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Abstract

This paper presents a novel guided image filtering
method using multipoint local polynomial approximation
(LPA) with range guidance. In our method, the LPA is ex-
tended from a pointwise model into a multipoint model for
reliable filtering and better preserving image spatial varia-
tion which usually contains the essential information in the
input image. In addition, we develop a scheme with con-
stant computational complexity (invariant to the size of fil-
tering kernel) for generating a spatial adaptive support re-
gion around a point. By using the hybrid of the local poly-
nomial model and color/intensity based range guidance, the
proposed method not only preserves edges but also does a
much better job in preserving spatial variation than existing
popular filtering methods. Our method proves to be effec-
tive in a number of applications: depth image upsampling,
joint image denoising, details enhancement, and image ab-
straction. Experimental results show that our method pro-
duces better results than state-of-the-art methods and it is
also computationally efficient.

1. Introduction

Joint image filtering [1] or guided image filtering [2] has
been introduced for image smoothing, structure transforma-
tion and other purposes in recent studies. Compared with
traditional image filtering process, this operation not only
keeps the desired propriety of preserving edges but also
considers additional information from a given guidance im-
age. This attribute makes it a powerful method in many
computer vision and graphics applications including stereo
matching [3, 4], optical flow estimation [4], colorization [5],
and saliency detection [6].

A well known joint filtering method is based on the bi-
lateral filter (BF) as proposed in [1]. In this method, the
output at a point is a weighted average over the support re-
gion around the point. However, this BF based joint image
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Figure 1. Conventional filtering methods that use range guidance
only are prone to smooth the spatial variation (see text for details).
All results are obtained with a fixed size of filtering kernel r =
40. (a) The guidance image I . (b) The input image P . (c) The
reference of (b). (d) The result obtained by BF [1]. (e) The result
obtained by GF [2]. (f) The result obtained by CLMF [11]. (g)
The result obtained by our filtering method.

filtering is computationally expensive and therefore many
schemes are proposed to accelerate it for fast implementa-
tion such as [7, 8]. Another problem of the joint BF is its
gradient reversal artifacts as discussed in [9]. Recently, the
guided filter (GF) proposed in [2] is shown to be superior to
BF for its computational efficiency and the better gradient
preserving property. However, the squared window used in
the joint BF and GF degrades the performance, since the
fixed support region lacks spatial adaptivity which leads to
the bleeding artifacts at boundaries in applications such as
depth upsampling [10].

Many methods are proposed to achieve spatial adaptiv-
ity such as the anisotropic estimator which proved effective
for image denoising [12]. Despite of the effectiveness, the
arbitrary shape of support regions in these methods makes
fast implementation impossible. To enable a fast aggrega-
tion over the adaptive support regions, a study in [11] ex-

1



tended the idea behind the GF and proposed a generalized
multipoint framework (named CLMF) which introduces the
cross based aggregation method and the order flexibility of
local range models. In [11], the support arms are calculated
at each point, and the data is then aggregated by using the
integral image scheme [13]. CLMF is reported to be supe-
rior to BF and GF owing to its sophisticated support region
calculation technique which gains the spatial adaptivity of
the support region. However, the support region calculation
method adopted in CLMF has limitations. First, although
the data aggregation can be carried out within O (1) com-
plexity, the complexity of calculation for support arms at
each point depends on the maximum length of arms. This
will slow down the algorithm particularly for large support
arms. Second, the support region depends on the order
of aggregation (aggregating horizontally then vertically or
vertically then horizontally). This leads to unreliable es-
timation particularly for points near concave regions. For
achieving fast support region calculation and producing re-
liable filtering results, we propose a new support region gen-
eration and aggregation method.

