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Abstract

Many state-of-the-art image restoration approaches do
not scale well to larger images, such as megapixel images
common in the consumer segment. Computationally expen-
sive optimization is often the culprit. While efficient alter-
natives exist, they have not reached the same level of image
quality. The goal of this paper is to develop an effective
approach to image restoration that offers both computa-
tional efficiency and high restoration quality. To that end
we propose shrinkage fields, a random field-based architec-
ture that combines the image model and the optimization
algorithm in a single unit. The underlying shrinkage oper-
ation bears connections to wavelet approaches, but is used
here in a random field context. Computational efficiency is
achieved by construction through the use of convolution and
DFT as the core components; high restoration quality is at-
tained through loss-based training of all model parameters
and the use of a cascade architecture. Unlike heavily en-
gineered solutions, our learning approach can be adapted
easily to different trade-offs between efficiency and image
quality. We demonstrate state-of-the-art restoration results
with high levels of computational efficiency, and significant
speedup potential through inherent parallelism.

1. Introduction

Image restoration methods for removing imaging arti-
facts, such as noise, blur, moiré etc. have received signifi-
cant attention in both academic research, as well as in prac-
tical applications of digital imaging [e.g., 6]. In academic
research, the focus has been predominantly on achieving ut-
most image quality, largely disregarding the computational
effort of the restoration process [18, 21, 31]. In practi-
cal digital imaging, the computational resources are often
severely constrained, however, since the processing capac-
ity of on-camera hardware is many times lower than that of
a conventional desktop PC. But even on a desktop PC state-
of-the-art techniques often take minutes to denoise a small
VGA-sized image (equivalent to 0.3 megapixels). Modern
digital cameras take images of 16 and more megapixels, on
the other hand, to which existing techniques by and large do

not scale. The main notable exception is BM3D [5], which
offers high efficiency and image quality, but is a heavily en-
gineered method with years of refinement. Moreover, its
use of block matching as the key computational component
makes an implementation on parallel architectures, such as
GPUs and DSPs, challenging. One may hope that advances
in embedded hardware will make the direct on-camera us-
age of existing advanced restoration techniques possible in
the future, but it is not unlikely that the image resolution
will increase as well. Consequently, to bridge the existing
gap in computational efficiency of image restoration tech-
niques and at the same time achieve high image quality, a
different image restoration approach is needed.

In this paper we introduce shrinkage fields, a principled
image restoration architecture that is derived from existing
optimization algorithms for common random field models.
In particular, shrinkage fields owe their computational effi-
ciency to a specific kind of quadratic relaxation technique
that is derived from the so-called additive form of half-
quadratic optimization approaches [11] – the only opera-
tions not applied at a per-pixel level are convolutions and
discrete Fourier transforms (DFTs). But unlike existing ad-
ditive half-quadratic approaches [15, 28], we make full use
of learning through loss-based training with application-
specific loss functions [cf . 13], which allows us to achieve
higher levels of restoration quality. Moreover and in con-
trast to standard random fields, which are specified through
potential functions, shrinkage fields model the “shrinkage
functions” associated with the potential directly. This in-
creases the flexibility over half-quadratic approaches of the
additive form, since we can show that potential functions
always lead to monotonic shrinkage functions. In contrast,
we can – and do – learn non-monotonic shrinkage functions,
similar to those that have been discriminatively learned in
the context of wavelet image denoising [12]. More impor-
tantly, using shrinkage functions directly admits efficient
learning, because the model prediction and its gradient w.r.t.
the model parameters can be computed in closed form. Fi-
nally, our approach employs a prediction cascade [25], us-
ing multiple model stages for iterative refinement. Loosely
speaking, we learn the random field model and the iterative
optimization algorithm at the same time [cf . 2].



The proposed approach has several key benefits: (1) It
is conceptually simple and derived from standard inference
procedures for random field models; (2) it achieves very
high levels of image quality on par with, or surpassing, the
current state of the art; (3) it is computationally very ef-
ficient with a complexity of O(D logD) (where D is the
number of pixels); (4) it offers high levels of parallelism
making it well suited for GPU or DSP implementations; (5)
unlike heavily engineered techniques, such as BM3D, all
parameters can be directly learned from example data using
simple gradient-based optimization, making it easy to ap-
ply and adapt to new settings, such as different trade-offs
between efficiency and restoration quality.

