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Abstract

In this paper, we address the problem of object tracking
in intensity images and depth data. We propose a generic
framework that can be used either for tracking 2D tem-
plates in intensity images or for tracking 3D objects in
depth images. To overcome problems like partial occlu-
sions, strong illumination changes and motion blur, that no-
toriously make energy minimization-based tracking meth-
ods get trapped in a local minimum, we propose a learning-
based method that is robust to all these problems. We use
random forests to learn the relation between the parameters
that defines the object’s motion, and the changes they induce
on the image intensities or the point cloud of the template. It
follows that, to track the template when it moves, we use the
changes on the image intensities or point cloud to predict
the parameters of this motion. Our algorithm has an ex-
tremely fast tracking performance running at less than 2 ms
per frame, and is robust to partial occlusions. Moreover,
it demonstrates robustness to strong illumination changes
when tracking templates using intensity images, and robust-
ness in tracking 3D objects from arbitrary viewpoints even
in the presence of motion blur that causes missing or erro-
neous data in depth images. Extensive experimental eval-
uation and comparison to the related approaches strongly
demonstrates the benefits of our method.

1. Introduction
Object tracking either in 2D or 3D can be formulated us-

ing an energy minimization where it finds a set of parame-
ters by minimizing an objective function. It has widely been
used through the work of Lucas and Kanade [15] for 2D
template tracking and through the ICP algorithm [5] for 3D
object tracking using point clouds. Both methods use a set
of initial parameters and iteratively refine them by minimiz-
ing an objective function to reach a set of optimum param-
eters. Thus, the choice of an optimizer and parametrization
is crucial to avoid local minima and to converge quickly to
the optimum solution. However, factors, such as lighting
changes, partial occlusions and fast motions, typically lead

(a) Intensity Image (b) Depth Image

Figure 1. These images show tracking results from our two ex-
periments where we used our theoretical work to implement (a)
a 2D template tracking algorithm with intensity images as the in-
put medium; and, (b) a 3D object tracking algorithm with depth
images as the input medium.

the energy-based minimization to fail and get trapped at a
local minimum.

Contrary to this, learning-based approaches learn the re-
lation between the parameters that define the relative move-
ment of a template and the data of the template described
by this motion. Henceforth, when the template moves, the
change of the data on the template can predict the param-
eters of this movement. In this way, they are extremely
fast and can jump over local minima. One of the promi-
nent works in this field is from Jurie and Dhome [13] where
they use linear regression to learn the relation between the
changes in warping parameters and the changes in image
intensities on the template. Their work also shows the su-
periority of learning in contrast to its energy minimization
counterpart.

Theoretically, we can modify the linear regression to
track 3D templates on depth images by replacing the objec-
tive function that involves 3D point clouds. Unfortunately,
in practice, it does not work because the depth data from
the sensor is unstable. For example, if the depth camera is
filming a static environment, we observe a constant change
in the depth values due to the amount of noise and missing
data especially at the object discontinuities. These values
are different from the learned template and can be inter-
preted as small occlusions that are spread over the template.
Therefore, the algorithm for 3D object tracking requires the



capacity to handle partial occlusions. However, linear re-
gression is highly sensitive to occlusions as reported in [14].

Inspired by this problem, we designed a learning-based
tracking algorithm using random forests that handles par-
tial occlusions, but retains good properties of linear regres-
sion [13] such as speed and robustness. The reason for
choosing random forest is because it is an ensemble of trees
where each tree learns and predicts independently from the
other. Ideally, when some trees get affected by occlusion,
the others can still generate good predictions.

Our main contribution is a generalized learning-based
tracking framework, which we describe as a chameleon be-
cause it can adapt to different input modalities. In addi-
tion, we also contribute by demonstrating applications of
this method to 2D template tracking in Sec. 4.1 and to full
3D object tracking from any viewpoint in Sec. 4.2. The
strong attributes of both experiments includes robustness to
partial occlusion and remarkable speed of less than 2 ms
per frame. Furthermore, the 2D tracker is robust to strong
illumination changes while the 3D tracker is robust to noise
from fast motion.