In the filtering process, one would expect that noises are
to be suppressed, while the spatial variation which usually
contains the image information is to be preserved. However,
a common problem existing in all conventional joint/guided
filters is that they are prone to the change of spatial varia-
tion by smoothing it, despite of being good at suppressing
noises. For example, GF and CLMF only consider the range
information in the guidance image regardless of the position
of the point in the image. This formulation is very likely to
oversmooth the input image in regions where the value of
the guidance image are similar. This artifact is notably ob-
served for large filter kernels. Let us look at an example as
shown in Fig. 1. In this case, the guidance image contains
concentric squares of constant colors. The input image to
be filtered varies smoothly in each square and is contami-
nated by noises. This case is frequently found in a number
of graphics studies. For example, in depth image denoising,
the guidance image or color image may contain an object
whose surface is uniformly colored while the depth of the
surface may form a curve. Under the assumption that the
filtered image is locally linear to the guidance image, the
value of the point in the filtered image becomes similar to
each other once they have a similar value in the guidance
image regardless of the spatial position of the points. There-
fore, the range based multipoint filters using this assump-
tion such as GF and CLMF tend to oversmooth the regions
corresponding to the homogenous region in the guidance
image. However, this formulation is obviously not working
for the case as illustrated in Fig. 1. The pointwise filter (e.g.,
the joint BF) also has this oversmoothing artifact because
the weighted summation tends to smooth values over the
support region. The oversmoothing artifact becomes much

more severe as the size of the filter kernel increases.
We show in this paper that local polynomial approxima-

tion [14] (LPA) can be introduced into joint/guided image
filtering for better preserving spatial variation. As demon-
strated in [12], multipoint filtering methods are usually
more robust than pointwise based method. We therefore
extend the original pointwise LPA method into a multipoint
LPA (MPLA) method for achieving robust filtering. Finally,
we show that our filtering process can be carried out effi-
ciently by using the integral image scheme.

2. Algorithm Overview and Notations
Suppose we have a guided image I and an input im-

age P . The proposed filtering method contains the follow-
ing steps: generating an adaptive support region Ωp for each
point p ∈ P , modeling regression between P and I over
each Ωp, finally aggregating values from the multiple esti-
mates in Ωp for p and outputting a filtered image Q.

Adaptive support regions are generated by firstly seg-
menting the guided image into non-overlapping regions.
Then a support region around point p ∈ P is determined
by four support arms which extend to the region boundaries
or reach the maximum arm size r. A similarly strategy is
used in [11] and [15]. We will show in Section 4 an im-
proved scheme for overcoming the shortcoming introduced
by the asymmetrical treatment of the horizontal and the ver-
tical line segments [11, 15].

Denote xp and yp the image coordinates of point p. For
the support region around each point, we carry out data reg-
ularization on P according to a model between P and I .
The regularization is based on both the range guidance and
local polynomial approximation. As the support regions are
overlapping with each other, this process will result in mul-
tiple estimates qk (k ∈ Ωp) for each point p. The final
estimate q to point p is calculated by aggregating or fusing
the multiple estimates qk.

3. Filtering with LPA and Range Guidance
3.1. Multipoint LPA

To overcome the shortcoming of the conventional range
based guided filtering methods, we incorporate the lo-
cal polynomial approximation in regularizing the value of
points in P . This process is explained using a 1D signal
in Fig. 2. Note that the horizontal coordinate is the spatial
position of points rather than the color or intensity values in
the guidance image. In Fig. 2, the black lines are signals to
be filtered; the red lines denote signals within a support re-
gion; and the green lines denote regularized signal by using
polynomials with different orders.

For a given point p and its support region Ωp, we use
a 2D polynomial function to regularize the data in the
support region at each point k (k ∈ Ωp). Denote the
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Figure 2. Illustration for local polynomial approximation at a point
of interest p in the 1D case. (a) The signal to be filtered P and the
support region Ωp of p. (b) Approximation results by using con-
stant values or zero order polynomials. (c) Approximation results
by using first order polynomials. (d) Approximation results by
using second order polynomials.

obtained m-order polynomial regularization results in the
support region of point k by Pm

k whose coefficients are:

αm
k =

[
α01
k , α10

k , · · ·, αij
k , · · ·, α0m

k

]
and γ0

k . The coeffi-

cient of nominal xiyj is αij
k . The 2D polynomial model

with zero-order (m = 0), the first-order (m = 1), and the
second-order (m = 2) are given as follows:

