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Abstract

We propose a technique to use the structural informa-
tion extracted from a set of 3D models of an object class to
improve novel-view synthesis for images showing unknown
instances of this class. These novel views can be used to
“amplify” training image collections that typically contain
only a low number of views or lack certain classes of views
entirely (e. g. top views).

We extract the correlation of position, normal, re-
flectance and appearance from computer-generated images
of a few exemplars and use this information to infer new
appearance for new instances. We show that our approach
can improve performance of state-of-the-art detectors using
real-world training data. Additional applications include
guided versions of inpainting, 2D-to-3D conversion, super-
resolution and non-local smoothing.

1. Introduction
Given a single view of a car, humans get a pretty good

idea how it will look from other angles. How is it possible
for us to hallucinate the rest of the car without ever having
seen it? The answer lies in the knowledge of structural in-
formation about regularities, shapes, materials and symme-
tries of objects that we use to build an informed hypothesis
of novel viewpoints in our mind.

Predicting how an object would appear from one view
when given a 2D image taken from another view (novel
view synthesis) has both technical and esthetical applica-
tions. Technically, the new views can be used to simulate
binocular stereo, depth of field, motion blur [4], or to im-
prove the performance of detectors, as we propose in this
work. Esthetically, a change of view has its own value –
“seeing something from a different view” – and is used rou-
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tinely by artists to convey presence, most well-known as the
Ken Burn’s effect [15].

In contrast, the predominant paradigm in computer vi-
sion is to present all possible viewpoints in order to arrive
at a model that is robust to out-of-plane rotations. The most
prominent detection models lack the domain knowledge
that would give them an understanding of how generaliza-
tion across viewpoints can be achieved from a single-view
example. A dense sampling across viewpoints and intra-
category variation is tedious to achieve. Recent analysis of
such detectors has pointed out that rare cases in viewpoint is
indeed one of the frontiers on which there is still significant
room to push the state-of-the-art in object detection [14].

In this work, we show how to improve novel view syn-
thesis by making use of correlations observed in 3D models
and applying them to new image instances. Intuitively, if
we observe a certain appearance at one position, orienta-
tion and material, a similar position, orientation and mate-
rial will have a similar appearance, even if it was not visible
in the original image and irrespectively of the appearance
itself. A simple example are the colors of the windows of a
car: they may differ between exemplars, but for a particu-
lar car they are likely identical. A more advanced example
is shading: if all surfaces oriented in a certain direction are
dark in the original view (i.e. directions facing away from
the sun), they will also be dark in the novel view for similar
orientations. This reasoning is only possible if an approx-
imate 3D model is roughly aligned with the image, which
is achieved manually in our experiments, but could be auto-
mated using [30, 12].

We show the application of our method to synthesis and
re-synthesis of training data for object detectors. In syn-
thesis, we are able to generate new viewpoints and thereby
“amplify” a training set. We show improved detection rates
– with strong improvements on rare viewpoints. In re-
synthesis, we show how to exploit the structural knowledge
in order to denoise, inpaint, and upsample images as well
as generate stereo-pairs from single images. We exemplify
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the use of resynthesis for learning object detectors from cor-
rupted data (e.g. noise, low-resolution).

2. Previous work

View Synthesis Generating novel views from 2D images
is an image-based rendering problem, with several applica-
tions in computer vision [2] and computer graphics [4, 15].
View interpolation including complex shading is possible
by using surface light fields [37] or lumigraphs [11]. When
deforming and blending images, detecting holes and fill-
ing them is the biggest challenge [6], usually solved ei-
ther by stretching foreground over background or by in-
painting [5, 1], but no approach we are aware of uses the
structure of a 3D template to guide this inpainting. Appear-
ance that depends on a shape template was proposed for
the diffuse case and manual intervention to capture the ap-
pearance of art in the “Lit Sphere” metaphor [32]. Our ap-
proach can be seen as the automatic and continuous gener-
alization from one to many, context-dependent Lit Spheres.
Image Analogies [13] learns the transformation from a pair
of images, to apply to a novel image. Similarly, we learn
the relation between two rendered 3D views of an image to
generate appearance in new views from a single image for
general appearance and account for the relation of 3D ge-
ometry and materials [17]. Simpler, joint bilateral upsam-
pling [19] has been used to reconstruct a high-resolution
image from a low-resolution image using a high-resolution
guidance signal. Our approach uses multiple synthesized
high-resolution images to guide view synthesis, including
upsampling. For 3D reconstruction of occluded areas in
scanned objects, approaches based on templates are rou-
tinely used [25] to fill holes in surfaces, but these operate
on 3D surfaces and do not account for appearance such as
we do. Another approach to reconstruct occluded regions is
[35], but the method requires visibility of the region or its
symmetric in the video sequence.

