise only
for patch similarity and connectivity and in the second stage
we optimise for coherency of seams as well.

A p×p patch in an image is approximated to an 8 dimen-
sional feature formed by concatenating the mean of R(ed),
G(reen), B(lue) channels, average x and y gradients, first
two frequency components of Walsh-Hadamard bases and
the maximum value of the patch. These features were shown
to capture the colour and direction information of a p × p
patch, with better accuracy than conventional dimension re-
duction approaches [15], while being extremely computa-
tionally efficient, since these features can be computed us-
ing ‘integral images’. In addition, to incorporate the connec-
tivity of seams, we add the x and y co-ordinates weighted
by σ2/σ1, to form a ten-dimension feature. For every patch
in It, kd-tree is used to search for patches in It−1, which
approximately minimises eq. (3).

The second stage optimises the mapping between frames
by taking into account the coherency of seams. The map-
ping obtained from earlier stage is used as initialisation, and
for every p×p patch in It, the mapping in neighbourhood is
considered to improve the energy function E. Suppose after
first stage,

It(i, j) = (x, y)

That is, E is approximately minimised between p× p patch
at (i, j) in It and p × p patch at (x, y) in It−1. Consider a

Figure 6: Transfer of labels across frames. (a) frame at t-1,
(b) frame at t, (c) is previous label set, (d) shows inferred
label set for current frame.

mapping in the neighbourhood of (i, j),

Say It(i+ δ, j + ε) = (u, v),

if Ei,j(u− δ, v − ε) < Ei,j(x, y),

then It(i, j) = (u− δ, v − ε).

This is illustrated in Fig. 5, and it can be observed that this
stage of optimisation helps in capturing coherently moving
pixels of the object.

Every pixel in image It, It(i, j)1, is contained in p × p
different seams. Hence each pixel at (i, j) has p2 different
labels associated with it, denoted by the set {Li,j,t}. For
a label X , we define a pixel to belong to the positive or
negative regions, if:

It(i, j)1 ∈ PX ⇔ |Li,j |X >= α ∗ p2

It(i, j)1 ∈ U− PX ⇔ |Li,j |X′ >= α ∗ p2

where, |Li,j |X is the number of elements in the candidate
label set {Li,j}, belonging to label X . The boundary pixels
are thus defined as, all pixels in image A which do not fall
in the positive or negative regions.

It(i, j)1 ∈< PX − PX > ⇔
It(i, j)1 /∈ U− PX & It(i, j)1 /∈ PX

Figures 6 and 7 show flow of labels across frames, and
it can be observed that boundary pixels are captured accu-
rately with this formulation. Figure 6(a) shows frame at t-1
and Fig. 6(b) shows frame at t. The connectivity of seams
is shown with orange seam in object region, white on the
boundary and blue in the background region. As can be
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Figure 7: Figure illustrates how rough sets are able to cap-
ture the boundary regions accurately. Here red denotes ob-
ject, blue denotes background and the rest is boundary. For
best viewing please zoom in on a digital display.

seen, orange and blue seams are within positive and neg-
ative regions respectively, and the same labels are propa-
gated. On the other hand, seam through white patch cannot
be classified into either of these label sets and hence is prop-
agated as boundary label. To provide the final segmentation,
these boundary sets are divided in the middle and shown as
contours as illustrated in Fig. 7.

5. Experiments
The proposed algorithm is implemented in MATLAB,

with C/C++ implementations for critical/slow functions. All
the experiments are executed on an Intel i7, 3.4GHz proces-
sor with 8GB RAM.

For segmenting a video into its component objects, we
begin with a pixel level labelling, either using available
ground truth or user-defined labels. In case of object and
background, the label set contains object labelled as +1, and
background as -1. In formulating the lower and upper ap-
proximation sets, α is set at 0.8, i.e. if the label set Li,j,t
contains more than 80% elements of one label, then it is as-
signed to that particular label. The label of a boundary pixel
is the sum of all the labels of seams which contain that par-
ticular pixel. The boundary region label, thus propagated
belongs to (−1, 1). To provide an output for segmentation
in each frame, the boundary region is divided in the middle
and drawn as output contour. The three constituents of the
energy function, viz. patch similarity, coherency and con-
nectivity are given equal weights, i.e. σ1 = σ2 = σ3 = 1,
and the patch size p is defaulted to 4.

Quantitative Evaluation

In this section, we show comparison of proposed ap-
proach against various state-of-the-art methods on the Seg-
Track dataset [19]. The results shown are taken from the

Birdfall

Cheetah

MonkeyDog

Girl

Penguin

Parachute

Figure 8: Results on SegTrack database. For best viewing
please zoom in and view on a digital display.

respective author’s publications. The error measure shown
in table 1, is the average number of pixels mis-labelled per
frame. The error is defined as e(S) = |XOR(S,GT )|

F , where
S is the segmentation output, GT is the ground-truth seg-
mentation and F is the total number of frames. We have
used the standard first frame ground truth provided in Seg-
Track dataset as initialization, so that the comparison with
existing methods will be fair. Segtrack database is fairly
complex, with different foreground objects and cluttered
background, on which the proposed approach performances
better than existing methods, indicating the robustness of
the proposed approach.