Pm
k =


γ0
k m = 0

γ0
k+α0

kx+α1
ky m = 1

γ0
k+α10

k x+α10
k y

+α20
k x2+α11

k xy+α02
k y2 m = 2

(1)

where x and y are the spatial coordinates. The multi-
point local polynomial approximation by using the “m” or-
der polynomial is named as MLPA-m in this paper. De-
note the coordinate nomials of point p as a vector: Sm

p =[
xp, yp, · · ·, xi

py
j
p, · · ·, ymp

]T
. As the support regions are

overlapped with each other, we will have multiple estimates
Pm
k for point p from regularization results around different

k (k: p ∈ Ωk):

Pm
k (p) = αm

k Sm
p + γ0

k (2)

The final estimate for point p is given as a weighted average
over all these estimates:

QP (p) =

∑
k:p∈Ωk

wkPm
k (p)∑

k:p∈Ωk
wk

(3)

where wk is the weight associated with Pm
k (p) to be dis-

cussed later in Section 5. As suggested in [11], it is ad-
vantageous to use an approximation of Eq. (3) as the output

of the MLPA for computational efficiency and data access
patterns:

QP (p) =

∑
k∈Ωp

wkPm
k (p)∑

k∈Ωp
wk

(4)

3.2. MLPA with Range Guidance

To achieve edge-preserving filtering, we incorporate
range guidance into the MLPA based on a local linear model
(LLM) as used in [2]. The range guidance is the intensity
signal for gray scale images or the RGB channels for color
images. Suppose that we have obtained the output of LPA
for all points: QP , we use the range information as the guid-
ance to generate a signal QR which takes into account the
difference between the final output Q and P −QP . There-
fore, Q is the summation of QP and QR which minimizes
the difference between Q and P − QP while maintaining
the LLM:

Q = QP +QR (5)

Similar to the weighted averaging scheme as used in Eq. (4),
we calculate QR at point p by

QR (p) =

∑
k∈Ωp

wk

(
βkIp + γ1

k

)∑
k∈Ωp

wk
(6)

where βk and γ1
k are LLM coefficients of the support region

around point k; Ip is the intensity value for gray scale im-
ages or the RGB vector for color images; the weights wk

are identical to those in Eq. (4). Readers are encouraged to
refer to [2, 11, 16] for more details about LLM with range
guidance.

Define a hybrid guidance vector of Sm
p and Ip by Gm

p =[
Sm
p

I(p)

]
. Reorganize the coefficients of LPA and LLM

and put them into one vector: θm
k = [αm

k ,βk]. When using
color image as a guidance, the last three entries of Gm

p are
the RGB channels and the last three entries of θm

k are coef-
ficients associated with RGB channels respectively. Substi-
tuting Eq. (6) and Eq. (4) into Eq. (5), we obtain:

Q (p) =

∑
k∈Ωp

wk

(
θm
k Gm

p + γk
)∑

k∈Ωp
wk

(7)

where γk = γ1
k + γ0

k . For estimating model parameters,
θm
k , we extent the model used in [2, 11] into a weighted

linear ridge regression model. Specifically, we minimize
the following cost function in the support region of point k:

E (θm
k ,γk) =

∑
s∈Ωk

w′
s

(
(θm

k Gm
s +γk−P (s))

2

+εs∥αk∥2+εr∥βk∥2
)

(8)

where εs and εr are used for regularizing the coefficient of
spatial guidance and range guidance respectively, and w′

s,
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to be discussed in Section 5, is the weight associated with
point s. The solution to Eq. (8) is given by

θm
k =

(
Σk (G

m, P )
)T

(Σk (G
m,Gm) + ε)

−1 (9)

γk = P̄k − θm
k µk (10)

Here µk and P̄k are the weighted mean of Gm and P in Ωk;
Σk (G

m,Gm) and Σk (G
m, P ) are the weighted covari-

ance matrixes of Gm and of (Gm, P ) in Ωk respectively; ε
is a diagonal matrix whose entries are εs or εr arranged in
an order corresponding to entries in Gm. The size of Σk

depends on the order of the LPA and the number of chan-
nels in the range guidance. For example, the size of Σk is
5× 5 when a color image (RGB image) is used as guidance
and m = 1.