1.1. Other related work

The connection between regularization or priors and
shrinkage functions has been widely studied in wavelet im-
age restoration [e.g., 1, 26]. A connection between the addi-
tive form of half-quadratic optimization and shrinkage func-
tions has been noted by Wang et al. [28]. Based on the
approach of [28], Krishnan and Fergus [15] popularized ad-
ditive half-quadratic optimization for the task of non-blind
deconvolution [e.g., 30]. We start from this connection here,
but in contrast do not use fixed potential functions, but em-
ploy more general, learned shrinkage functions.

Discriminative training of continuous conditional ran-
dom fields (CRFs) for image restoration has been proposed
by Samuel and Tappen [22], which has recently been revis-
ited by Chen et al. [3]. Gaussian CRFs and their associated
loss-based training have first been introduced by Tappen et
al. [27]. Recently, Jancsary et al. [13] improved upon this
by introducing regression tree fields (RTFs), a more flexible
Gaussian CRF that is also trained by loss minimization. In
contrast to these previous approaches, the proposed shrink-
age fields admit more efficient inference and can be trained
very easily by means of standard gradient-based optimiza-
tion. Discriminatively learning a random field model and
its associated optimization algorithm has been proposed by
Barbu [2]. In the same vein, Schmidt et al. [25] recently
trained a cascade of RTFs. While [2] is very efficient, it
yields lower image quality given the same model complex-
ity, and relies on a complicated and time-consuming learn-
ing procedure. Our work is conceptually most similar to
[25], which is also generally motivated by half-quadratic
inference. However, here we additionally derive the model
parameterization (shrinkage functions for filter responses)
specifically from the additive half-quadratic form. By do-
ing so, we trade-off modeling flexibility (compared to [25])
against far more efficient inference and ease of training.

2. Background: Half-Quadratic Optimization
As a starting point we consider restoring an image x

from its corrupted observation y by combining an obser-

vation likelihood and an image prior invoking Bayes’ rule:

p(x|y) ∝ p(y|x) · p(x) (1)

∝ N (y; Kx, I/λ)·
N∏
i=1

∏
c∈C

exp
(
−ρi(fTi x(c))

)
. (2)

Here the corruption process is modeled with a Gaussian
likelihood (or data term), where Kx ≡ k⊗ x denotes con-
volution of x with a kernel (point spread function) k, and
λ is related to the strength of the assumed additive Gaus-
sian noise. Regularization is provided through a Markov
random field model (fields of experts [21]) with robust po-
tential functions ρi that model the responses fTi x(c) of filters
fi over all cliques c ∈ C of the image x.

The posterior distribution p(x|y) ∝ exp (−E(x|y)) can
be expressed by its associated Gibbs energy

E(x|y) =
λ

2
‖y −Kx‖2 +

N∑
i=1

∑
c∈C

ρi(f
T
i x(c)), (3)

which allows to predict the restored image by finding the en-
ergy minimum x̂=arg minx E(x|y)=arg maxx p(x|y).

One way to minimize Eq. (3) is to directly employ
gradient-descent algorithms. Another popular approach
[10, 11, 28], one that we analyze and extend in this paper,
is to first introduce independent auxiliary variables zic for
all filter responses fTi x(c) to obtain an augmented energy
function E(x, z|y) in such a way that arg minx E(x|y) =
arg minx,z E(x, z|y). A block coordinate descent strategy,
which alternates between minimizing w.r.t. x and z, is then
used to minimize E(x, z|y). This approach typically has
faster convergence than minimizing E(x|y) directly, and
each descent step is often relatively simple to carry out.

Specifically, auxiliary variables are introduced in such
a way that E(x|z,y)1 becomes a quadratic function; mini-
mizingE(z|x,y) simply amounts to solving many indepen-
dent univariate optimization problems. In computer vision,
this approach was first proposed by Geman and colleagues
[10, 11] under the name “half-quadratic” regularization. In
other words, each iteration of the algorithm uses a differ-
ent quadratic relaxation E(x|z,y) of the original objective
function E(x|y), determined by auxiliary variables z.

