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Abstract

We address the problem of populating object category

detection datasets with dense, per-object 3D reconstruc-

tions, bootstrapped from class labels, ground truth figure-

ground segmentations and a small set of keypoint anno-

tations. Our proposed algorithm first estimates camera

viewpoint using rigid structure-from-motion, then recon-

structs object shapes by optimizing over visual hull propos-

als guided by loose within-class shape similarity assump-

tions. The visual hull sampling process attempts to inter-

sect an object’s projection cone with the cones of minimal

subsets of other similar objects among those pictured from

certain vantage points. We show that our method is able

to produce convincing per-object 3D reconstructions on

one of the most challenging existing object-category detec-

tion datasets, PASCAL VOC. Our results may re-stimulate

once popular geometry-oriented model-based recognition

approaches.

1. Introduction

Formerly a dominant paradigm, model-based recogni-

tion was permanently upstaged in the 1990’s by a flurry

of view-based approaches. The main appeal of view-based

approaches was their flexibility: collecting a few example

images of the target objects and annotating their bounding

boxes or 2D keypoint locations became all the manual labor

required to build a recognition system, averting the need for

cumbersome manual 3D design and for special instrumen-

tation (3D scanners). This more data-driven approach made

it possible to attack harder problems such as category-level

object recognition, for which huge datasets have been as-

sembled, such as Pascal VOC [12] and Imagenet [11], that

have in the order of 1000 objects per category. It would

seem very difficult to assemble datasets as natural and di-

verse as these if 3D wireframe models had to be acquired

or designed and registered with the image for every object
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Figure 1. Example inputs of our algorithm, here dog images from

the Pascal VOC dataset and their associated figure-ground seg-

mentations and keypoints.

instance in it. Model-based recognition holds important ad-

vantages, nevertheless [20]: modeling the 3D geometry of

an object enables arbitrary viewpoints and occlusion pat-

terns to be rendered and recognized, and it also facilitates

higher-level reasoning about interactions between objects

and a scene.

In this paper we attack the 3D model acquisition problem

while avoiding any type of special instrumentation or man-

ual model design. We target reconstruction using only an-

notations available in detection datasets. While our focus is

on arguably the most challenging object recognition dataset

in the field, PASCAL VOC, our proposed techniques are

general and could be applied to any other object detection

dataset (e.g. [11]), as long as ground truth figure-ground

segmentations and a small number of per-class keypoints

are available, as is the case for VOC [14]. These types of

annotations can nowadays be easily crowdsourced over Me-

chanical Turk, as they require only a few clicks per image.

Our approach follows a multiview reconstruction strat-

egy. Unlike settings where multiple calibrated images of

the same object are available [15], detection datasets are

composed of uncalibrated images of different objects (they

are most often assembled from images available on the

web). We bypass the problem of establishing point corre-

spondences between different objects, which is still unman-

ageable with current technology, by relying on a small set

of consistent per-class ground truth keypoints, from which

scaled orthographic cameras are bootstrapped. We also by-

pass segmentation, another yet incompletely solved vision

problem despite much recent progress [7, 6], and rely on

ground truth silhouettes as input to our dense reconstruction

1



engine which is based on a standard visual hull algorithm.

Visual hull computation has been demonstrated to be a

simple but powerful reconstruction technique when many

diverse views of the same object are available. We adapt it

to operate on category detection imagery using a novel for-

mulation we call imprinted visual hull reconstruction which

we apply within a sampling-based approach: multiple ob-

ject reconstructions are produced by feeding the visual hull

algorithm the reference image and multiple different pairs

of other images, among those pictured from vantage points

well known to best expose the 3D shape of most objects. Fi-

nally, we select the most consistent reconstruction by max-

imizing intra-category similarity.

Our contributions span different areas of computer vi-

sion:

• For the recognition problem: a first attempt to semi-

automatically augment object detection datasets, here

instantiated on PASCAL VOC, with dense per-object

3D geometry and without requiring annotations be-

yond those readily available online.

