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Abstract

Haze is one of the major factors that degrade outdoor
images. Removing haze from a single image is known to be
severely ill-posed, and assumptions made in previous meth-
ods do not hold in many situations. In this paper, we sys-
tematically investigate different haze-relevant features in a
learning framework to identify the best feature combination
for image dehazing. We show that the dark-channel fea-
ture is the most informative one for this task, which con-
firms the observation of He et al. [8] from a learning per-
spective, while other haze-relevant features also contribute
significantly in a complementary way. We also find that
surprisingly, the synthetic hazy image patches we use for
feature investigation serve well as training data for real-
world images, which allows us to train specific models for
specific applications. Experiment results demonstrate that
the proposed algorithm outperforms state-of-the-art meth-
ods on both synthetic and real-world datasets.

1. Introduction
Haze is an atmospheric phenomenon where fog, dust,

smoke and other particles obscure the clarity of the scene.
Outdoor images are often contaminated by haze, even on a
sunny day. Haze removal, or dehazing, is desired in both
consumer photography and computer vision applications,
thus has been extensively studied.

Early approaches often require certain types of addition-
al information to be available. For instance, Tan et al. [17]
assume the scene depth is given. Kopf et al. [10] use exist-
ing 3D geographic models of the scene for dehazing. Polar-
ized filters are used in [15, 16] to capture multiple images
of the same scene, and then different degrees of polariza-
tion (DOP) of images are used for haze removal. Nayar and
Narasimhan [14, 13] also capture multiple images of the
same scene and use the differences of images for estimat-
ing the haze properties. While these methods can enhance
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the visibility of hazy images, they cannot be applied in ap-
plications where additional information or multiple images
are not available. Therefore, single image haze removal
has been a hot spot of research given its wider application
range [5, 18, 8, 12, 19, 2, 7, 6].

Different image priors have been explored for single im-
age dehazing in previous methods. Tan et al. [18] directly
maximize the contrast of the dehazed image since haze-free
images have higher contrast than hazy ones. The results
of this method often present severe color distortion as the
method is not physically valid. Fattal [5] assumes the trans-
mission and surface shading are locally uncorrelated and
estimate the haze by independent component analysis. It
is physically valid but the assumption is too strong for a
variety of images, thus it tends to under-estimate the haze
thickness in practice. He et al. [8] propose a dark chan-
nel prior for natural outdoor images, which asserts that the
local minimum of dark channel (minimum of R, G, B chan-
nels) of a haze-free image is close to zero. Dark channel
prior is physically sound and generates good results, and
[8] has been the state-of-the-art algorithm for general im-
age dehazing. Most recent algorithms improve [8] only in
some particular aspects. For example, Tarel and Hautiere
[19] replace matting with “median of median along lines”
filter for efficiency, Gibson et al. [7] with standard medi-
an filter, Yu et al. [21] with joint bilateral filter; Tarel et
al. [20] adds planar constraint for road images; Caraffa et
al. [4] adds planar constraint and noise model.

Despite the remarkable progress on single image haze
removal, results generated by state-of-the-art methods are
often not satisfactory, as the different priors they use fail
on different real-world images. For example, the most suc-
cessful dark channel prior will break when the input image
contains certain structures like a white wall. As we will
show later, methods based on the dark channel prior tend to
over estimate the thickness of haze, causing result images
to be too dark and prone to color distortions, especially in
sky regions.

In this paper, we systematically investigated a variety of
haze-relevant features in a regression framework based on
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Random Forest [3]. In order to learn the regression model,
we need to collect haze-free outdoor images with accurate
scene depth maps as ground truth, which, unfortunately, are
hard to obtain. Instead, we synthesize hazy patches from
clean image patches randomly sampled from high quality,
haze-free images (not necessarily outdoor images). Surpris-
ingly, such synthetic data turns out to be effective in training
the dehazing model. This offers our model the flexibility to
learn adaptive models for specific situations, such as heavy
haze cases, light haze cases, landscape images, scenery im-
ages, and so on.

Based on the regression model and the training strategy,
we develop a more robust dehazing algorithm that outper-
forms previous methods. The learning framework automat-
ically discovers high order relationships between different
features for more accurate haze estimation. From the output
of the Random Forest regressor, we confirm that the dark-
channel feature is the most informative feature for haze es-
timation, as discovered by He et al. [8]. More important-
ly, we find that other haze-relevant features also contribute
noticeably in a complementary way. Experimental results
show that by combining multiple features, our proposed ap-
proach achieves higher quality results than state-of-the-art
methods on both real-world examples and synthetic exam-
ples, qualitatively and quantitatively.