Half-quadratic approaches can be further categorized
into additive [11] and multiplicative [10] forms. With-
out going into details, a main computational difference
in practice is that arg minxE(x|z,y) = Ω(z,y)−1η(y)
in the multiplicative form, and arg minxE(x|z,y) =
Ω(y)−1η(z,y) in the additive form. Here, Ω ∈ RD×D
is a sparse matrix with D being the number of pixels, and
η ∈ RD is a vector. That implies that the quadratic func-
tion can be minimized by solving a linear equation system,
where in the multiplicative form, z only influences the equa-
tion system matrix Ω, and in the additive form only the

1p(x|z,y) ∝ exp (−E(x|z,y)), other energies defined accordingly.
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(a) ρ(v), β = 0.0035
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(b) fβ(v), β = 0.0035
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(c) ρ(v), β = 0.035
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(d) fβ(v), β = 0.035
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(e) Stage 1 of CSFpw.
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(f) Stage 2 of CSFpw.

Figure 1. (a,c) Potential ρ(v) = |v|2/3 (dashed, black) and its quadratic relaxation ρ(z)+ β
2
(v−z)2 for some values of z (solid, red). (b,d)

Associated shrinkage function fβ(v) = argminz
(
ρ(z) + β

2
(v − z)2

)
for ρ(z) = |z|2/3 and given β. (e,f) Learned shrinkage functions

fπ(v) =
∑M
j=1 πj exp

(
− γ

2
(v − µj)2

)
(solid, blue) of CSFpw. (cf . Sec. 4) as linear combination of Gaussian RBF kernels (solid, green).

right-hand side η of the equation system. Hence, the addi-
tive form is in general computationally more attractive since
the equation system matrix stays constant during iterative
optimization (e.g., a factorization of Ω could be re-used, or
Ω might be diagonalized with a change of basis).

However, a challenge is that the additive form is not di-
rectly applicable to many heavy-tailed potential functions ρ
of practical relevance. To remedy this and to speed up con-
vergence, Wang et al. [28] proposed a continuation scheme,
where a parameter β is increased during the half-quadratic
optimization (cf . Alg. 1). Concretely, the problem is cast as
x̂ = arg minx E(x|y) = arg min x,z

β→∞
Eβ(x, z|y) with

Eβ(x, z|y) =
λ

2
‖y−Kx‖2+

N∑
i=1

∑
c∈C

(
β

2

(
fTi x(c)−zic

)2
+ ρi(zic)

)
. (4)

Intuitively, when β → ∞, the auxiliary variables zic →
fTi x(c) approach their corresponding filter responses, and
Eq. (4) converges to the original Eq. (3). This approach
has been popularized for non-blind image deconvolution by
Krishnan and Fergus [15] in recent years.

To see why this approach is so appealing, it is instructive
to take a closer look at the alternating optimization proce-
dure, which is summarized in Alg. 1. Specifically, the two
update steps are computationally very inexpensive when –
what we assume from now on – 2D convolution is carried
out with circular (periodic) boundary conditions. Then we
can write the two algorithmic steps as:

fi,β(v) = arg min
z

(
ρi(z) +

β

2
(v − z)2

)
(5)

gβ(z) =

[
λ

β
KTK+

N∑
i=1

FT
i Fi

]−1 [
λ

β
KTy+

N∑
i=1

FT
i zi

]

= F−1
F

(
λ
βKTy +

∑N
i=1 FT

i zi

)
λ
β Ǩ* ◦ Ǩ +

∑N
i=1 F̌*

i ◦ F̌i

 . (6)

Fx = [fTx(C1), . . . , f
Tx(C|C|)]

T ≡ f⊗x denotes 2D convo-
lution with filter f . The optical transfer function F̌ ≡ F(f)

Algorithm 1 Half-quadr. minimization with continuation
Require: β-schedule β1, . . . , βT with βt+1 > βt

x̂0 ← y
for t← 1 to T do

ẑic ← arg minzic Eβt
(z|x̂t−1,y) = fi,βt

(fTi x̂t−1(c))
x̂t ← arg minxEβt

(x|ẑ,y) = gβt
(ẑ)

is derived from filter (point spread function) f , where F
denotes the discrete Fourier transform (DFT). Note that di-
vision and multiplication (◦) are applied element-wise in
Eq. (6); F̌* denotes the complex conjugate of F̌.

Eq. (5) is very cheap to compute because fi,β(v) is a
univariate function that can be precomputed for all possi-
ble values of v and then stored in a lookup-table for fast
retrieval [15]. Crucially, only the additive half-quadratic
form allows updating the image x via Eq. (6) very quickly
in closed form, because all convolution matrices (and thus
the whole equation system matrix) can be diagonalized by
DFTs, which means that solving the linear equation sys-
tem amounts to element-wise division in the transformed
domain followed by an inverse DFT to retain the solution in
the spatial domain [e.g., 15, 28]. Note that this only takes
N + 1 convolutions2 and N + 3 DFTs with an overall com-
plexity of O(D logD), where D is the number of pixels.