• For the reconstruction problem: we propose a new

data-driven method for class-based 3D reconstruction

that relies only on 2D information, such as figure-

ground segmentations and a few keypoint annotations.

We have made our full source code and data freely avail-

able online1.

2. Related Work
3D reconstruction is a core problem in computer vision

and has been largely solved in the multiview rigid case [15],

when calibration and correspondences can be estimated,

as it reduces to a well-understood geometric optimization

problem. Here we are interested in class-based reconstruc-

tion, where the goal is to reconstruct different objects from

the same category, each pictured in a single image.

Model-based reconstruction. Most class-based recon-

struction methods are model-based and rely on prior in-

formation about the 3D shape of the object class. This

prior information can be, for example, a handcrafted 3D

model, such as a kinematic model for human pose estima-

tion, or a morphable model built from 3D training data.

Low-dimensional parametric models, or morphable mod-

els, have been used to represent the shape of some object

classes. They can be built from 3D scans of different in-

stances of the class, e.g. the face model in [3] and the human

body model in [1], or using meshes obtained from 3D shape

repositories, such as google sketchup [28]. The trained mor-

phable model can then be used to reconstruct from a single

image, usually with some user interaction to initialize the

viewpoint [3], for reconstruction from a depth map [10], or

for performing single-image detection and pose estimation

1http://www.isr.uc.pt/˜joaoluis/carvi

[28]. In order to partially overcome the need for 3D data,

[8] proposes a hybrid method that uses a single 3D shape

together with 2D information in order to build a morphable

model for classes such as dolphins or pigeons.

Data-driven reconstruction. In this paper we focus on a

data-driven method for class-based reconstruction that op-

erates directly on an unordered dataset of 2D images and

some associated 2D annotations. To the best of our knowl-

edge, there have only been two previous attempts at tackling

the problem in a purely data-driven fashion [27, 21]. These

two approaches build upon traditional non-rigid structure

from motion methods [5], originally developed for recon-

struction from video, and either produce sparse reconstruc-

tions [27] or have only been demonstrated on simple classes

such as flower petals and clown-fish, while requiring com-

plex manual annotations [21].

Our method differs from the above in two important as-

pects: (1) we require only a small set of keypoint corre-

spondences across images and these are not the only points

we reconstruct; instead we reconstruct dense 3D models of

the objects, and (2) we do not build a morphable model

for the class. Instead, our aim is to reconstruct every ob-

ject instance, using “borrowed” shape information from a

small number of similar instances seen from different view-

points. This makes our method applicable to classes with

large intra-class variation as those in the VOC dataset.

Dataset augmentation into 3D. The goal of populating de-

tection datasets with 3D annotations has been previously

considered for the class person [4], using an interactive

method to reconstruct a set of body joints. In contrast, we

obtain full dense reconstructions for a variety of classes. In

a related approach, [22] targeted the problem of automat-

ically bootstrapping 3D scene geometry from 2D annota-

tions on the LabelMe dataset — instead, we focus on ob-

jects. Recently and perhaps closest to our approach, Karsch

et al.[17] experimented with reconstructing VOC objects,

using manual curvature annotations on boundaries but com-

puted 2.5D reconstructions while we focus on the full 3D

problem.

3. Problem formulation
We assume we are given a set of images depicting differ-

ent instances of the same object class, which may be very

diverse in terms of object scale, location, pose and articula-

tion. We make the small simplification in this paper of not

addressing the problem of reconstructing occluded objects,

that are marked as such in PASCAL. However, we would

like to point out that, in principle, our proposed techniques

could handle the case of occlusions. Each object instance n

has a corresponding binary mask Bn, a figure-ground seg-

mentation locating the object boundaries in the image, and

Ki specific keypoints for each class i, which are on easily

identifiable parts of the object, such as “left mirror” for cars

or “nose tip” for aeroplanes. Each object instance n is an-

http://www.isr.uc.pt/~joaoluis/carvi


notated with its visible keypoints, i.e. the set (xn
k , y

n
k ) of 2D

image coordinates2.