2. Problem formulation

The haze image formation model proposed by
Koschmieder [11] has been widely used in previous
haze removal work [5, 8, 19, 7]:

I(x) = J(x)t(x) + A(1− t(x)), (1)

where I is the observed hazy image, J is the real scene to
be recovered, t is the medium transmission, A is the global
atmospheric light, and x denotes pixel coordinates. The
transmission t = e−kd(x) describes the portion of the light
that is not scattered and reaches the camera, where d(x) is
the distance from the scene point to the camera, and k is the
scattering coefficient of the atmosphere. The problem of
haze removal is to estimate J , t, and A from a single input
image I . This is difficult as vectors A, I(x) and J(x) are
coplanar and their ending points are collinear in RGB space
geometrically [8].

The real scene J can be recovered if we know atmo-
spheric light A and transmission t:

J =
I −A

t
+ A. (2)

For the time being, we assume we already have a good es-
timation of the atmospheric light A. Examining the physi-
cal properties of Eqn. (1), we can derive the following con-

straints for t (I is normalized between 0 and 1):

0 ≤ t ≤ 1, (3)
0 ≤ Jc ≤ 1, ∀c ∈ {r, g, b}, (4)

where Jc denotes the color channel c. In Eqn. (3) 0 and 1
are the physical bounds for t, and in Eqn. (4) we constrain
Jc in [0, 1] to avoid undershoot and overshoot of result im-
age (which would result in texture losing). Plugging in E-
qn. (2), the constraints in Eqn. (3, 4) translate to

max

{
1−min

c

Ic

Ac
, 1−min

c

Ĩc

Ãc

}
≤ t ≤ 1, (5)

where Ĩc = 1 − Ic is the inverse image of Ic and Ãc =
1 − Ac. Eqn. (5) shows the large ambiguity in identifying
the correct transmission t. Therefore, certain regularization
or prior on the transmission t is needed for solving this ill-
posed problem. One straightforward regularization could
be to require that the recovered image J should follow the
natural image statistics, and estimating transmission t can
be translated into an energy minimization problem:

min
t

Φ(J) (6)

s.t. max

{
1−min

c

Ic

Ac
, 1−min

c

Ĩc

Ãc

}
≤ t ≤ 1, (7)

J = (I −A)/t+ A, (8)

where Φ(·) is an energy function that penalizes solutions
far away from the natural image statistics, e.g., total vari-
ation. Depending on the particular form of Φ, the regu-
larization term on t can be fairly complicated. Instead of
designing a particular form of Φ, He et al. [8] assume that
the transmission t is locally constant, and the lower bound
1 − minc Ic/Ac filtered by a “min” filter can serve as a
tight lower bound of t. As a result, this method tends to
over-estimate the thickness of the haze in real-world photo-
s. Tarel and Hautiere [19] extend this idea with a “median
of median along lines” filter on the lower bound of t, which
lacks a principled explanation.

Finding a good form of Φ has long been a challenging
problem in the area of image restoration. In this paper, in-
stead of proposing yet another form of Φ, we approach the
problem from a different angle. Specifically, we implicitly
solve the above optimization problem by learning a direct
mapping function from the input image I to the transmis-
sion t based on some image features. To do so, we first
investigate several haze-relevant features in Sec.3 and then
discuss how to learn the implicit mapping from these fea-
tures in Sec. 4.

3. Haze-relevant features
As the first step of our approach, we extract a list of im-

age features that are related to the properties of hazy images,



(a) hazy image (b) D1 (c) D10 (d) H (e) C1 (f) C10 (g) S1 (h) S10

Figure 1: Different feature maps for the input hazy “wall” image. (a) hazy input; (b, c) dark channel feature D1 and D10; (d)
hue disparity feature; (e, f) local max contrast feature C1 and C10; (g, h) local max saturation feature S1 and S10.

detailed as follows.