Training from synthetic data There is an increasing in-
terest to train computer vision models from synthesized data
in order to achieve more scalable learning schemes. Work
on fully synthetic data has shown mostly successful in depth
data [31, 20, 36], shape-based representations [33, 22], tex-
tures [34, 21] and scenes [18]. In contrast, we take an
image-based approach in order to leverage real-world image
statistics as well as the intra-class variation available to us in
image data. Previous image-based work synthesizes train-
ing images by recombining poses and appearance of objects
in order to create new instances [8, 28, 29, 27, 38]. In con-
trast, our work focuses on synthesis across viewpoints and
deals with disocclusions that are not addressed in previous
work.

3. Guiding novel-view synthesis by a 3D model
We pose novel view synthesis as reconstructing of ap-

pearance as a function of scene attributes from observed
samples. Input to our algorithm is an image and an aligned
3D model and output is an image from a novel view. First,
we notice, that both the original and the novel view of the
3D model can be rendered easily. This allows to put pixel
locations from the original to the novel view into correspon-
dence (flow) and to detect disocclusions, i.e. pixels in the
novel view that were not present in the original view. Sim-
ply copying pixels along their flow will result in the clas-
sic projective texturing used in image-based rendering [6].
The challenge is to consistently fill the disocclusions by in-
painting. The most simple solution would be to replace dis-
occluded pixels with pixels from the rendered view. This
however, cannot produce a consistent appearance as precise
materials, lighting and geometry are unknown. The key ob-
servation is, that an image rendered from the novel view
never has disocclusions. Therefore, we also know all 3D
properties, such as position, normal, reflectance, for all dis-
occluded pixels. We can use this information to guide the
inpainting of appearance for such pixels. To this end, we
copy appearance from the original view, that is similar in
terms of position, normal and reflectance.

3.1. Sampling appearance

Input to our system is appearance in the form of a 2D
RGB image f1 : R2 → R3 and a 3D model M ⊆ R3

with Phong reflectance F :M→ R9 defined on it (diffuse
color, specular color and glossiness). We want to compute
the image f2 that shows the scene from a view different by
the matrix T ∈ R4×4.

The 3D model typically contains the object in question,
as well as its context, e. g. a car standing on a planar ground,
which is very common for cars. The particular type (trian-
gular, (NURBS) patches, procedural) and technical proper-
ties of the 3D model (face count, orientability, UV coor-
dinates) are not relevant for our approach, we only require
that the model can be rendered into an image from a view.

First, let p1 : R2 → R3 be the position image, which
is the projection of M in the original view after hidden-
surface removal. We produce such images using deferred
shading [7] with z-buffering, i. e. generating positions in-
stead of shaded colors in rendering. Using deferred shad-
ing, we also compute n1 : R2 → R3, the normal image
computed from the derivative ofM: r1 : R2 → R9, the re-
flectance image, and L1 : R2 → R3, the radiance (Fig. 1).
Position, normal and reflectance images p2, n2, r2 and L2

from the novel view T are produced in the same way.
Instead of aligning the 3D modelM to the original im-

age f in 3D, we simply deform the original 2D image [2] to
align it to the images p1, n1 and r1 of the 3D modelM.