2. Related work

Frame-to-frame tracking can be divided into two cate-
gories that are based on energy minimization and learn-
ing. The main difference between them is that the former
is generally slower and is more sensitive to local minima;
whereas, the latter requires an extensive training procedure.
To have a more focused comparison of our approach with
other methods in these categories, the scope of this section
is limited to model-based frame-to-frame tracking using in-
tensity (or RGB) images, depth images or both.

Energy minimization-based approach. The work of Lu-
cas and Kanade [15] has significantly triggered an advance-
ment in the field of 2D template tracking. Baker and
Matthews [3] has summarized these through four different
update rules – additive approach [15], compositional ap-
proach [20], inverse additive approach [6, 8], and inverse
compositional approach [2, 7]. Among them, the inverse ad-
ditive and inverse compositional approaches have decreased
tracking time by switching the roles of the source and target
images to evaluate several computations prior to tracking.

On the other hand, ICP [5] and variations of it [18, 19]
has dominated the research field regarding 3D object track-
ing. However, ICP has problems when foreign objects such
as clutter or hands are close to or occlude the object of in-
terest. For instance, when tracking hand-held objects in [9],
the authors segments the hand through the intensity image
to remove the point clouds associated to it before running
ICP. Another approach in 3D object tracking includes the
level sets of Ren et al. [17] that uses a probabilistic method

to statistically determine occlusions. But this also uses in-
tensity images as an appearance model to help handle oc-
clusions.

Learning-based approach. Using the objective function
of an energy-minimization approach, Jurie and Dhome [13]
builds up from the work of Hager and Belhumeur [8] to
learn linear regression to find the relation of the intensities
and parameters by randomly warping the 2D template using
different parameters of the warping function. Then, when
the template is moved, the changes in intensities can pre-
dict the warping parameters. Another work is from Mayol
and Murray [16] where they use general regression to fit the
sampling region to pre-trained samples.

There have been successful attempts to handle occlusion
using 2D templates. In [11, 14, 21], they represent a tem-
plate using smaller templates so that, when the template
is partially occluded, only a few smaller templates are af-
fected. However, in addition to occlusions from other ob-
jects where a specific region of the template is affected,
noise and missing data from the sensor can be interpreted
as small occlusions, appearing as small curves or small
blobs, that extend throughout the template. As a result, this
could affect a significant number of small templates used
in [11, 14, 21] to handle occlusions. Furthermore, unlike
textured images, tracking small templates is unstable in 3D
because, if we divide the surface of an object into small
portions, most of them have a very similar structure to their
neighbors which makes tracking ambiguous.

To the best of our knowledge, we have implemented the
first learning-based tracking algorithm that uses depth im-
ages alone. Nevertheless, our algorithm is a generic ap-
proach that is applicable to both intensity and depth images.
Furthermore, it is robust to occlusions, illumination changes
as well as fast motion, and runs in less than 2 ms per frame.

3. Method
Our work is rooted from the objective function of Hager

and Belhumeur [8] where they relate the image intensities
of a template and transformation parameters by the pseudo-
inverse of a Jacobian matrix. However, in contrast to [8],
our method uses random forests in lieu of the Jacobian ma-
trix, which generalizes it to any input function and not con-
strained to 2D intensity images.

3.1. Objective function

Given an arbitrary input function Ωt at time t (e.g. inten-
sity images or point clouds), the location of the reference
template is represented by ns sample points {xs ∈ RN}ns

s=1

at t0 such that the template is described by the set of values
{Ωt0(xs), ∀xs}. As the template moves across time, the
sample points are transformed as Φ(µ) ◦xs, where the vec-
tor µ contains the parameters of the transformation function



Φ and its initial value is µt0 = 0. Therefore, at time t, the
objective function minimizes:

ε(µt) =
∑
s

|Ωt(Φ(µt) ◦ xs)− Ωt0(xs)|2 (1)

such that, at time t+ τ , the parameter vector µt updates to
µt+τ = µt + δµ by minimizing:

ε(δµ) =
∑
s

|Ωt+τ (Φ(µt + δµ) ◦ xs)− Ωt0(xs)|2 (2)

where δµ is the parameter update vector. To simplify this
equation, we assign Ω(µ, t) = [Ωt(Φ(µ) ◦ xs)]

ns

s=1 as a
collection of Ωt(·); hence, Eq. 2 is rewritten in vector form
as:

ε(δµ) =
∥∥Ω(µt + δµ, t+ τ)−Ω(µt0 , t0)

∥∥2 . (3)

Similar to [3, 8, 13], Eq. 3 can be formulated as:

δµ = −J+
µt

[Ω(µt, t+ τ)−Ω(µt0 , t0)] (4a)

= −J+
µt
δΩ(µt, t+ τ) (4b)

where the Jµ is the Jacobian matrix of Ω with respect to µ,
J+
µ = (J>µJµ)−1Jµ, and δΩ(µ, t) = Ω(µ, t)−Ω(µt0 , t0).