4. Adaptive Support Regions Computation
We improve the method as used in [11, 15] to define a

support region for each point. This improved method calcu-
lates a support region within a constant computational com-
plexity w.r.t. the size of the support region and it is also
invariant to the aggregation order of the image integration.
In this method, we start with a region segmentation to group
points into homogenous regions. Then, for a point p, four
support arms {h0

p, h
1
p, h

2
p, h

3
p} are decided by the boundaries

of regions and the boundaries of a square window of size
(2r + 1) × (2r + 1) centered at p. After that the spatial
adaptive support region is defined implicitly by carrying out
image integration sequentially.
4.1. Region Segmentation

For fast implementation, we employ the graph based seg-
mentation method as proposed in [17]. A short review of
this segmentation method in [17] is provided and followed
by our improvement. Given the guidance image I , we con-
struct a graph G (V,E) with the vertices being points in I
and edges corresponding to neighboring point pairs in I ,
then sort the edges into a non-decreasing edge weight or-
der. The segmentation is conducted in a similar manner as
Kruskals algorithm for constructing a minimum spanning
tree (MST). The algorithm starts at a segmentation where
each point represents a component and keeps merging two
components until no two components can be merged. Dur-
ing the merging produce, two components C1 and C2 are
merged if the weights of all connecting edges between them
are smaller than their minimum internal difference which is
defined as:

M · Int (C1, C2)

= min (Int (C1) + τ (C1) , Int (C2) + τ (C2)) (11)

where Int (C) is the internal difference being defined as
the largest weight in the MST of the component C, τ (C)

is a non-negative function of the size of the component C.
Unlike the method in [17] where the size of C is directly
used for defining τ (C), we define it as a function of the
ratio between the size of the guided image |I| and the size
of the component |C|, so that τ (C) is robust to the change
of the image size. Thus,

τ (C) = k
|I|
|C|

(12)

where k is a constant parameter. In the original graph based
segmentation method [17], the weight of the edge is defined
as the intensity difference between two points. However,
this measurement does not always produce satisfactory seg-
mentation results near region boundaries. We therefore de-
fine the weight as the product between the absolute inten-
sity difference and the exponential of the gradient so that
the weight become much lager at region boundaries. The
gradient of I at point p is calculated as follows (for color
images, we use its corresponding gray scale image to calcu-
late the gradient):

∇ (p) =
√

∇2
x (p) +∇2

y (p) (13)

where ∇x and ∇y are the outputs of the Sobel filter on the
horizonal and vertical directions respectively. The modified
weight on the edge between p and q in the graph G is

w (p, q) = |Ip − Iq| exp
(
max
i=p,q

∇ (i)

)
(14)

4.2. Support Arms Calculation

When the region segmentation is obtained, four support
arms {h0

p, h
1
p, h

2
p, h

3
p} of a point p are produced accordingly.

The support arms take p as the origin and extend to the seg-
ment boundaries or until the maximum length r is reached.
Unlike the cross based aggregation methods in [11, 15]
where the computational complexity is linear to the length
of support arms, our new method computes the support arm
in a constant computational complexity w.r.t. their lengths.
The pseudocode of the algorithm for efficiently calculating
the lengths of the horizontal support arms is given in Algo-
rithm 1. Vertical arms are calculated in a similar manner.
Algorithm 1:
Input: the width W and the height H of the guided image
I , a region segmentation result S of I , the maximum size
of support arms r.
Output: horizontal support arms h0 and h2 for all points.

Set y = 1 and repeat the following steps until y = H:

0. Set the leftmost coordinate to 1, i.e., xmin:= 1 and set
x := 2.
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1. If x ̸=W and S (x−1, y)=S (x, y) where S (x, y) is
the segment index of point (x, y), then set x := x+ 1
and repeat Step 1. Otherwise, set the rightmost coordi-
nate to x, i.e., xmax :=x.

2. For points p (i, j), where j=y and i=xmin, ..., xmax,
calculate the horizontal arms by h0

p := i − xmin, and
h2
p := xmax− i. If x ̸= W , then set xmin := x, and

x := x+ 1. Go to Step 1.