3.1. Multi-scale dark channel

The dark channel of an image [8] is defined as the mini-
mum of all pixel colors in a local patch:

Dr(x; I) = min
y∈Ωr(x)

min
c∈{r,g,b}

Ic(y)/Ac, (9)

where Ωr(x) is the patch centered at x with size r × r.
r affects the performance of dark channel feature: while
a small r results in a loose bound on t, a large r lead-
s to a too strong local constant assumption on t that will
result in over-dehazing. Therefore, we combine Dr(x; I)
with multi-scale r into a multi-scale dark channel feature,
Dk = [Dr1, Dr2, . . . , Drk]. In our experiments, we use
four scales: D4 = [D10, D7, D4, D1]. Figure 1b and 1c
show the dark channel feature D1 and D10 for the “wal-
l” example. As we can see, the dark channel feature has a
high correlation to the amount of haze in the image.

3.2. Multi-scale local max contrast

From the image formation model in Eqn. (1), the contrast
of the image is reduced by the haze (t ≤ 1):∑

x ‖∇I(x)‖ = t
∑

x ‖∇J(x)‖ ≤
∑

x ‖∇J(x)‖. (10)

Based on this observation, Tan’s method [18] enhances the
visibility of the image by maximizing the local contrast. In
this work, we define the local contrast as the variance of
pixel intensities in a local r × r patch compared to the cen-
ter pixel. We further compute the local maximum of local
contrast values in a s × s region, as another haze-relevant
feature:

Cr(x; I) = max
y∈Ωr(x)

√
1

3|Ωs(y)|
∑

z∈Ωs(y) ‖I(z)− I(y)‖2, (11)

where |Ωs(y)| is the cardinality of the local neighborhood
Ωs(y). In our work, s is fixed to be 5 and r is a pa-
rameter that will vary. This feature, called multi-scale lo-
cal max contrast, is formed by stacking Cr with different
r. Again, we use four scales in our experiments: C4 =
[C10, C7, C4, C1]. Figure 1e and 1f show the contrast fea-
ture C1 and C10 for the “wall” image. The correlation be-
tween the contrast feature and haze is visually obvious, al-
though is not as strong as the dark channel feature.

3.3. Hue disparity

Hue disparity between the original image and its semi-
inverse image has been used to detect haze in [2], where
the semi-inverse image is defined as the maximum of the
original image and its inverse:

Icsi(x) = max [Ic(x), 1− Ic(x)] , c ∈ {r, g, b}. (12)

The hue disparity feature is defined as the hue disparity be-
tween the original image and its semi-inverse image:

H(I) = |Ihsi − Ih|, (13)

where the superscript “h” denotes the hue channel of the
image in Lch color space. H(I) is normalized to [0, 1] by
dividing it by the maximum 360. For haze-free pixels, not
all three semi-inverse values will flip from the original ones,
which causes large hue change between Isi and I . On the
other hand, for hazy pixels, all three semi-inverse values
will flip, thus there will not be a hue change. Hue disparity
map H is usually noisy and needs to be filtered to reduce
noise. As the noise in H is mainly impulse, we apply a
median filter to H . Figure 1d shows the hue disparity map
H , which is correlated with haze in the image.

3.4. Multi-scale local max saturation

Similar to image contrast, image saturation is also re-
duced by haze. We define local max saturation, the maxi-
mum of pixel-wise saturation values in a local r × r image
patch, as another haze-relevant feature:

Sr(x; I) = max
y∈Ωr(x)

(
1−

minc∈{r,g,b} I
c(y)

maxc∈{r,g,b} Ic(y)

)
. (14)

Similar to the image contrast feature, we use multi-
scale local max saturation in our experiments: S4 =
[S10, S7, S4, S1]. Figure 1g and 1h show the local max satu-
ration features S1 and S10 for the “wall” image, which have
strong correlations with the amount of haze in the image.

3.5. Observations

By visually examining all the feature maps for the “wall”
image shown in Figure 1, we can see that the dark channel
and the local max saturation features are most related to the



(a) hazy image (b) dark channel D10 (c) contrast C10

Figure 2: Dark channel prior fails when the scene object has
a similar color to the atmospheric light, while the contrast
feature can serve as a good complement.

haze thickness. Dark channel is positive correlated with the
amount of haze, while color saturation is negative correlat-
ed. Hue disparity can serve as a haze detection feature. The
local max contrast feature is a little scattered and its correla-
tion with haze is not as strong as other color-based features
for this example. However, as we observed through exper-
iments, it is an important complement to other color-based
features. In Figure 2, we show the dark channel and con-
trast feature maps of an example used in [8], where the dark
channel prior fails since the color of the marble is similar
to the atmospheric light. In this image, the haze thickness
of the person and the marble railing right behind him is ap-
proximately the same. However, the dark channel feature
estimates much more haze for the marble railing than for
the person. The contrast feature, instead, can give us better
haze estimation in this case.