2.1. Shrinkage function

The role of fi,β (Eq. 5) is known as a shrinkage (or
mapping) function in the wavelet image restoration litera-
ture [cf . 12]. Intuitively, its purpose is to shrink small fil-
ter/wavelet coefficients, i.e. pull them towards zero, because
they are assumed to be caused by noise instead of signal.

For now, the shape of the shrinkage function is deter-
mined solely by β and its associated potential function ρi
(Eq. (5), see Fig. 1(a–d) for an illustration). However, we
make the observation that all fi,β according to Eq. (5) are
monotonically increasing functions, regardless of the poten-
tial ρi. In order to prove this Proposition 1, it is useful to
have the following Lemma (proved in the suppl. material):

2Each convolution can be expressed through DFTs, but typically is
computationally more expensive for the small filters fi used in practice.



Lemma 1. For any function f : R → R and all ε ≥ 0,
arg minz f(z) ≤ arg minz (f(z)− εz).

Proposition 1. For all ε, β ≥ 0, v ∈ R and any ρ(z), the
shrinkage function fβ(v) = arg minz

(
ρ(z)+ β

2 (v−z)2
)

is
monotonically increasing, i.e. fβ(v) ≤ fβ(v + ε).

Proof.

fβ(v + ε) = arg minz

(
ρ(z) +

β

2
(v + ε− z)2

)
(7)

= arg minz

(
ρ(z) +

β

2
(v − z)2 − εβz

)
(8)

It follows from Lemma 1 that fβ(v) ≤ fβ(v + ε).

To the best of our knowledge this has not been observed
before. More importantly, it implies that one can gain addi-
tional flexibility in additive half-quadratic optimization by
directly modeling the shrinkage function instead of the po-
tential function.

3. Cascade of Shrinkage Fields
As we just motivated and will further justify below, di-

rectly modeling the shrinkage function is appealing. To that
end, we remove the potential function and the associated
optimization problem in Eq. (5) altogether, and replace fi,β
with a flexible shrinkage function modeled as a linear com-
bination of Gaussian RBF kernels:

fπi(v) =

M∑
j=1

πij exp
(
−γ

2
(v − µj)2

)
. (9)

We assume shared precision γ and place the kernels at fixed,
equidistant positions µj . We use up to M = 53 Gaussian
kernels and make no further assumptions about the shape of
the function (two examples are shown in Fig. 1(e–f)).

Shrinkage functions are widely studied in the wavelet
restoration literature. However, instead of manually choos-
ing shrinkage functions, we learn them from data3 through
setting the weights πij of the parametric form of Eq. (9).
This is in clear contrast to previous work. Attempts at
discriminatively learning shrinkage functions for wavelet
restoration exist [e.g., 12], but are not common. Further-
more, wavelet image restoration is quite different because
the pixels of the restored image are not connected via a ran-
dom field, as here.

We are not aware of any previous work that has used
learning in the context of this particular form of half-
quadratic optimization. Consequently, the full potential of
this fast optimization approach has not been unlocked, be-
cause model parameters have always been chosen by hand.

3A possibly more suitable name would be mapping instead of shrinkage
function, since our learned functions do not necessarily shrink the associ-
ated filter responses. We keep the widely known name despite this.

Algorithm 2 Inference with a cascade of shrinkage fields
x̂0 ← y
for t← 1 to T do

x̂t ← gΘt
(x̂t−1)

Furthermore, the β-continuation schedule for the number of
iterations of Alg. 1 is typically manually chosen.

In the following, we show how to overcome all of these
limitations while retaining the computational benefits of
this approach. To that end, we learn all model parameters
(other than the size and number of filters, and the number
of optimization iterations) from training data.