Our goal in this paper is to generate a dense 3D recon-

struction of each of the object instances. It is easy to see

that this is a severely underconstrained problem since each

image corresponds to a different object instance. Without

additional prior knowledge, and if each instance is to be

reconstructed independently, an infinite number of recon-

structions would be available that could exactly generate the

silhouette Bn.

3.1. Our datadriven approach

Instead of relying on single view reconstruction methods

and performing reconstruction completely independently

for each instance, we leverage the information contained in

the collection of images showing objects from the same cat-

egory, by building upon the assumption that at least some

instances of the same class have a similar 3D shape. We

propose a feedforward strategy with two phases: first, or-

thographic cameras for all objects are estimated using both

keypoint and silhouette information, then a sampling-based

approach employing a novel variation of visual hull recon-

struction is used to produce dense per-object 3D reconstruc-

tions. These two phases will be explained in the following

two sections.

4. Camera viewpoint estimation and refine-

ment

The first step of our algorithm is to estimate the cam-

era viewpoint for each of the instances using a factorization

based rigid structure from motion algorithm [19]. Although

this might appear to be a suboptimal choice, several non-

rigid structure from motion algorithms make use of a similar

strategy in viewpoint estimation due to the lack of robust-

ness to noise of specialized non-rigid SFM viewpoint esti-

mates. This particular algorithm assumes that the objects

are observed by a scaled orthographic camera and requires

point correspondences across the different instances.

Using the annotated keypoints we form an observation

matrix for each instance:

Wn =

[

x1

n ... xK
n

y1n ... yKn

]

(1)

The SFM algorithm finds the 3D shape S, a 3×K matrix

that can be seen as a rough “mean shape” for the objects of

the class, motion matrices Mn and the translation vectors

Tn, by minimizing the reprojection error:

N
∑

n=1

∥

∥

∥

∥

Wn −
[

Mn Tn

]

[

S

11×K

]∥

∥

∥

∥

2

F

(2)

2These annotations are publicly available for all the 20 classes in the

VOC dataset [14].
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Figure 2. Results of the camera viewpoint estimation. Our method

provides useful insight about viewpoint distribution for the dif-

ferent classes in VOC. Here, we show the histogram of different

azimuths for “car” and a few samples of estimated elevation angle

for “aeroplane”. Note that there is significant intra-class variation.

under the constraint that MnM
T
n = (αn)

2I2×2 ∀n. This

constraint guarantees that matrices Mn correspond to the

first two rows of a scaled rotation matrix, that can be easily

converted into a full rotation matrix Rn and scale parameter

αn. The SFM algorithm used does not require that all key-

points are visible in all the instances, i.e. it can deal with

missing data. Similar to [19], we use an iterative method

with power factorization to minimize the reprojection error.

For classes with large intra-class variation or articula-

tion, we manually select a subset of the keypoints to per-

form rigid SFM. There are two types of classes that fol-

low this behaviour: the class boat and animal classes. The

class boat includes both sailing boats and motor boats and

since the sails are not present in the motor boats, we esti-

mate the camera by only considering the keypoints on the

hull. For animals, which undergo articulation, different in-

stances may have very different poses. For these classes, we

assume that the camera viewpoint is defined with respect to

the head and torso and exclude the keypoints corresponding

to the limbs or wings when performing rigid SFM. For all

classes, for robustness, we double the number of instances

by adding left-right flipped versions of each image.