Next, we compute the flow w : R2 → R2 between the
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Figure 1. We compute a novel view image f2 from the input image f1 using 3D information of an aligned 3D template (Left to right:
radiance, normals, reflectance, positions) as guidance, even if its renderings L1 and L2 have appearance largely different from f1.

novel view and the original view, i. e. where every pixel in
the novel view is coming from in the original view. The flow
is undefined for positions that were occluded in the origi-
nal view. We again rasterizeM from the view T but store
w(x) = ρ(p(x)) − ρ(p(Tp(x))) at the pixel with location
x, where ρ : R3 → R2 is the (perspective) projection from
world to image space. Additionally we compute sampling
quality and occlusion in a z-buffer-like test, formalized by
a function

q(x) =

{
max(0, n(x) · v(x)) if z(p(x)− Tp(x)) > ε
0 else,

where v(x) = T−1x/||T−1x||22 is the normalized viewing
direction and z returns the depth component of a vector.

Further we define a metric on all attributes as follows
(Fig. 2): As a distance on positions ∆p we use Euclidean
distance; for normals, we use the dot product as the distance
∆p; for reflectance, we apply a perceptually linear Phong
BRDF distance ∆r similar to [26]; radiance and locality of
two pixels ∆L and ∆l is again measured using Euclidean
distance.

Using all the above, we can now write the probability of
assigning the appearance from pixel position x1 to the novel
appearance at location x2 as

c(x1,x2) = q(x1)/(wp∆p(p1(x1), p1(x2))+

wn∆n(n1(x1), n1(x2))+

wr∆r(r1(x1), r1(x2)))+

wL∆L(L1(x1), L1(x2)))+

wl∆l(x1,x2)).

3.2. Reconstructing appearance

All pixels in the result image f2 are reconstructed inde-
pendently for every location x2, as

f2(x2) =

∫
c(x1,x2)sf1(x1)dx1

/∫
c(x1,x2)sdx1 ,

(1)

where s is a sharpness parameter. If s is low, the recon-
structed appearance is combined from many sources. It is

more reliable, but also more smooth. If s gets larger, fewer,
but higher-quality observations dominate the solution.

For discrete images the integral above turns into a sum
in practice. We do not need to iterate over the entire image
but only over a local neighborhood. If x2 is the novel im-
age pixel position, we run over a fixed-size neighborhood
around location x2 + w(x2). This is because more corre-
lated pixels are found in the neighborhood of the pixel po-
sition, that a world space position had in the original view.
We use a GPU to produce all guide images using deferred
shading and to evaluate Eq. 1 on a 512×512 image using a
128×128 neighborhood in less than a second, allowing to
interactively explore novel views by moving a virtual cam-
era.

n +r +L +pf1

Figure 3. Contribution of distances to the reconstruction (See text).

For reconstruction, the weights w are tuned by visual
inspection of the result, which is easy thanks to the in-
teractive feedback (Fig. 3). We now discuss the individ-
ual terms: First (Fig. 3,+n), if all weights except normal
are zero, our approach is equivalent to the Lit Sphere ap-
proach of Sloan et al. [32]. All details are missing here,
except a global dependency on surface orientation. Second
(Fig. 3,+r), adding a reflectance term is equivalent to a Lit
Sphere for each material. This is equivalent to a “continu-
ous” Lit Sphere depending on material parameters. Third
(Fig. 3,+L), the radiance term prefers appearance that is
similar if multiple appearances are equivalent. This is the
case for the ground plane, that is either shadows or unshad-
owed in L1 and L2, which is transferred from f1. Finally
(Fig. 3,+p), adding a dependency on position prefers local
appearance if everything else is similar. In our example, the
cobblestone pattern that is not visible in any feature, but cor-
relates with position is reproduced. Note, that when adding
one component, no other component is degraded.

The 3D model is fit into the unit cube to normalize
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Figure 2. Weights c and distances ∆{L,n,p,r} of three output positions x{2,3,4} in respect to all positions from the input image.

positions and make them comparable for different scenes.
The settings in Fig. 3 are wn = 1, wr = 2, wL = 0.1,
wp = 0.01, wl = 1 . The sharpness is set to s = 3. We
keep those constant for all results reported throughout the
paper.

a) b) c) d) e) f)

Figure 4. Gauss sphere visualizations (Lit Spheres) of the input
image f1 seen in Fig. 3: a) Reconstructed using nearest-neighbor.
Note the increasing density towards frontal views. b) Our recon-
struction without locality (wn > 0, w{r,L,p} = 0). c–f) Our re-
construction with locality (w{n,r,L,p} > 0) for a position on the
body, on the rim, on the tire and on the wind shield.