The most important benefit of directly modeling the
shrinkage functions is that it allows us to reduce the op-
timization procedure to a single quadratic minimization
in each iteration, which we denote as the prediction of a
shrinkage field (SF):

gΘ(x) = F−1
F

(
λKTy +

∑N
i=1 FT

i fπi
(Fix)

)
λǨ* ◦ Ǩ +

∑N
i=1 F̌*

i ◦ F̌i

 (10)

= Ω−1η. (11)

A shrinkage fieldN
(
Ω−1η,Ω−1

)
is thus a particular Gaus-

sian conditional random field, whose moments η and Ω are
determined through learned model parameters Θ, the ob-
served image y, and the point spread function k. A key ben-
efit is that the shrinkage field prediction gΘ(x) and its gradi-
ent ∂gΘ(x)

∂Θ w.r.t. the model parameters Θ can be computed
in closed form, which allows for efficient parameter learn-
ing (Sec. 3.1). This is in contrast to more complicated learn-
ing procedures in other formulations, which need to solve
nested minimization problems using bi-level optimization
[3, 22]. Note that we completely eliminate the continua-
tion parameter β, which is absorbed into the weights πi of
Eq. (9) and fused with λ (which will be learned) in Eq. (10).

Since half-quadratic optimization typically involves sev-
eral (many) iterations of Eqs. (5) and (6), we can similarly
chain multiple predictions into a cascade of shrinkage fields
(CSF), as summarized in Alg. 2. A CSF is thus a cascade of
Gaussian CRFs [cf . 25]. Note that the concept of a shrink-
age function does not exist in previous CRF cascades. RTF
cascades [25], for example, use regression trees to specify
unary and pairwise factors; since the resulting equation sys-
tem matrix cannot be diagonalized by DFTs, they do not
admit fast closed-form inference as in Eq. (10).

3.1. Learning

We use loss-minimization to learn the model parame-
ters Θt = {λt,πti, fti}Ni=1 for every stage (iteration) t of
Alg. 2. By learning different model parameters for every
stage of our cascade, we essentially learn tailored random



field models for each iteration of the associated optimiza-
tion algorithm4. For non-blind deconvolution, we follow
[25] and parameterize the prediction with the blur kernel,
such that the instance-specific blur (K in Eq. 10) is pro-
vided at test time; models are not trained for specific blurs.

To greedily learn the model stage-by-stage from t =
1, . . . , T , at stage t we minimize the cost function

J(Θt) =

S∑
s=1

`(x̂
(s)
t ; x

(s)
gt ) (12)

with training data {x(s)
gt ,y

(s),k(s)}Ss=1 , where x̂
(s)
t is ob-

tained via Alg. 2. We can, in principle, employ any contin-
uously differentiable loss function, and concretely choose
the (negative) peak signal-to-noise ratio (PSNR)

`(x̂; xgt) = −20 log10

(
R
√
D

‖x̂− xgt‖

)
, (13)

where D denotes the number of pixels of x̂ and R the max-
imum intensity level of a pixel (i.e., R = 255).

We minimize Eq. (12) with the gradient-based L-BFGS
method (using an implementation by [23]). To that end, we,
akin to [13], differentiate the loss of the predicted restored
image x̂t (at stage t) w.r.t. model parameters Θt as

∂`(x̂t; xgt)

∂Θt
=
∂`(x̂t; xgt)

∂x̂t
· ∂Ω−1t ηt

∂Θt
(14)

= ĉTt

[
∂ηt
∂Θt

− ∂Ωt

∂Θt
x̂t

]
(15)

with ĉt = Ω−1t

[∂`(x̂t; xgt)

∂x̂t

]T
.

Similar to x̂t, we can efficiently compute ĉt by solving a lin-
ear equation system via element-wise division in the trans-
formed domain. The derivatives for specific model param-
eters as well as further details, such as boundary handling
due to periodic convolutions and parameter constraints, are
omitted here for brevity and to make the equations more
readable; however, all details can be found in the supple-
mental material.

In Eq. (12), each stage is trained greedily such that the
loss is as small as possible after each stage, regardless of
how many stages T are actually intended to be used in
the cascade; this also applies to the cascade model of [25].
However, in contrast to the cascade of [25], which uses non-
differentiable regression trees to determine the parameters
of a Gaussian CRF and requires custom training, our shrink-
age functions are smooth and differentiable. Hence, we do
not need to alternate between gradient-based and combina-
torial optimization (growing regression trees). Moreover,

4However, if we used the same filters at each model stage, we could
re-use all optical transfer functions and save a lot of runtime after stage 1.
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Figure 2. First two stages of learned CSF3×3 model. The shrink-
age functions are color-matched with their corresponding filters.

we can use standard gradient-based methods to jointly train
all T stages of the model by minimizing

J(Θ1,...,T ) =

S∑
s=1

`(x̂
(s)
T ; x

(s)
gt ), (16)

where only the loss of the final prediction x̂T is relevant.
The derivatives w.r.t. model parameters of all stages can
be computed efficiently and take the same basic form as
Eq. (15), which allows for an easy implementation. Note
that all stages can be learned jointly even while applying
boundary operations, such as padding and truncation. All
details and derivations are in the supplemental material.