4.1. Silhouettebased camera refinement
To obtain a camera estimate for a particular instance, the

SFM algorithm only uses the keypoints visible in that in-



stance. However, if we assume that S is a reasonable ap-
proximation of the shape of all the objects in the class, we
can refine the camera estimation by imposing extra con-
straints on the keypoints which are not visible. In partic-
ular, all the keypoints even the ones which are not visible,
should reproject inside the silhouette. We refine the camera
estimate Mn and Tn by fixing the shape S and minimizing
an energy function of the form:

E(Mn, Tn) =

∥

∥

∥

∥

Wn − [Mn Tn]

[

S

11×K

]∥

∥

∥

∥

2

F

+D

(

[Mn Tn]

[

S

11×K

])

(3)

under the constraint MnM
T
n = (αn)

2I2×2. The first term

of this energy is the reprojection error as in (2) and the sec-

ond term is defined as:

D

(

[Mn Tn]

[

S

11×K

])

= D

([

u1 ... uK

v1 ... vK

])

=

K
∑

k=1

C
(

uk, vk
)

(4)

where C(., .) is the Chamfer distance map from the figure-

ground segmentation Bn. A point on the mean shape S

incurs a penalty if its reprojection, given by (uk, vk), is out-

side the silhouette. To minimize this function, we use gra-

dient descent with a projection step into scaled-Stiefel ma-

trices. A similar projection step is used in [19]. Qualitative

results of our camera viewpoint estimation can be seen in

fig. 2.

This camera refinement step can also be used to estimate

the camera viewpoint of a new test image, by initializing

Mn to the identity matrix and Tn to the center of the mask.

This allows our method to reconstruct a previously unseen

image, the only requirement being that the keypoints are

marked and the object is segmented.

5. Object reconstruction

After jointly estimating the camera viewpoints for all the

instances in each class, we reconstruct the 3D shape of all

objects using shape information borrowed from other exem-

plars in the same class.

5.1. Sampling shape surrogates

In datasets as diverse as VOC, it is reasonable to assume

that for every instance n there are at least a few shape sur-

rogates, i. e. other instances of the same class that, de-

spite not corresponding to the same physical object, have a

similar 3D shape. Finding shape surrogates is not straight-

forward, however. When the surrogates have very different

viewpoint it is difficult to establish that their 3D shape is

similar to the shape of the reference object (e.g. that they are

true surrogates). A tension also exists between reconstruct-

ing from fewer silhouettes, which may result in a solution

with many uncarved voxels, and a large number of silhou-

ettes which may lead to an over-carved or even empty solu-

tion, because calibration is not exact and “surrogateness” is

Figure 3. Illustration of our clustering step. Instances which have a

viewpoint similar with one of the principal directions are clustered

together. We sample from these clusters to generate informative

triplets of exemplars for visual hull computation. The process is

repeated multiple times for each target object.

only approximate. Here we strike a compromise: we sam-

ple groups of three views, where the two surrogates of the

reference instance n are selected among those pictured from

far apart viewpoints, so as to maximize the number of back-

ground voxels carved away (see fig. 3).

Furthermore, when selecting far apart viewpoints we

took inspiration from technical illustration practices, where

the goal is to communicate 3D shape as concisely as pos-

sible, and it is common practice to represent the shape by

drawing 3D orthographic projections on three orthogonal

planes. In a similar vein, we restrict surrogate sampling to

be over objects pictured from three orthogonal viewpoints,

which we will call principal directions.

Our sampling process has three steps:

(1) Principal direction identification We found empiri-

cally that a good set of principal directions is obtained by

computing the three principal components of the set of re-

constructed keypoints S from rigid structure from motion,

using PCA.

(2) Clustering instances around the principal directions

Instances that have a viewpoint within a 15◦ difference to

one of the principal directions are clustered together. All

other instances are never chosen as surrogate views. An

illustration of this clustering step for “aeroplanes” is shown

in fig. 3.

(3) Sampling We start by selecting two of the three princi-

pal directions, with a probability proportional to the number

of instances associated with each. Then, from each of the

selected principal directions, we sample one surrogate in-

stance, which together with the reference instance forms a

triplet of views.

For three of the classes in the VOC dataset (bottle, dining

table and potted plant) the keypoints are view-dependent

since the classes have rotational symmetry [14] and 3D reg-

istration for all the instances of the class is ambiguous. Fur-

thermore, for these classes, at least one of the principal di-

rections will have no instances associated with it. Instead of

sampling surrogate instances, we use the fact that they are



symmetric and synthesize the surrogates from the reference

instance by rotating it around the axis of symmetry, every

45 degrees.