Therefore, the pseudo-inverse of the Jacobian matrix −J+
µt

in Eq. 4 represents the relation from the given δΩ(µt, t+τ)
to the parameter update δµ. In this way, δµ updates the
transformation function as:

Φ(µt+τ ) = Φ(µt) ◦Φ(µt0 + δµ) = Φ(µt) ◦Φ(δµ). (5)

Instead of finding the non-linear relation −J+
µt

in Eq. 4, we
formulate a learning method using random forests to find
the relation between δΩ and δµ.

3.2. Tracking with random forests

We use regression forests to learn how different values
of δµ affect the template in Ωt0 through δΩ. Subsequently,
when the input function Ωt+τ and the parameters µt are
given, the forests use δΩ(µt, t + τ) to predict δµ and up-
date the transform to Φ(µt+τ ). Contrary to [8], this learn-
ing scheme is not restricted to 2D images and can handle
different types of input function Ω without the necessity or
difficulty to derive different Jacobian matrices.

It is noteworthy to mention that our method assumes in-
dependence between the parameters in µ and learns one for-
est for each parameter separately. This results to np forests
where np is the number of parameters in µ and each forest
consists of nt trees.

Training forests. This process begins by creating a train-
ing dataset where we produce nω random values of δµω

to transform the input Ωt0 to Ωω , such that the location of

the sample points in Ωω is computed as Φ(δµω) ◦ xs. It
follows that we can define the set S = {(δΩω, δµωp )∀ω}
that is used to construct the p-th forest where the vector
δΩω = δΩ(µt0 , ω) is the input sample of the forest and
the scalar δµωp is the p-th parameter in δµω . In general, the
objective of using such a synthetic training dataset is to gen-
erate S; thus, there are several ways of creating S and using
a synthetic dataset by transforming Ωt0 is just one of them.

Before training a tree, we randomly select nr points from
the ns sample points of the template and only use these
points to construct the tree. The goal is to impose random-
ness and to help handle cases when some sample points are
not available or have incorrect values in Ω (e.g. occlusion).
Hence, we assign the features {θr}nr

r=1 as the indices of the
θr-th sample point.

Each feature is used to split the samples that arrive in the
node SN into two subsets Sl and Sr that goes to its left and
right child, respectively. These subsets are defined as:

Sl =
{

(δΩω, δµωp ) ∈ SN | δΩω
θr ≥ κθr

}
(6a)

Sr =
{

(δΩω, δµωp ) ∈ SN | δΩω
θr < κθr

}
(6b)

where δΩω
θr is the θr-th element of δΩω , and κθr is the

threshold. Furthermore, to evaluate the split, we use the
information gain to determine whether it produced less ran-
dom or more homogeneous subsets, that is written as:

I(θr) = σ(SN )−
∑

i∈{l,r}

|Si|
|SN |

σ(Si) (7)

where σ(Si) is the standard deviation of all δµωp in Si.
Among all θr, we look for the best feature with the high-
est information gain. Consequently, the node stores the best
feature and its threshold, and passes the subsets to its chil-
dren. Note that the choice of the threshold κθr depends
on the values of all δΩω

θr in SN . It can either be a single
threshold such as the median, or multiple threshold candi-
dates such as linearly spaced values. Moreover, if multi-
ple thresholds are used, each of them is also evaluated us-
ing Eq. 7 and the one with the highest information gain is
stored.

The tree continuously splits the samples and grows until
at least one of these stopping criteria is true: (1) the maxi-
mum depth of the tree is reached; (2) the number of samples
|SN | is small; (3) σ(SN ) is sufficiently low; or, (4) the in-
formation gain of the best feature is less than a threshold.
In this case, the node is considered as a leaf and stores the
mean and standard deviation of all δµωp that reached this
leaf. Similarly, the same process occurs for all nt trees in
each forest and for all np forests.