4. Experiments

Training. Although the class of Gaussian CRFs that can
be learned at one stage of our approach is restricted (com-
pared to [13]), this limitation comes at the substantial bene-
fit of fast prediction and learning. That means we can train
our model on relatively large datasets – even with a simple
Matlab implementation5. To generate the training data for
our denoising experiments, we cropped a 256×256 pixel re-
gion from each of 400 images of the Berkeley segmentation
dataset [19]6, i.e. our training set thus roughly contains 25
million pixels.

We have greedily trained 5 stages of four different con-
figurations of our model with increasing capacity:

CSF5pw. Pairwise model with fixed f =
{

[1,−1], [1,−1]T
}

.

CSF53×3 Fully trained model with 8 filters of size 3×3.
CSF55×5 Fully trained model with 24 filters of size 5×5.
CSF57×7 Fully trained model with 48 filters of size 7×7.

Hence, CSFTm×m denotes a cascade of T stages with m2 − 1
filters of sizem×m (if T < 5, only T stages have been eval-
uated at test time; prediction can be stopped at any stage).
Note that many more configurations are possible and will

5Code for learning and inference is available on the authors’ webpages.
6These are strictly separate from all test images in Tabs. 1 and 2.



σ KSVD [7] FoE [9] BM3D [5] LSSC [18] EPLL [31] opt-MRF [3] CSF5
pw. CSF4

3×3 CSF4
5×5 CSF5

7×7 ARF-4 [2] RTF5 [24]

15 30.87 30.99 31.08 31.27 31.19 31.18 29.99 30.78 31.12 31.24 30.70 —
25 28.28 28.40 28.56 28.70 28.68 28.66 27.47 28.29 28.58 28.72 28.20 28.75

Table 1. Average PSNR (dB) on 68 images from [21] for image denoising with σ = 15, 25; left part quoted from Chen et al. [3]. Training
of our CSF models and denoising carried out without 8-bit quantization of noisy images to allow comparison with [2, 3].

lead to different performance vs. speed tradeoffs, which can
be chosen to suit the particular application. Figs. 2 and
1(e–f) show the first two stages of the learned CSF3×3 and
CSFpw. models, respectively, which are good examples of
our observation that almost all learned shrinkage functions
are not monotonically increasing, which means they could
not have been obtained by learning a potential function (cf .
Sec. 2).

Denoising. We first evaluated the task of image denoising
(i.e., k = 1), for which we trained our models to remove
Gaussian noise with standard deviation σ = 25. The noisy
training images were obtained by adding simulated Gaus-
sian noise to the clean images. We subsequently quantized
the intensity values of the noisy images to 8-bit to make the
training data more realistic. In practice, noisy images are
always integer-valued and range-limited, such as intensity
values being in {0, . . . , 255}.

After training the models, we evaluate them on 68 (8-
bit quantized noisy) test images originally introduced by
[21], which have since become a reference set for image
denoising; Fig. 4 shows a denoising example. We compare
against a varied selection of recent state-of-the-art tech-
niques. The results in Tab. 2 show that a (5-stage) cascade
of regression tree fields (RTFs) [24] achieves the best per-
formance (trained with the same data as our models). This
is not surprising, since the more flexible RTFs do not make
any noise assumption (in contrast to all other approaches
in Tab. 2) and can thus effectively handle the additional
quantization noise. Concerning the other methods, we out-
perform the strongest competitor BM3D by 0.22dB with
our most powerful CSF57×7 model. Furthermore, our CSF45×5
model slightly outperforms BM3D and also has a faster run-
time (cf . Fig. 3), even when only the CPU is used. Ad-
ditionally, our model’s inference procedure (convolutions
and DFTs being the most expensive operations) is presum-
ably much more amenable to GPU or DSP parallelization
than the block-matching procedure of BM3D. It can also be
observed that results of our models saturate after only 3–4
stages, hence “converge” very quickly.