5.2. Imprinted visual hull reconstruction
Recovering the approximate shape of an object from sil-

houettes seen from different camera viewpoints can be done

by finding the visual hull of the shape [18], the reconstruc-

tion with maximum volume among all of those that repro-

ject inside all the different silhouettes. Visual hull recon-

struction is a frequent first step in multi-view stereo [23],

providing an initial shape that is then refined using photo-

consistency. Existing visual hull methods assume that the

different silhouettes project from the same physical 3D ob-

ject [13]. This is in contrast with our scenario where im-

ages of different objects are considered. Visual hull recon-

struction is known to be sensitive to errors in the segmenta-

tion and in the viewpoint estimate and it is clear that such

sources of noise are very present in our framework, and can

lead to overcarving if handled naively.

A clear inefficiency of using the standard visual hull al-

gorithm in our setting is that there is no guarantee that the

visual hull is silhouette-consistent with the reference in-

stance n, i.e. that for all the foreground pixels in the mask

Bn there will be an active voxel reprojecting on them. This

happens because the algorithm trusts equally all silhouettes.

Here we propose a variation of the original formulation that

does not have this problem, that we denote imprinted vi-

sual hull reconstruction. We will use a volumetric repre-

sentation of shape and formulate imprinted visual hull re-

construction as a binary labelling problem. Let T be the

set of instances corresponding to a sampled triplet and V
be a set of voxels. The goal is to find a binary labelling

L = {lv : v ∈ V , lv ∈ {0, 1}} such that lv = 1 if voxel v

is inside the shape, and lv = 0 otherwise. Let Cm(.) be a

signed distance function to the camera cone of instance m,

so that Cm(v) < 0 if voxel v is inside the camera cone,

and C̄(v) = maxm∈T Cm(v) the largest signed distance

value over all the cameras, for each voxel v. Visual hull re-

construction can be formulated as the minimization of the

energy:

E(L) =
∑

v∈V

lvC̄(v) (5)

To enforce silhouette consistency with the reference

mask Bn (imprinting), we need to guarantee that all the rays

cast from the foreground pixels of Bn intersect with an inte-

rior voxel. Let Rp be the set of voxels that intersect with the

ray corresponding to pixel p. Imprinting is then enforced by

minimizing energy (5) under the following constraints:
∑

v∈Rp

lv ≥ 1 ∀ p ∈ Foreground(Bn). (6)

Similar constraints have been previously used for multi-

view stereo [9], where they were enforced equally for all

Figure 4. Illustration of the imprinted visual hull reconstruction

method, for two different triplets corresponding to the same ref-

erence instance (in black). The reconstructions are obtained by

intersecting the three instances shown and their left-right flipped

versions.

Figure 5. Average mask for each of the principal directions for

the car and motorbike classes, as well as the convex hull of the 3D

keypoints obtained with SFM. These average masks are used when

ranking the reconstructions for a single instance. Note that for the

class car, there is no instance associated with the top-bottom axis

and for motorbike there is only one instance.

the images. Energy (5) can be minimized exactly under con-

straint (6), by simply setting l∗v = 1 if and only if C̄(v) < 0
or if ∃p, v = argminu∈Rp

C̄(u). We choose to formulate

our reconstruction algorithm as a labelling problem, to mo-

tivate future extensions such as adding pairwise constraints

between voxels or connectivity priors [26].

5.3. Reconstruction selection

Once all reconstruction proposals have been computed

based on different sampled triplets, the final step is to

choose the best reconstruction for the reference instance.

Here we propose a simple selection criterion reflecting a

natural assumption: reconstructions should be similar to the

average shape of their object class. Our selection procedure

first converts the voxel-based reconstructions into meshes,

then computes an average mask for each of the principal

directions. This is done by aligning all the masks of the

instances in that bin and averaging them. Afterwards, the

reconstruction is projected into a plane perpendicular with

the principal direction and the difference between this pro-

jection and the average mask associated with that direction

is measured. The final score is the sum of the three differ-

ences, one for each direction. The average masks for each

principal direction for two classes are shown in fig. 5.