3. For points p (i, j), where j = y and i = 1, ...,W , set
horizontal arms to be equal to r if they are larger than
r, set the arms to be the shorter length, i.e., h0

p :=

h2
p := min

(
h0
p, h

2
p, r

)
. If y = H , then go to Step

4. Otherwise, set y := y + 1 and go to Step 0.

4. Output the horizontal arms for all points.

In Step 3, we follow the idea in [11] to enforce balanced
arms in order to prevent the gradient reversal artifacts. It
is useful in some applications such as detail enhancement
and joint denoising. However, we found that they degrade
the performance in some other applications such as depth
image enhancement where we expect a sharp depth jump at
boundaries. Therefore we do not use balanced arm for these
applications.

4.3. Aggregation Order Invariant Support Region

In the cross based aggregation methods [11, 15], the or-
der of performing horizontal or vertical aggregation deter-
mines the support regions. Support regions can be quite
different particularly for points near the concave regions.
As shown in Fig. 3, when the aggregation is performed first
in the horizontal direction then the vertical direction, the
data from points colored green is fused; however, when the
aggregation is performed vertically then horizontally, the
points colored in blue are aggregated. Denote point p’s sup-
port region when aggregating horizontal data first by ΩH

p ,
and denote its support region when aggregating vertical data
first by ΩV

p . In our new formulation, the support region is
the union of these two: Ωp = ΩH

p ∪ΩV
p . The support region

in the original cross based aggregation methods [11, 15] is
ΩH

p .

5. Implementation Issues and Running Time

Similar to [2], our algorithm requires a weighted summa-
tion of range data Ip and coordinate nomials Sm

p over Ωp as
given in Eq. (7), Eq. (9), and Eq. (10). However, there is no
general method to achieve this for arbitrary weights within
a constant computation complexity. Fortunately, a group
of exclusive weights makes the constant computation com-
plexity possible. Define weights in Eq. (8) for calculating
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Figure 3. Support regions of a point p in the region component C.
(a) Support region ΩH

p used in the original cross based aggrega-
tion method, which is defined implicitly by performing horizon-
tal aggregation first. (b) ΩV

p is the support region when perform-
ing vertical aggregation first. (c) Order invariant support region:
Ωp = ΩH

p ∪ΩV
p where the region colored in yellow is ΩH

p ∩ΩV
p .

Eq. (9), and Eq. (10) by

w′
s =


1 if s ∈

(
ΩH

p − ΩV
p

)
∪
(
ΩV

p − ΩH
p

)
2 if s ∈ ΩH

p ∩ ΩV
p

0 otherwise
(15)

where the notation of point k in Eq. (8) is changed into p.
The weighted summation over Ωp with the weights defined
in Eq. (15) can be computed by adding the summation over
ΩV

p and ΩH
p respectively:∑

s∈Ωp

w′
sP (s) = 2

∑
s∈ΩH

p ∩ΩV
p

P (s) +
∑

s∈ΩH
p −ΩV

p

P (s) +
∑

s∈ΩV
p −ΩH

p

P (s)

=
∑
s∈ΩH

p

P (s) +
∑
s∈ΩV

p

P (s) (16)

As presented in [15], the summation of data over ΩH
p can

be efficiently computed with a complexity of O (N) for N
points by using integral image technique [13] which is car-
ried out sequentially along horizonal and vertical directions.
The summation of data over ΩV

p can also be computed in a
similar way by switching the order of performing image in-
tegration. Weights in Eq. (7) are similarly defined as

wk =


|Ωk| if k ∈

(
ΩH

p − ΩV
p

)
∪
(
ΩV

p − ΩH
p

)
2 |Ωk| if k ∈ ΩH

p ∩ ΩV
p

0 otherwise
(17)

Here we use the number of sampling points to encourage
a stable estimate as suggested in [11]. Another reason of
defining weights as given in Eq. (15) and Eq. (17) is that
points in ΩH

p ∩ΩV
p are much closer to p than those in ΩH

p −
ΩV

p or ΩV
p −ΩH

p (see Fig. 3). Therefore, points in ΩH
p ∩ΩV

p

are assigned to higher weights than points in ΩH
p −ΩV

p and
points in ΩV

p − ΩH
p .