We also compare against the recently introduced opt-
MRF by Chen et al. [3] for two reasons: First, it currently
is one of the best-performing CRFs for image restoration,
achieved by using better optimization techniques with a
model architecture originally proposed by [22]. Secondly,
it uses a model configuration very similar to ours, that is 48
filters of size 7×7, which are fully learned from data (in-

Method PSNR St. CSFpw. CSF3×3 CSF5×5 CSF7×7

BLS-GSM [20] 27.98 1 26.60 27.54 27.46 27.70
5×5 FoE [9] 28.22 2 27.26 27.93 28.26 28.38
LSSC [18] 28.23 3 27.31 28.02 28.34 28.45
BM3D [5] 28.31 4 27.36 28.05 28.37 28.52
RTF5 [24] 28.74 5 27.36 28.08 28.39 28.53

Table 2. Average PSNR (dB) on 68 images from [21] for image
denoising with σ = 25. On the right, each row shows the results
from the respective stage of our models.

cluding associated potential functions). Moreover, we com-
pare against the fast active random field (ARF) model of
Barbu [2], which uses 24 filters of size 5×5. Since both of
them were neither trained nor evaluated with 8-bit quantized
noisy images, we use their setting to not give our model
an unfair advantage. Hence, we additionally trained and
evaluated our models without quantization. The results in
Tab. 1 show7 that we outperform [2, 3], and can also com-
pete with the RTF-based cascade model [24] (trained with
non-quantized images), whose additional flexibility does
not seem pay off here since the image noise is truly Gaus-
sian. The results further show that we can also compete for
noise level σ = 15, for which we trained additional models.

Runtime. The runtime comparison8 for image denoising in
Fig. 3 shows that our model scales to image sizes of more
than 16 megapixels at reasonable runtimes (at most 10 min-
utes for our best model with a simple single-threaded Mat-
lab implementation, and only 23 seconds on a GPU).

While a cascade of RTFs [24] is very flexible and yields
state-of-the-art restoration results, its relatively complex
and highly optimized C++ implementation hinges on multi-
threading to boost runtime performance. Comparing single-
threaded performance (Fig. 3), it is about an order of mag-
nitude slower compared to our CSF7×7 (which exhibits com-
petitive performance, cf . Tab. 1). We outperform BM3D at
a faster runtime with our CSF45×5 model (cf . Tab. 2).

Additionally, our model’s inference procedure is well
suited for GPU or DSP parallelization. In order to gauge
the potential speedup, we used the same code with Matlab’s
built-in GPU capabilities and were able to obtain signifi-
cantly improved runtimes (Tab. 3). However, we should

7Comparing Tabs. 1 and 2 also shows how much results improve when
they are obtained in a more artificial (non-quantized) setting.

8Matlab/C++ implementations from the respective authors, single-
threading strictly enforced (incl. -singleCompThread for Matlab).
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CSF47×7 0.86 2.23 8.00 (0.92) 32.3 (1.72) 143 (5.27) 603 (23.2)

ARF-4 [2] 0.03 0.09 0.37 1.5 7.5 29
BM3D [5] 0.18 0.92 4.09 18.0 78.9 330
opt-MRF [3] 4.73 21.7 108 538 – –
RTF4 [24] 6.71 27.7 113 469 – –
EPLL [31] 9.76 41.9 229 930 – –

Figure 3. Runtime comparison for image denoising. Single-
threaded runtimes (in seconds) with an Intel Core i7-3930K CPU
at 3.20GHz; small numbers in parentheses from simple Matlab-
based GPU execution on a NVIDIA GeForce GTX 480. Runtimes
of our models shown after 4 stages where performance saturates;
using fewer stages takes proportionally less time, e.g. 2 stages take
half the time. Note the logarithmic scales on both axes (top). The
table columns show runtimes for image sizes up to 4096×4096
pixels (about 16.78 megapixels).

expect additional speedups by using a more powerful re-
cent GPU with an optimized implementation using CUDA
or OpenCL ([3] quote a 40×GPU speedup over presumably
multi-threaded CPU code).

While the ARF model [2] (designed for real-time denois-
ing) is more efficient (CPU only) than our CSF with the
same number of stages, filters, and filter size, it exhibits
inferior results: It performs 0.38dB worse than CSF45×5
(Tab. 1), and even our CSF43×3 model with only 8 3×3 filters
surpasses the ARF in terms of restoration quality. While
the ARF is twice as fast as CSF43×3, we can speed CSF up
by re-using filters (cf . Sec. 3.1). Furthermore, our standard
gradient-based learning procedure is much easier and faster,
and enables learning more powerful models such as CSF57×7.