The proposed approach out-performs existing state-of-
the-art methods in 4 out of 6 videos as well as giving the
lowest overall error. In the other two videos, the proposed
approach performs comparable to the state-of-the-art. The
marginal fall in performance could be attributed to the small



SeamSeg Tsai et al. Lee et al. Ma et al. Budvytis Fathi et al. Zhang et al.
(Proposed) [19] [11] [13] et al. [6] [8] [22]

Birdfall 186 252 288 189 508 342 155
Cheetah 535 1142 905 806 855 711 633
Girl 761 1304 1530 1698 1200 1206 1488
MonkeyDog 358 563 521 472 412 598 365
Parachute 249 235 201 221 296 251 220
Penguin 355 1705 136285 - 1736 1367 -
Mean 407.3 866.8 23288.3(689) 677.2 834.5 745.8 572.2

Table 1: Comparison of average number of error pixels per frame for proposed approach against state-of-the-art methods, on
the SegTrack dataset.

size of the object, especially for birdfall sequence. In the
parachute sequence the person on the parachute causes the
error. In the first frame the person is labelled as background
and in initial frames the proposed approach classifies the
person as background. After a few frames the person is
part of object and once he leaves the parachute, he is still
classified as object by proposed approach. Though the per-
son is accurately captured even with extreme similarity with
the background, the error creeps up due to difference from
ground truth as shown in Fig. 8.

It can also be noted that the performance of proposed ap-
proach on the penguin sequence is much superior to all the
existing methods. The existing methods perform poorly in
this video since the motion of penguins is similar as well as
the regions are visually very similar. In foreground estima-
tion methods [11, 22], the group of penguins is classified as
object of interest and thus produce very high error. In other
methods, due to high confusion between adjacent regions,
both visually as well as motion wise, the error is compar-
atively higher. This confusion arising from cluttered back-
ground is handled effectively by the proposed approach, as
can be observed in both penguin and cheetah sequences.

Qualitative Evaluation

Results obtained using proposed approach on the Seg-
Track database are shown in Fig. 8. As can be observed,
the segmentation accuracy of the proposed approach is very
high in all sequences even under cluttered background, like
Cheetah, Birdfall and Penguin sequences. The proposed
seams inherently handle scale (object size) variations ef-
ficiently. The scale variation is handled through splitting
and merging of seams i.e. as the object grows, seams split
(additional seams are generated adaptively), and when ob-
jects shrink multiple seams merge together. This scale han-
dling capability can be observed in Birdfall, Cheetah and
MonkeyDog sequences where the size of the object varies
widely. The proposed approach is also able to handle fast
motions like in MonkeyDog, Parachute and Yuna Kim se-
quences. To evaluate the performance of proposed approach

Figure 9: Performance on a long video sequence, Yuna Kim,
with extreme deformations and motion blur. Frames shown
- 6, 19, 37, 86, 124, 128, 190, 247.

(a)

(b)

Figure 10: Multi-object segmentation. (a) shows segmenta-
tion with partial overlap of various object. (b) shows multi-
object segmentation with no overlap.

on longer sequences, we experiment with the Yuna Kim se-
quence, and results for same are shown in Fig. 9. This com-
plex and lengthy sequence demonstrates the robustness of
proposed approach for fast object motion and partial occlu-
sion. This shows, the capability of proposed approach to
handle accurate label propagation in longer sequences while
curtailing the error in boundary regions.

The proposed approach can also handle multi-object seg-
mentation efficiently as illustrated in Fig. 10. To handle
multi-object segmentation, all other object labels are treated
as negative class with respect to one object, i.e. when prop-
agating labels for a particular object all other object labels
are treated as part of background.

To further illustrate the robustness of proposed approach,



Figure 11: Segmentation with partial occlusion.

we show results for segmentation with partial occlusions in
Fig. 11. As can be observed in face sequence, even with
heavy occlusion, the proposed approach accurately seg-
ments the object in subsequent frames.

Advantages and Limitations

The major advantages of proposed approach are:
• By modelling a video as connected seams, and perform-
ing piece-wise minimisation, we alleviate huge memory and
computational requirement needed by time window based
video volume processing.
• By formulating label sets as rough sets, there is no need
to do extra optimisations to handle boundary pixels, and
boundaries can thus be modelled with existing information
alone.
• The proposed approach is computationally efficient, tak-
ing less than a minute for processing the MonkeyDog video
(frame size of 320× 240 pixels, with 71 frames), on a Intel
i7, 3.4GHz processor with 8GB RAM.

The limitations of proposed approach are:
• Label transfers for newly uncovered ambiguous object or
background regions can be further improved to reduce er-
ror. This limitation can be observed in the ‘Girl’ sequence
where the hand is not visible in the first frame and hence is
not segmented in subsequent frames.
• Though the proposed approach handles partial occlu-
sions effectively, complete occlusions are difficult to han-
dle, since only two frames are considered for seam propaga-
tion. To handle complete occlusions, future work can extend
the seams propagation beyond two frames.

6. Conclusions
Video object segmentation and Seam Carving are not re-

lated problems, but the concept of seams (connected paths
of low energy) are very useful for object segmentation.
Hence the novelty of proposed approach stems from adapt-
ing an image retargeting concept to propagate labels in
video. Furthermore, to generate seams in a video, an ap-
propriate energy function is proposed, which is minimised
using recent developments in ANNF map computation. The
confidence measure obtained from the patch based ANNF
computation is used for identifying the ambiguous (bound-
ary) regions efficiently. We utilise rough sets to handle am-
biguity in label transfer, and thus curtail the error propa-
gation. The major challenge of video object segmentation

is the accurate labelling of boundary pixels. The proposed
approach is better equipped to handle the boundary pix-
els compared to existing methods as shown experimentally.
The proposed algorithm takes less than a second for pro-
cessing each frame and achieves state-of-the-art results on
the publicly available SegTrack dataset. Further, the pro-
posed approach is suitable for long-term video segmenta-
tion since the rough set formulation curtails the error propa-
gation from the ambiguous boundary regions. In summary,
the novelty of proposed approach comes from uniquely
combining incongruous concepts of seam carving, ANNF
maps and rough sets to perform video object segmentation.
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