The computational cost of our algorithm consists of two
parts, one is the cost for the support region calculation, the
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Table 1. Comparison of running time on color image filtering.
Time (ms)

Methods r = 9 r = 100

Guided Image Filtering [2] 820 820
CLMF-0 [11] 490 1560
CLMF-1 [11] 910 2150

MLPA-0 1100 1100
MLPA-1 2350 2350
MLPA-2 5250 5250

other is the cost for data aggregation in the filtering pro-
cess. As discussed above, the complexity for filtering is
O (N) for an image with N points. Algorithm 1 takes
8 × N operations (comparison or +/- operations) for gen-
erating support arms. Unlike the adaptive support region
calculation method in [11] whose complexity of calculating
support arms is linear to r, complexity of our method is con-
stant w.r.t. windows size r due to the efficient support arms
calculation method as described in Algorithm 1. Although
the O (N logN) complexity of MST based segmentation is
higher than O (N) complexity of the other building blocks
of our method, it does not degrade our filter with respect to
running time. The reason is: similarly to GF, the running
time of our filter is mainly dominated by inverting a sym-
metric matrix whose order is depended on the order of LPA
and the form of I . For example, when the order of LPA is 1
and I is a gray scale image, we need to invert a 3× 3 ma-
trix. This process is computed in about 30 operations, and
logN is usually smaller than 30 in most cases. The algo-
rithm is implemented on a 32bits PC with a 3.0 GHz CPU
and 4GB RAM with C++ without using any SIMD instruc-
tions. The comparison of running time for filtering 1000000
points with color guidance is given in Table 1. In MLPA-
m, we invert a 3× 3 matrix which is similar to that of GF
and therefore the running time is close to GF. In MLPA-
1 and MLPA-2, the matrix is increased to 5× 5 and 8× 8
respectively and causes the increase of the running time.
The running time of the MLPA-m method with the order
m higher than 2 is not tested in our experiments; but it can
be predicted according to the complexity of inverting a ma-
trix w.r.t. the matrix size. The running time of computing
adaptive support regions is about 150 ms.

6. Applications and Experiments
In this section, we show the performance of the proposed

MLPA filter on a variety of computer vision and graphics
applications.

6.1. Depth Image Enhancement

Depth image enhancement includes the depth image up-
sampling and depth image denoising. The enhancement
can be carried out by adopting joint filtering methods. The
quantitative comparison for the results from different filters,

(a) (b)

(c) (d)

(e) (f)

Figure 4. Depth upsampling results with r = 9. (a) and (b) A low
resolution depth image and its high resolution color image. (c)
The results obtained by BF (σs = 30, σr = 20/255). (d) The
results obtained by GF (ε = 0.052). (e) The results obtained by
CLMF (ε = 0.052, τ = 20/255). (f) The results by MLPA-1 filter
(εr = 0.052, εs = 0.0012, k = 0.005/255). These parameters
are kept constants for all datasets in Table 2.

BF, GF, CLMF, and MLPA-1 is shown in Table 2 where the
error threshold is 1 pixel (see [18] for details). To demon-
strate the advantage of using the order invariant support re-
gion, we perform MPLA-1 with fixed parameters on points
in ΩH

p . These results are listed as MPLA-1(ΩH
p ). In the

upsampling experiments, the upsampling factor is 4 and the
missing data in the depth image is colored in black. In the
denoising experiments, a white noise with σ = 10 is added
to all points in the depth image. Compared with BF, GF, and
CLMF, our MPLA-1 provides a much more accurate high
resolution depth image particularly for preserving slant and
curved surface and suppressing the bleeding artifacts [10].
Fig. 4 and Fig. 5 show the visual comparison between the
results from different filters where the parameters are care-
fully tuned so that best results are presented.

Table 2. Error percentage for depth image upsampling among re-
sults from different filters on Middlebury datasets [18].