A visualization of the sampling in the directional domain
is seen in Fig. 4. First, it can be noticed, that several nor-
mals are only encountered rarely, in particular no normals
facing away from the viewer are observed (Fig. 4, a). We
extrapolate information for such areas using our smooth re-
construction. Next, we see how appearance does depend
on orientation (Fig. 4, b): front-facing directions tend to be
red in this example. Finally, using different spheres for dif-
ferent parts of the image (Fig. 4, c–f), results in different
orientation-dependent appearances.

Regarding illumination, the reference images are illumi-
nated using one “representative“ lighting (skylight with am-
bient occlusion), that can be assumed to also be present in
the 2D image for cars. For background, we use a large white
background sphere for all 3D models such that the function
p, n, r, L, etc. are always defined. When evaluating Eq1 on
background, distance to foreground is so large that it does
not contribute, so similarity is based on 3D position and
normal alone. Effectively the background is projected onto
a sphere, including proper occlusion.

4. Experiments

Our approach has applications ranging from amplifica-
tion of training data over 2D-to-3D conversion, inpainting
to super-resolution and feature-aware smoothing. In all re-
sults reported, we assume a 3D template1 was selected and

1We used 3 CAD models in total (SUV, Sedan, Compact).

aligned with the view in the results to follow. We perform
this step – which can be automated [30, 12] – manually here.

4.1. Training data amplification

Object detection and classification approaches have seen
substantial improvements over the last decade. One driving
factor is the availability of training data that is representa-
tive for the test scenarios of interest. However, the construc-
tion of such data sets is tedious and yet does not capture all
aspects of variability in the classes that it contains. In par-
ticular the sampling of untypical examples or viewpoints is
often lacking [14]. More specifically, the popular PASCAL
VOC benchmark [9] provides a good sampling of intra-class
variations - yet there is no exhaustive view-point sampling.
Other data sets like EPFL Cars [24] provide dense view
sampling (without azimuth) but do not capture intra-class
variation well.

Next we will show how to “amplify” the PASCAL VOC
training data in order to represent the intra-class variation
together with a better viewpoint sampling that even includes
atypical views. Our study focuses on the “car” class.

Synthetic Viewpoint Dataset We base our dataset ampli-
fication on 26 sideview images which we manually align
with the 3D models (about 2 h effort). Then we apply our
approach for novel view synthesis to generate for each im-
age 9 synthetic views by sampling the viewing sphere. Ex-
amples of the synthesized data are shown in Fig. 5. Note
how effects of global illumination on the vehicle as well as
shadow below the car are preserved in many images. The
disocclusion areas are filled in in a plausible and natural
way. The transition between the visible and “hallucinated”
part is seamless. Given this augmented dataset we run a se-
ries of experiment to underline the validity of our approach.
In all experiments, we use the state-of-the-art Deformable
Part Model (DPM version 5) [10].

Pilot study: Resynthesis As an initial test, we inves-
tigate how much the synthesized views affect the perfor-
mance, compared with the real images and direct render-
ings of the 3D models. We perform this study on the 26
sideviews which are resynthesized by treating the visible
part of the car as a disocclusion. Using this data we train a
DPM detector and we test on the whole VOC test set. Ta-



Figure 5. Novel views used to amplify the PASCAL VOC input training image data set (1st and 5th column).

Table 1. Performance of the DPM detector when trained in differ-
ent data and with different number of components (N).

Data Avg. precision (%) #Views
N = 1 N = 3 Real Synth.

Side 15.4 16.2 26 -
Side+rend. 11.5 12.7 - 26
Side+synth 15.0 14.5 - 26

ble 1 shows the performance numbers in average precision
(PASCAL VOC standard criterion) for different number of
components (columns) in the DPM. The first line represents
training on the real 26 sideviews. Then we repeat the train-
ing but in this case we have removed the car using the “Con-
text Aware”-tool from Adobe Photoshop and we replaced it
with a rendering of the 3D model that corresponds to that
type of car (Sedan, SUV or Compact). We observe that the
performance is much lower, due to the lack of variation in
the car appearance. The last row corresponds to training on
the 26 resynthesized cars using our approach. The perfor-
mance is very close to the training on the real cars which
provides first evidence that our method is indeed able to
generate the kind of realism that is needed to successfully
train an object detection algorithm without a strong loss in
performance that is often observed in such settings.