4. Learning the haze removal model
Based on the above haze-relevant features, we can use

Random Forest to learn a regression model for estimating
the transmission t for hazy images. Random Forest is cho-
sen for its simplicity and easy analysis of feature impor-
tance. Other regression algorithms may also be used. The
difficulty for this learning is that it is very hard to get good
training data, i.e., outdoor haze-free and hazy image pairs.
Another way to prepare the training data, based on the phys-
ical property t(x) = e−kd(x), is to synthesize haze-free and
hazy image pairs given the accurate outdoor scene depth,
which, unfortunately, is also hard to obtain. In this paper,
we synthesize our training data without relying on the scene
depth as described in the following.

4.1. Training data preparation

Our training data synthesis is based on two assumptions:
(1) image content is independent of scene depth or medi-
um transmission, i.e., the same image content can appear
at different depth in different images; and (2) depth is lo-
cally constant, i.e., image pixels in one small patch tend
to have similar depth values. Although we cannot synthe-

Figure 3: Example haze-free training images collected from
the Internet.

size the relative depth of all pixels in an image, for a given
single image patch, we can assume arbitrary depth based
on the above two assumptions. This translates to the fol-
lowing preparation procedure: given a clean patch pJ , the
atmospheric light A, and a random transmission t ∈ [0, 1],
we synthesize a hazy patch pI as pI = tpJ + (1 − t)A.
To reduce the uncertainty of variables in learning, we set
the atmospheric light A = [1, 1, 1]. The clean patches are
randomly sampled from haze-free natural images collected
from the Internet. Figure 3 shows some example training
images. Note that the training images do not have to be
landscape or cityscape images, where haze mostly incurs.

Learning the regression model with Random Forest is
straightforward: the inputs to Random Forest are haze-
relevant features extracted from the synthetic hazy patch-
es and the outputs are their corresponding transmission t’s.
However, we know that our synthetic transmission is irrel-
evant to the local image texture, but our haze-relevant fea-
tures are closely related to the image content. To break the
correlation between our haze-relevant features and the im-
age content, we sort the values within each scale of each
feature type before sending them to Random Forest. By do-
ing so, we disturb the image content so the learned models
will not be content-specific. Therefore the true relation be-
tween features and transmission can be better revealed by
the learned random forest model.

4.2. Haze removal with the regression model

Atmospheric light A estimation. The first step of de-
hazing is estimating the atmospheric light. In [8] the bright-
est pixel value in the 0.1% pixels with largest dark channel
values is taken as A. This method considers only a single
pixel, thus it may be affected by noise and result in color
distortion. We improve this method by taking the median
of all the 0.1% pixels with largest dark channel values. Fig-
ure 4 compares the two A estimation methods. We can see
that our method does not suffer from color distortion, while
previous approaches do.

Testing with Random Forest. Testing with Random
Forest is straightforward. First, we apply white balance cor-
rection with the estimated A to the input image I . By that
the testing patches will have pure white atmosphere light
[1, 1, 1], which is consistent with the training procedure.
We then partition the image into 5× 5 overlapping patches



(a) hazy image (b) He et al.’s A (c) our A

Figure 4: Comparisons of different atmospheric light esti-
mation methods. Note the strong color distortion in the sky
region in (b).

and extract haze-relevant features. We aggregate the patch-
wise transmission estimations to get a transmission map,
on which we further apply guided filter [9] to suppress the
blocky artifacts. Finally the real scene can be recovered us-
ing Eqn. (2) and white balance restoration.

4.3. Robust postprocessing

With the previously described framework, some recov-
ered image regions might look too dim since the atmospher-
ic light is usually brighter than the scene radiance for some
images. For better visual quality, we provide two robust
postprocessing options for practical applications.