Computing the learning objective function J(Θ)
(Eq. 12) and its gradient ∂J(Θ)/∂Θ for S = 400 images
of 256×256 pixels takes in total only around 7s (CSFpw.),
24s (CSF3×3), 73s (CSF5×5), or 161s (CSF7×7) with our sim-
ple Matlab implementation (Intel Core i7-3930K hexa-core
at 3.20GHz, six parallel threads). This allows us to thor-
oughly train our models by using 200 L-BFGS iterations.
Another important property of our method is its predictable

Blur kernel [16] [25] CSF1
pw. CSF2

pw. CSF3
pw.

Ground truth 32.73 33.97 32.48 33.50 33.48
Levin et al. [17] 30.05 30.40 29.63 30.34 30.42
Cho and Lee [4] 29.71 29.73 29.10 29.86 29.99
Fergus et al. [8] 28.38 29.10 28.36 29.02 29.01

Table 3. Average PSNR (dB) on 32 images from [17] for im-
age deconvolution. Rows correspond to different blur kernel (es-
timates) provided by [17], while columns correspond to non-blind
deconvolution methods. Left part of table quoted from [25], show-
ing results from Levin et al. [16] and Schmidt et al. [25].

runtime, which is in contrast to methods (such as opt-MRF
and RTF) that require iterative inference whose convergence
depends on the input data. In our experience, runtime varies
even more for deconvolution, mostly due to the blur kernel.

Joint training. While jointly training all stages of the
model has the potential to yield superior results, we only
partly confirm this in our denoising experiments. Since
our learning objective function is not convex, the optimiza-
tion often gets stuck in worse local optima than when us-
ing greedy training. Hence we tried first training each stage
greedily (pre-training), and then “tuned” the model by start-
ing joint training with the parameters obtained from pre-
training. While this is guaranteed to not decrease (training
set) performance, it does not always improve results consid-
erably, especially with increasing model capacity. Jointly
tuning all 5 stages of CSF5pw. does pay off, by increasing
PSNR performance about 0.31dB from 27.36dB to 27.67dB
(cf . Tab. 2). However, tuning all 5 stages of our other
models hardly makes a difference. Even for 3-stage tuning
we observe only minor improvements, e.g. from 28.02dB
to 28.09dB for CSF33×3, and from 28.34dB to 28.36dB for
CSF35×5.

Non-blind deconvolution. As the results in Tab. 3 show,
our approach can also successfully be applied to image de-
convolution in the context of blind deblurring, where kernel
estimates are used to deblur the image. For the task of de-
convolution, we trained a CSFpw. model with 288 synthet-
ically blurred images of size 320×320 pixels. For half of
the blurred training images, we used an estimate instead of
the correct blur kernel k to cope with using erroneous ker-
nel estimates at test time (as suggested by [25]). Our CSF3pw.
model outperforms the non-blind deconvolution approach
by Levin et al. [16] and can compete with the results from
Schmidt et al. [25] for all estimated kernels (Tab. 3). We
additionally applied the same learned CSF3pw. model to the
recent benchmark for camera shake of Köhler et al. [14],
where we are able to improve upon the results of the best
performing method by Xu and Jia [30] about 0.56dB on av-
erage, being also 0.15dB better than the best result of [25].
Restoring each of the 800×800-sized color images of the
benchmark only takes around a second with our model.



(a) Noisy, 20.30dB (b) CSF5pw., 28.81dB (c) CSF53×3, 29.89dB (d) CSF55×5, 30.27dB (e) CSF57×7, 30.38dB (f) BM3D, 30.05dB

Figure 4. Denoising example (σ = 25, cropped): Comparison of our trained models and BM3D [5]. Best viewed magnified on screen.

5. Conclusions and Future Work

We presented shrinkage fields, a novel random field
model applicable to the restoration of high-resolution im-
ages, which is based on an extension of the additive form
of half-quadratic optimization. By replacing potentials with
shrinkage functions, we increased model flexibility and en-
abled efficient learning of all model parameters. Experi-
ments on image denoising and deconvolution with cascaded
shrinkage fields demonstrated that fast runtime and high
restoration quality can go hand-in-hand.

Future work. A next step is a more efficient GPU im-
plementation to further improve runtime for large image
sizes. Another direction is to train our model for other im-
age quality metrics [e.g., 29]. Finally, one may further in-
vestigate the non-monotonic shrinkage functions or explore
more powerful multivariate shrinkage operators.
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