PASCAL VOC data set We continue by using our whole
synthetic viewpoint dataset and mixing it with different por-
tions of real data. Quantitative results varying the number
of components in the DPM are shown in Tbl. 2 and perfor-
mance plots in Fig. 7. We first focus on the upper half of
Table 2 where we test on the standard PASCAL VOC test
set. We start by training only on the 26 sideviews (Side)
that we consider for amplification and compare the perfor-
mance to a model on the same 26 views amplified by 728
views synthesized by our approach (Side+synth). We ob-
serve improvements between 14 to 16.5% by adding our
synthesized views. We now compare the model trained on
the full VOC training set (Full) to a version to which we
add our synthetic views. In this setting we do not observe

an improvement in average precision, but rather comparable
performance. However, if we inspect the associated preci-
sion recall curve in Fig. 7 (left) more closely, we observe
that our model improves in the high precision regime. It
produces no single false positive until 15% of the positives
are detected (recall).

In order to generate further insights into our model, we
perform a study similar to the one proposed in [14]. Here we
focus on rare viewpoints of the cars by selecting a subset of
the PASCAL VOC testset where the top of the car becomes
visible. Our reasoning is that those cases are difficult for the
standard model as this part of the viewpoint distribution is
poorly sampled. Fig. 6 confirms out intuition about the view
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Figure 6. Object side visibility for car VOC2007 test data set.

Table 2. Performance of the DPM detector on PASCAL VOC
dataset with varying training set and different number of compo-
nents (N ).Evaluation is performed on the full test set as well as a
subset of rare viewpoints.

Test Train Avg. precision (%) #Views

N = 3 N = 4 N = 5 Real Synth.

V
O

C
2007

Side 16.2 18.4 16.7 26 -
Side+synth 30.2 31.4 33.2 26 728
Full 51.7 53.4 50.7 1250 -
Full+synth 50.2 53.1 50.9 1250 728

V
O

C
rare

Side 11.9 11.6 10.3 26 -
Side+synth 23.2 30.2 32.9 26 728
Full 51.9 52.5 51.8 1250 -
Full+synth 55.0 57.3 53.1 1250 728



distribution in the VOC dataset. The statistic shows that
all views involving the visibility of the top are underrepre-
sented. The lower part of Tbl. 2 performs an analysis for
detection of such rare viewpoints. We see strong improve-
ments on those rare viewpoints of up to 22.6% for training
from sideviews and up to 4.8% for the full training set.
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Figure 7. Performance of the “side” and “full” versions of PAS-
CAL VOC data set with and without novel views produced using
our approach. Evaluation is performed on the full PASCAL VOC
test set (left) as well as a subset of rare viewpoints (right).

UCLA data set In order to get a more realistic estimate
of the performance across viewpoints we turn to the UCLA
cars data set [16] which has been designed with a more uni-
form viewpoint sampling in mind. The test set consists of
200 images that cover better the viewing sphere.

Table 3. Performance of the DPM detector on UCLA dataset
with varying training set and different number of components
(N ).Evaluation is performed on the full test set as well as a subset
of rare viewpoints.

Test Train Avg. precision (%) #Views

N = 3 N = 4 N = 5 Real Nov.

U
C

L
A

Side 41.5 43.5 41.1 26 -
Side+synth 83.0 82.4 85.4 26 728
Full 75.4 78.7 78.3 1250 -
Full+synth 84.0 86.0 85.2 1250 728

U
C

L
A

rare

Side 40.5 44.2 39.7 26 -
Side+synth 82.2 81.9 85.1 26 728
Full 69.8 73.7 72.5 1250 -
Full+synth 81.4 83.6 83.3 1250 728
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Figure 8. Performance of the “side” and “full” versions of training
set with and without novel views synthesized by approach. Eval-
uation is performed on the full UCLA test set (left) as well as a
subset of rare viewpoints (right).