Adaptive atmospheric light. We notice that for some
images the “uniform atmospheric light” assumption does
not hold. As a result, the darker regions in these images
become too dark after dehazing and image details in them
are lost. Based on this observation, we make adaptive smal-
l adjustments to the atmospheric light A according to the
input image brightness:

minA

∑
x

{
(Y J (x)− Y I(x))2 + λ(A(x)−A0)2

}
+ φ(A), (15)

where A0 is the initial estimation of the atmospheric light,
Y J is the illuminance of J , Y I is the illuminance of I ,
and φ(·) is a smoothness regularization. Exactly solving
the above optimization is difficult, instead we approximate-
ly solve it using a two-step approach: (1) solve A without
the smoothness regularization, which has a closed-form so-
lution; and (2) apply guided filter GFI to smooth the solu-
tion. Let β = 1/t− 1, we have

A(x) = GFI

{
β2Y I(x) + λA0

β2 + λ

}
. (16)

Adaptive exposure scaling. Another way to resolve this
issue is to adaptively increase the exposure of the image
guided by the input:

mins

∑
x

{(
1− s(x)Y J (x)

Y I(x)

)2

+ λ(s(x)− 1)2

}
+ φ(s), (17)

where s is the illuminance scaling field. Similarly, we can
get a fast approximate solution as

s(x) = GFI

{
Y J (x)Y I(x) + λY 2

I(x)

(Y 2
J (x) + λY 2

I(x)

}
. (18)

Figure 5: Robust post processing. Top left to bottom right:
hazy image, direct dehazing, adaptive atmospheric light,
adaptive exposure scaling.

In practice we found that the above two approaches per-
form similarly. The adaptive atmospheric light works s-
lightly better for weak haze cases, while illuminance scaling
works slightly better for heavy haze cases. Figure 5 shows
one example where post processing helps with the visual
quality of the dehazed results. Adaptive atmospheric light
and adaptive exposure scaling performs similarly.

5. Experiment results
We mainly compare our approach with two existing

methods: He et al. [8], which is considered to be the state-
of-the-art method in literature, and Kolor Neutralhazer plu-
gin for Photoshop, which is a well-received commercial
software [1]. For [8] guided filter is used to smooth the
transmission map. The comparison datasets include syn-
thetic hazy patches, synthetic images from stereos, and real-
world images. We evaluate the performance of different al-
gorithms both quantitatively and qualitatively. For Random
Forest, we find 200 trees are more than enough for our re-
gression problem. The algorithm is not sensitive to the num-
ber of features selected for growing each tree, thus we fix it
to be one third of feature dimension. For a fair comparison
with the other methods, we do not apply the postprocessing
techniques proposed in Sec. 4.3.

5.1. Quantitative results on synthetic patches

We randomly sampled 7000 image patches from our
training images, and take 5000 for training and 2000 for
testing. For each patch, we uniformly sample 10 random
t ∈ [0.1, 1] to generate 10 hazy patches (we do not use very
small t to avoid noise boosting, as in He et al. [8]). There-
fore, we have in total 50,000 training patches, and 20,000
testing patches.

Effectiveness of regression. Figure 6 plots the predict-
ed transmission vs. the ground truth transmission for our
approach and He et al.’s method [8] on the testing patch-
es. We can see that in our result the predicted transmission
tpredict centers around the the 45◦ line. However, in He et
al.’s result the predicted transmission tpredict is always low-
er than (sometimes much lower) or equal to the true trans-



(a) ours, MSE=1.26e-2 (b) He et al.’s, MSE=3.18e-2

Figure 6: Predicted transmission vs. ground truth for both
methods on the test hazy patches.

Figure 7: Importance of different features output by the
Random Forest regressor.

mission t, which will result in over-dehazing results. As we
mentioned before, this is because He et al.’s method uses
the lower bound of t filtered by a “min” filter. The mean
squared error (MSE) of our method is 1.26e-2, and that of
He et al.’s method is 3.18e-2, which is more than twice as
large as ours.

Significance of different features. Figure 7 shows the
feature “importance” curve output by the learned Random
Forest regressor. Note that to show the trend more clear-
ly, we plot the importance score in the log scale. We can
see that the multi-scale dark channel features are most im-
portant among different features, and the largest scale dark
channel features D10 are the most important ones, which
confirms the dark channel prior. However, our regression
model is not relying on a single dark channel value as in [8];
it captures the high-order relationship among the dark chan-
nel features in a local patch (5× 5), and also the high-order
relationship between different kinds of features within the
local neighborhood. Therefore, our regression model can do
a better transmission estimation. Another observation from
the figure is that the importance plot demonstrates some pe-
riodic patterns. This is because each kind of features are
sorted within its own scales and the regressor tends to rely
more on the maximum or minimum statistics of these fea-
tures.