Predicting δµ in tracking. Using the parameter vector
µt on the current input function Ωt+τ , we compute the in-
put sample δΩ(µt, t + τ) of the the forests to predict δµ



that updates the parameters. Starting from the root node of
each tree, the input sample uses the splitting parameters in
the node to determine whether to go to the left or right child,
and continuously traverse from the parent node to the child
node until it reaches a leaf where the learned mean and stan-
dard deviation that predict a parameter of δµ are stored. As
a result, each of the np parameters have nt predictions.

To find the final prediction of a parameter in δµ, we take
a percentage of the nt predictions with the lowest learned
standard deviation and aggregate them by taking the aver-
age of the learned means. Finally, we update the transform
by employing Eq. 5 and also update the location of the sam-
ple points in Ωt+τ . Lastly, we iteratively repeat the entire
process to refine the previously predicted parameters.

4. Experiment
This section focuses on two exemplary experiments that

utilized our approach with different input function Ω. The
first experiment involves tracking templates in 2D intensity
images; while, the second tracks 3D objects in depth im-
ages. Interestingly, both experiments are robust in tracking,
can handle partial occlusion, and track in less than 2 ms
using one core of the CPU.

4.1. 2D template tracking

Our method is applied as a 2D template tracking algo-
rithm using intensity images Ω. Without loss of generality,
we parameterize a rectangular template using the 2D loca-
tion of its four corners {xc}4c=1 at t0, and define its mo-
tion by the displacement of these corners {δxc}4c=1. From
these, the transformation function Φ(µ) is denoted as a ho-
mography that transforms {xc}4c=1 to {xc+δxc}4c=1 where
µ = [δxc]

4
c=1and Φ(µt0) = I3×3. Moreover, we position

the sample points {xs}ns
s=1 on an ns = ng×ng regular grid

fitted into the template.
Considering the vector Ω from Sec. 3, it follows that

Ω(µ, t) = [Ωt(Φ(µ) · xs)]ns
s=1 is a collection of image in-

tensities on the image Ωt at the transformed sample points,
and δΩ(µt0 , ω) = [Ωω(xs)−Ωt0(xs)]

ns
s=0 is the input sam-

ple of the forest where Ωω(xs) is the warped template and
Ωt0(xs) is the reference template. Hence, in training, the
synthetic data are transformations of the image Ωt0 with nω
random motions from δµ. Moreover, after predicting the
parameters δµ in tracking, we update the homography as
Φ(µt+τ ) = Φ(µt) · Φ(δµ).

To handle illumination changes, we normalize the nr
sample points in each tree such that the intensities on these
points have zero mean and unit standard deviation.

Parametrization. Using this concept, we use a 250×250
template and train nt = 50 trees for each np = 8 forests
with 25 × 25 grid enclosed on the template and ns = 625

sample points. For the synthetic dataset, we generate nω =
50, 000 transformed images where the corners moves in the
range of [−85, 85] pixels. The thresholding in each branch
uses 10 linearly spaced values and the stopping criteria in
each node includes maximum depth of 20, minimum num-
ber of samples of 40, minimum standard deviation of 0.5,
and minimum information gain of 0.01. In tracking, we
aggregate 20% of the prediction with the lowest standard
deviation and run 15 iterations.

Evaluation. Using the same dataset and evaluation as
in [12], we measure the tracking robustness of our algo-
rithm and compare it with Jurie and Dhome [13] where
they learn the relation between image intensity difference
and parameter update vector using linear regression. The
choice in comparing with [13] is due to its similarity with
our approach where both are rooted from [8] and replace
the pseudo-inverse of the Jacobian matrix with a learning
algorithm. Moreover, it is reported in [12] that the over-
all performance of [13] is either comparable to or better
than [4, 11, 12].

Here, we learn the template at the center of the image
and track this template after warping the image. The track-
ing robustness is computed as the percent of successfully
tracked templates where the average distance of the tracked
corners to its ground truth location is less than 5 pixels when
backwarped. In addition, we compare our tracking robust-
ness with different values of nr and, based on the plots in
Fig. 2, the performance converges when nr = 25. From
these evaluations, the average tracking time of our approach
is approximately 1.47 ms when using 1 core of the CPU,
while linear regression [13] runs at 0.47 ms. Thus, their ap-
proach is 1 ms faster than ours which is almost negligible.