In Tab. 3 and Fig. 8 we show the performance plots of
the DPM detectors trained on the same dataset as in the pre-
vious section. For the full UCLA test set (upper half of
Table 3) we observe drastic improvements by adding our
synthesized data. For the sideviews the improvement is be-
tween 38.9 and 44.3% and for the full set between 6.9 and
9.6%. Remarkably, our detector trained on the amplified
26 sidesviews (Side+synth) outperforms the model trained
on the full PASCAL dataset (Full) which had access to 48
times more real training examples (26 sideviews vs. 1250
real examples). The improvements can be seen more clearly
in Fig. 8. We also provide the rare viewpoint analysis for
this dataset. Here the improvements are even more pro-
nounced. From the precision recall curve we see that the
model trained on the amplified sideviews (Side+synth) is al-
ready approaching the model trained on the full set with our
sideviews. In this case 26 real training examples in combi-
nation with our amplification method is enough to get close
to the best performance on this data (Full+ours).

4.2. 2D-to-3D conversion

2D-to-3D conversion is a special case of novel-view syn-
thesis, where the two novel views are the cameras of a stereo
rig and the original image is the cyclopean view [23]. We
demonstrate binocular stereo images created from 2D im-
ages of cars from an Internet site selling used cars in Fig. 9.

Figure 9. Conversion of a low-resolution 2D image (Left)
into a high-quality anaglyph stereo image (Right).

4.3. Inpainting

As we use our inpainting to fill holes due to disocclu-
sions, we can achieve general inpainting, just by mark-
ing regions as disocclusions and performing the inpainting
there. Fig. 10 shows examples of removing unwanted parts
of an image in front of a car compared with another inpaint-
ing approach.

4.4. Super-resolution

Our formulation easily allows to reconstruct f2 at a
higher resolution than f1 just by rendering p2, n2 and r2
in an arbitrary resolution. This allows for super-resolution
from a very coarse image of a car, as shown in Fig. 11.

4.5. Feature-aware smoothing

In a similar spirit, we can construct a special non-local
smoothing filter [3], which uses our guide distance for



Figure 10. Inpainting of red scribbles that remove entire parts of the car such as the wheel (Left). Using OpenCV inpainting does not
preserve structures (Middle). Our reconstruction (Right) repairs entire structures, such as the wheel while preserving consistent appearance.

20x8 40x16 160x64

Figure 11. Super-resolution from an input image (Top) using our approach (Bottom) for three different resolutions 20 × 8 (Left), 40 × 16
(Middle) and the original size 160×128 (Right). Note how even small features such as the the break light upsample to plausible structures.

computing the weighting of samples. While the original
non-local means uses the image itself to infer locally sim-
ilar patches, we can use the guide signals to do so (Fig-
ure Fig. 10).

Figure 12. Smoothing of an image that contains noise and distor-
tions using (Left) using Adobe Photoshop (Middle) and our ap-
proach (Right). While subtle echoes of the distortions are visible,
the overall appearance is much more plausible. Note, that distor-
tions are unknown while they are known for inpainting Fig. 10.

5. Discussion
While our results focus on well-aligned cars, our ap-

proach is also applicable to other classes such as airplanes
or ships (Fig. 13). The challenge remains alignment, where
errors lead to false matches between virtual and real infor-
mation, e.g. at the airplane wings that never fit the tem-
plate perfectly. Consequently, parts of the sky appear on
the airplane and vice versa. Replacing the weighting in
Eq. 1 with robust statistics might overcome such difficul-
ties. Handling of specular and transparent surface appear-
ance could be naturally incorporated in Eq. 1. Our results
are perceptually plausible as they combine consistency with
details while absence of either appears artificial. We avoid
re-synthesizing appearance and reproduce also complex ef-
fects like global illumination to remain consistent with the

context, even when hallucinating details in disocclusions.

6. Conclusion
We have presented a novel method for viewpoint synthe-

sis and resynthesis. In particular, we address the challeng-
ing problem of filling in disocclusion areas. The results are
visually pleasing and have shown useful in a series of ap-
plications ranging from dataset amplification for improved
recognition across viewpoints, denoising, inpainting, 2D-
3D-conversion and super-resolution.
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