In Figure 8a, we extensively evaluate the effectiveness
of different multi-scale features in terms of test MSE of the
Random Forest regressor trained with different feature set-
tings. Symbols D,C,H, S represent the four types of fea-
tures proposed in Section 3. Superscript 4) represents the
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Figure 8: MSE on (a) synthetic test patches and (b) synthet-
ic hazy images from stereo images.

number of scales, while no superscript means a single s-
cale. Training on single scale dark channel features, the
model (RF-D) already outperforms He et al.’s method. As
mentioned earlier, this is because our regressor uses all dark
channel features in a local patch rather than only the small-
est one as in He et al.’s method. Training on features other
than the dark channel features, the model (RF-C4HS4) is
not as well as others. However, by combining single scale
dark channel features and all other features, the model (RF-
DC4HS4) significantly reduces the MSE compared to RF-D
or RF-C4HS4, indicating that other features also contribute
remarkably in a complementary way to the dark channel
features. By adding more scales to each feature type, our
model can further reduce the test MSE, and our full model
achieves significantly lower MSE compared to He et al.’s
method.

5.2. Quantitative comparisons on synthetic images

For quantitative evaluation on complete images, we syn-
thesize hazy images from stereo images with known dispar-
ity map d. Note that instead of using the physical model (1),
we simply define the transmission map as t = 0.8d. The
reason we can do so is that, the depth of indoor stereo im-
ages have very small variation, thus a small scattering coef-
ficient need to be chosen to avoid overly flat haze map. With
small scattering coefficient, the exponential function can be
well approximated by a linear function. As our method is
local, how t is generated does not really affect the conclu-
sion.

The hazy image is then generated as I = tJ + (1 − t),
where we assume pure white atmospheric airlight A =
[1, 1, 1]. Figure 8b shows the MSE of our transmission es-
timation compared with He et al.’s algorithm on five com-
monly used stereo images. The proposed method outper-
forms He et al.’s approach in all cases.

Figure 9 shows visual comparisons of different methods
on two examples: “Dolls” and “Teddy”. He et al.’s method
tends to overestimate the haze thickness, resulting in darker
results and color distortions. Note the color distortion in
the yellow rectangle areas in He et al.’s results. Kolor has
the opposite problem of underestimating the haze thickness,



input image enhanced output

Figure 11: Image enhancement with our light haze model.

and there is still a large amount of haze remaining in its
results. In contrast, our results have higher visual quality
and less color distortion.

5.3. Visual comparisons on real-world images

Figure 10 shows visual comparisons of different algo-
rithms on a few real-world examples. In these examples, He
et al.’s algorithm again overestimates the thickness of the
haze and produces dark images with noticeable color dis-
tortion. Besides over-dehazing, the color distortion of He et
al.’s results also comes from inaccurate atmospheric light A
estimation, which is sensitive to noise. Kolor’s method pro-
duces results that still have significant remaining haze. Our
results recover most scene details and maintain the original
colors. More results can be found in the project page1.

5.4. Image enhancement with light haze model

As dehazing increases image contrast and color satura-
tion, it can be used for enhancing ordinary images. One ad-
vantage of our learning-based approach is that we can train
specific models for specific applications. For general image
enhancement, we train a model for very light haze cases by
constraining the training transmission t to be in [0.5, 1]. To
validate its effectiveness, we collect several images where
the main objects are close to the camera, and apply our
model for automatic enhancement. Figure 11 shows two
such examples, which suggests that the color saturation and
contrast have been greatly improved using our algorithm.

6. Conclusion
We have proposed a learning-based approach for ro-

bust dehazing. Various haze-relevant multi-scale features
are extracted and automatically evaluated. We found dark-
channel is the most useful feature, however other features
also help significantly for achieving more accurate haze es-
timation in our learning framework. Experimental results

1http://ihome.ust.hk/˜tkt/CVPR2014/cvpr2014.htm

show that the proposed algorithm performs better than state-
of-the-art methods on both synthetic data and real-world
images. Our model also has some limitations. First, due
to the low signal-to-noise ratio in heavy haze cases, our de-
hazing model may boost noise, similar to previous work-
s. Second, the model is still based on local cues without
knowing the context, and transmission smoothing is needed
to suppress blocky artifacts. As future work we want to ex-
plore how to use semantic information, e.g. scene structure
analysis, and how to combine adaptive denoising for better
dehazing.
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Figure 9: Result on stereo images. Notice the color distortion in the rectangle regions of He et al.’s results, and the under-
dehazing effect of Kolor’s.
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Figure 10: Visual comparison of different results on real-world images.
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