With different types of image warping in Fig 2(a-d), we
show that our 2D experiment has similar tracking robust-
ness as the linear regression [13]. This robustness is rein-
forced in Fig. 3(a) where we demonstrate qualitative exam-
ples of real-time tracking. For the evaluation with respect
to noise in Fig. 2(e) where we randomly translate the image
by a maximum distance of 35 pixels after inducing varying
levels of Gaussian noise, it illustrates that we are slightly
better in tracking than [13].

However, our learning approach is much more robust to
occlusion than [13] as shown in Fig. 2(f) where the image is
translated after replacing a percent of the template’s region
by a different image; while, in Fig. 3(c), we demonstrate its
performance after occluding the template with different ob-
jects. Note that this property becomes a requirement when
some of the pixel values from the sensor is not available
such as shadows from depth sensors – a thorough investiga-
tion in using our algorithm for depth images is conducted in
Sec. 4.2. In addition, we also demonstrate in Fig. 3(b) that
we are also robust to strong illumination changes which [13]
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Figure 2. These plots show the tracking robustness of our algo-
rithm with varying nr (15, 20, 25, 30) and compare it with Lin-
ear Regression (LR) [13] under different (a-d) transformations, (e)
levels of Gaussian noise and (f) percentage of occluded region.

(a) Tracking (b) Illumination (c) Occlusion

Figure 3. These images illustrate the essential capabilities of our
2D template tracking algorithm – (a) tracking with perspective
transform, (b) tracking under strong illumination changes, and (c)
tracking with partial occlusion. More examples are demonstrated
in the Supplementary Materials.

cannot handle.
Therefore, although there are similarities with [13], our

algorithm has proven to be a chameleon since its range of
application is not limited to a specific sensor and its track-
ing robustness is not compromised by this generality. With
regards to 2D tracking, we have demonstrated that both al-
gorithms are equally robust in tracking performance, but we
are more robust in the presence of occlusion and strong il-
lumination changes.

4.2. 3D object tracking

We designed a model-based tracking method that finds
the pose of a 3D rigid object using the depth image Dt.
Here, we are using the object coordinate system, where the
centroid of the model’s vertices is the origin, and the cam-
era coordinate system, where the camera center is the ori-
gin. The camera is parameterized by a 3 × 3 intrinsic ma-
trix K and a 4 × 4 extrinsic matrix E that relates the cam-
era coordinate system and the object coordinate system at
t0. Moreover, the sample points {Xs}ns

s=1 are 3D homoge-
neous points on the model as seen by the camera coordinate
system which implies that the corresponding points in the
object coordinate system are computed as {E−1Xs}ns

s=1.
Looking from the object coordinate system, the rigid

transform of the object is defined by the 4× 4 matrix:

Tobj(µ) =

[
I3×3 t
0> 1

]
·Rx(α) ·Ry(β) ·Rz(γ) (8)

where t = (tx, ty, tz)
> is the translation vector; α, β and

γ are the yaw, pitch and roll angles, respectively; and, the
parameter vector µ is composed of the 3 translation param-
eters and 3 rotation parameters. Therefore, after transform-
ing the object, the sample points in the camera coordinate
system transforms as:

Pµ(Xs) = ETobj(µ)E−1Xs (9)

where Pµt0
(Xs) = Xs; then, the projection of the points

into the camera’s image is given as xds = [K|0] · Pµ(Xs)
where xds is given in 2D homogeneous coordinates.