Datasets BF GC CMLF MLPA-1 MLPA-1(ΩH
p )

Tsukuba 5.35 7.03 5.67 4.21 4.52
Venus 1.29 1.66 1.19 0.72 0.77
Teddy 7.21 8.92 6.55 3.06 3.28
Cones 7.59 10.4 7.82 5.27 5.46
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Guided image Ground-truth Noised image

BF GF CLMF MLPA

RMSE 11.34 RMSE 18.43 RMSE 7.24 RMSE 6.70

Figure 5. Depth denoising results with r = 9. Parameters are set to
those in upsampling experiments except τ = 5/255 in CLMF and
k = 0.001/255 in MLPA for the bleeding artifacts suppression
purpose.

6.2. Flash/noflash Denoising

In this application, a no-flash image is to be denoised
based on the guidance from a given flash version of the
same scene as described in [1]. Thanks to the adaptive sup-
port region and local polynomial approximation schemes,
our filter not only preserves the spatial variation around the
shadow regions and the light reflecting regions very well
but also takes the advantage of large filter kernels to sup-
press noises as much as possible in smooth regions such as
the surface of the sofa in Fig. 6.

6.3. Other Applications

Our MLPA filter can also be used for other graphics or
computer vision applications, such as detail enhancement
and image abstraction [19]. Similarly to GF [2], MLPA
avoids the gradient reversal artifacts which may appear in
detail enhancement. Compared with GF, our MLPA filter
better preserves spatial variation of the original image in
the base layer; however the spatial variation in the filtering
results from GF is smoothed. It means that the spatial vari-
ation will be less boosted in our method compared with the
results from GF. Therefore, the gradient of plant leaves in
Fig. 7 is less enhanced in our results. The image abstraction
results provided by our MLPA-1 are given in Fig. 8.

6.4. Parameters Effects

In our MLPA, the parameter k controls the spatial adap-
tivity. The larger the k becomes, the more neighboring
points will be considered for the model regression. Gen-
erally, a large k value will weaken the spatial adaptivity
and lead to undesirable results such as the bleeding artifact

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6. Result of the flash/no flash denoising. (a) and (b) No
flash image with noises as filtering inputs and the flash image as
guidance. (c) and (d) The denoised images by using the joint bi-
lateral filter (σs = 30, σr = 20/255) and the guided filter (ε =
0.022) respectively. (e) The result obtained by using MLPA-1 filter
with square windows. (f), (g) and (h) Results obtained by MLPA-
0, MLPA-1, and MLPA-2 respectively using adaptive support re-
gions with parameters: εr = 0.022, εs = 0, k = 0.007/255.

in depth denoising/upsampling. The spatial adaptivity will
be totally lost when setting k to an extremely large value.
In this case, our filtering will perform on squared windows
(see Fig. 6 (e)). For the purpose of better preserving spatial
variation, parameter εs is set to a small value or to 0. The
larger the εs is, the more smoothing effect spatial variation
will suffer.

7. Conclusions

In this paper, we developed an image filtering method
which incorporates the LPA with range guidance into a mul-
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(a) (b)

Figure 7. Results of detail enhancement (r = 16, details are
boosted by 5 times). (a) The result by guided filter (ε = 1.0). (b)
The result by MLPA-1 (εr = 1.0, εs = 0.0052, k = 0.1/255).

Figure 8. Results of image abstraction using MLPA-1 with con-
stant parameters. First column is the original image. Middle col-
umn is the filtered image. Last column is the abstracted image
after quantization with edges.

tipoint estimation framework for the first time. The pro-
posed hybrid guided image filtering method has the desired
property of better persevering the spatial variation in the in-
put image. We proposed an efficient method for comput-
ing the adaptive support regions in constant computational
complexity and developed a new scheme for the symmetri-
cal treatment on the horizontal and vertical line segments.
Experiments on a number of applications verify the effec-
tiveness of the proposed method and show its unique prop-
erty over the existing guided/joint image filtering methods.
The comparisons with the state-of-the-art methods indicate
that our MLPA filter is very competitive. Our further work
will focus on developing new local models for reducing the
computational cost when using high order polynomial ap-
proximations. In addition, we also plan to investigate the
performance of our filter with GPUs acceleration.
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[19] H. Winnemöller, S. C. Olsen, and B. Gooch, “Real-time

video abstraction,” ACM TOG, vol. 25, no. 3, pp. 1221–1226,
2006.

8