If we denote Dt(x) as the backprojection of the pixel x
in the depth image Dt, then, to find the optimum δµ at t+τ ,
we minimize the sum of the distances:∥∥Dt+τ ([K|0]Pµt+δµ(Xs))− Pµt+δµ(Xs)

∥∥2 (10)

=
∥∥∥P−1µt+δµ

(Dt+τ ([K|0]Pµt+δµ(Xs)))−Xs

∥∥∥2 (11)

for all sample points. However, we observed that the dif-
ference in the x- and y-coordinates are close to 0 in Eq. 11;
hence, we simplify the error function by only using the dif-
ference in the z-coordinates:

ε(δµ) =
∑
s

|Φt+τ (µt + δµ) ◦Xs −Xs|2z (12)



where Φt(µ) ◦ Xs = P−1µ (Dt([K|0]Pµ(Xs))) is a time-
varying transformation function that is dependent on the
depth image Dt, and the operator |·|z takes the z-coordinate
of the point. When we compare Eq. 12 with Eq. 3, the vec-
tor Ω(µ, t) = [|Φt(µt) ◦Xs|z]ns

s=1 is described as a collec-
tion of the z-coordinates of the transformed sample points
where Ω(µt0 , t0) = [|Xs|z]ns

s=1.
In training, the input sample can be further simplified as

δΩ(µt0 , ω) = [|Dω ([K|0]Xs)−Xs|z]
ns

s=1
, which changes

with respect to the depth image across ω. As a consequence,
to create the set S for training, we render nω depth images
with different parameters of δµω in Tobj . Moreover, from
the synthetic depth image with Tobj(µ0), the model on the
image is enclosed by an ng × ng regular grid, where the
points on the model are backprojected and are used as the
sample points. On the other hand, in tracking, the predic-
tion δµ updates Tobj in the transformation function Φ as
Tobj(µt+τ ) = Tobj(µt) ·Tobj(δµ).

Multi-view tracking. The problem with our sample point
arrangement is that it is restricted to one view of the object.
For instance, if the object keeps rotating in one direction,
at some point, the tracker becomes unstable and fails since
the number of visible sample points continuously decreases.
Due to this, we individually learn random forests for nc
views of the object where the camera is located around the
object using an icosahedron. It follows that the c-th camera
view has its own set of sample points {Xc

s}
nc
s
s=1 and extrin-

sic matrix Ec, and this produces 6 · nc · nt trees. Therefore,
using the object coordinate system in tracking, we find the
closest learned camera view to the current position of the
camera. Mathematically, to switch from one view to the
other, we modify Eq. 9 to:

Pcµ(Xc
s) = E0Tobj(µ)E−1c Xc

s (13)

where E0 is the initial extrinsic matrix in tracking.

Parametrization. Based on this, we use nt = 100 trees
for each np = 6 parameters with a 40 × 40 grid enclosed
on the model as seen from the depth image where only
points that lie on the model are used as sample points. In
training, we render nω = 50, 000 depth images where the
object randomly transforms with a translation that ranges
in [−35, 35] mm for each axis, and the angles α, β and
γ in [−30◦, 30◦]. Moreover, each tree randomly chooses
nr = 20 sample points, each branch uses 10 linearly spaced
thresholds and each node checks the stopping criteria with
depth of 20, 40 samples, standard deviation of 0.5, and in-
formation gain of 0.01. This is done for nc = 42 camera
views of the model. Then, in tracking, we aggregate 15% of
the predictions with the lowest standard deviation and run
10 iterations.

(a) Driller (b) Cat (c) Bunny

Figure 4. These images show the frames (a) when our approach
becomes unstable in the driller sequence due to the lack of depth
data, and (b-c) when ICP fails in the cat and bunny sequences.
Note that the object of interest is marked in red.

Evaluation. For this experiment, we created a dataset
with four sequences using PrimeSense’s Carmine 1.09 cam-
era to track different objects – vise, driller, cat and bunny –
in cluttered environments as shown in the first row of Fig. 5.
We compare our results to the ICP implementation from
PCL [1] where the vertices of the model are used as input
source, and LineMod [10], which is the state-of-the-art 3D
object detector, that is taken from the original implementa-
tion of the authors. Note that LineMod refines the pose of
the object after template matching using ICP.

To generate ground truth transforms, we placed the ob-
jects on top of a board with markers on its edges; thus, we
can transform the object’s model using the ground truth and
compare it with the location of the tracked object through
the mean distance of the model’s vertices as plotted in the
second row of Fig. 5. Moreover, in the vise, driller and
cat sequences, the camera stayed static while the board ro-
tates; but, in the bunny sequence, both the camera and board
moves. Hence, from this dataset, the tracking results can be
summarized as follows:

1. VISE. All approaches works well in this sequence even
if there is a small occlusion from the red screwdriver as
illustrated in Fig. 5(a).

2. DRILLER. For this sequence, there are some depth im-
ages that does not have sufficient information for a por-
tion of the object as shown in Fig. 4(a). This affects both
LineMod and our method. However, it is important to
mention that our method became unstable in a small sec-
tion of the sequence and it did not lose tracking; while,
LineMod frequently fails in detecting the object.

3. CAT. As the cat rotates, the depth image loses informa-
tion of its tail as shown in Fig. 4(b) and its relatively
large spherical head dominates the ICP algorithm. Due
to its shape, ICP stayed static and fails to track the rota-
tion of the cat. This results in a tracking failure for the
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(a) Vise (b) Driller (c) Cat (d) Bunny

Figure 5. The first row shows the setup of the four sequences that are used to evaluate the 3D tracking algorithm where the object of interest
is mark in red; the second shows the mean distance error for each sequence using LineMod [10] where their peaks indicate detection
failures, PCL’s ICP [1] where ICP fails at frame 116 in (c) and frame 72 in (d), and our approach; and, the last row shows our tracking
results in the corresponding depth image.

rest of the images in the sequence. Regarding LineMod
and our algorithm, they work well in this sequence and
smoothly track the cat’s rotation without getting trapped
in a local minimum.

4. BUNNY. There are two essential criteria to consider in
this sequence. The first is the fast motion of both ob-
ject and camera which creates a motion blur in the col-
ored image as well as noise in the depth image as shown
in Fig. 4(c), and the second is the closeness of the sur-
rounding objects to the object of interest as depicted in
Fig. 5(d). In this sequence, the bunny is occluded by
the cat, then the duck. Therefore, when the cat occluded
a large portion of the bunny, ICP started incorporating
the cat as part of the bunny and loses tracking. For
LineMod, the detector also fails when the objects oc-
clude the bunny, which is indicated by the two peaks
in Fig. 5(d). Finally, our approach became unstable but
completely recovers after the occlusion.

On average, our tracking time is 1.75 ms for the vise,
1.76 ms for the driller, 1.84 ms for the cat and 1.84 ms for
the bunny when using only 1 core of the CPU. For ICP, the
average tracking time is 189.09 ms for the vise, 72.24 ms

for the driller, 65.04 ms for the cat and 225.72 ms for the
bunny. Moreover, the average tracking time for LineMod is
approximately 119 ms for all models.

Furthermore, we illustrate some tracking examples in
Fig. 6 from a video where the actor plays with the cat, picks
it up through its tail, turns it around, then drops it (see Sup-
plementary Materials). These examples show how well the
tracker handles occlusion. For instance, when the cat is oc-
cluded by the hand in Fig. 6(a), it is not necessary to do
any pre-processing procedure, such as segmenting the hand,
even if the object is relatively small. Additionally, when the
cat is turned or dropped, it also shows how well our algo-
rithm handles fast motion.

Taking the results from the dataset into account, we have
exhibited different scenarios and show that, in comparison
to LineMod and ICP, our 3D algorithm can avoid local min-
ima, is more stable in the presence of both noise and occlu-
sion; and, is at least 35 times faster than ICP [1] and two
orders of magnitude faster than LineMod [10]. Through the
examples in Fig. 6, we demonstrate that we have a good
tracking performance in fast motion as well as partial oc-
clusion.
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Figure 6. These images show examples of our 3D tracking algo-
rithm where the actor (a) plays with the cat; (b) picks it up; then,
(c) drops it. More examples are in the Supplementary Materials.

5. Conclusion
This paper introduces a generic tracking algorithm that

we describe as chameleon because it can be adapted to dif-
ferent input modalities. To show the value of our work, we
designed two experiments where the first tracks 2D tem-
plates using intensity images while the other tracks 3D ob-
jects using depth images. Although both experiments are
robust in tracking and track in less than 2 ms when using
one core of the CPU, individually, they have merits of their
own. The 2D template tracking algorithm can handle partial
occlusions and strong illumination changes. Moreover, af-
ter comparing our approach with ICP [1] and LineMod [10],
we can conclusively say that our 3D tracker outperforms the
two approaches in the presence of partial occlusion at close
proximity and noise due to fast motion.
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