6. Experiments
We consider the subset of 9,087 fully visible objects in

5,363 images from the 20,775 objects and 10,803 images

available in the PASCAL VOC 2012 training data. We use

the publicly available keypoints and figure-ground segmen-

tations [14]. VOC has 20 classes, including highly articu-

lated ones (dogs, cats, people), vehicles (cars, trains, bicy-

cles) and indoor objects (dining tables, potted plants) in re-

alistic images drawn from FLICKR. Amongst these, fewer

than 1% have focal lengths in their EXIF metadata, which

we ignored.

We reconstructed all the objects and show two example

outputs from each class in fig. 7. A much larger subset of

our reconstructions can be found in the supplemental mate-

rial. We observe that surprisingly accurate reconstructions

are obtained for most classes, with some apparent difficul-

ties for “dining table”, “sofa” and “train”. The problems

with “dining table” can be explained by there being only

13 exemplars marked as unoccluded, which makes cam-

era viewpoint estimation frail. “Sofa” has a strong concav-

ity which makes visual-hull reconstruction hard and would

benefit from stereo-based post-processing, which we leave

for future work. “Train” is a very difficult class to recon-

struct in general: different trains may have a different num-

ber of carriages, there are strong perspective effects and it is

articulated. Finally, sometimes our reconstructions of ani-

mals have either fewer or more limbs than in the image, and

certain reconstructions have disconnected components.

In all experiments, we sampled 20 reconstructions of

each reference object instance and we found our algorithm

to be very efficient: it took just 7 hours to reconstruct VOC

on a 12-core computer, with the camera refinement algo-

rithm taking around 5 hours.

6.1. Synthetic test data

We also performed a quantitative evaluation on synthetic

test images with similar segmentations and keypoints as

those in VOC. To make results as representative of perfor-

mance on real data as possible, we reconstruct using only

surrogate shapes from VOC. We downloaded 10 meshes for

each category from the web, then manually annotated key-

points consistent with those of [14] in 3D and rendered them

using 5 different cameras, sampled from the ones estimated

on VOC for that class. This resulted in 50 synthetic im-

ages per class, each with associated segmentation and visi-

ble keypoints, for a total of 1000 test examples. More de-

tails can be found in the supplemental material.

We measure the distortion between a reconstruction and

a ground truth 3D mesh using the root mean squared error

between the two meshes [2]. We normalize scale using the

diagonal length of the bounding box of the ground truth 3D

model, such that the error is a percentage of this length, and

report the average error over all the objects in each category.

Table 1 demonstrates the benefits of the different compo-

Full -CRef -SImp [25] SFMc

aeroplane 3.58 4.94 3.95 9.64 5.79

bicycle 4.30 3.26 4.75 10.51 6.56

bird 9.98 10.92 10.34 8.76 12.01

boat 5.91 6.78 6.05 8.81 6.52

bottle 8.09 10.77 8.53 6.25 12.13

bus 6.45 6.10 6.49 11.02 7.34

car 3.04 6.33 3.10 11.07 3.22

cat 6.98 7.57 7.49 11.39 9.61

chair 5.36 5.73 6.06 8.13 7.37

cow 5.44 5.24 5.83 9.17 7.50

diningtable 8.97 12.57 14.30 8.67 9.52

dog 7.08 8.38 7.19 11.61 9.91

horse 6.05 7.05 6.38 6.90 7.41

motorbike 4.12 4.24 4.16 9.24 5.32

person 7.35 7.95 7.55 9.14 19.46

pottedplant 7.72 8.15 7.99 7.58 17.86

sheep 7.18 7.15 7.66 8.77 7.16

sofa 6.11 6.24 6.31 8.06 5.75

train 15.73 20.55 16.19 17.01 17.47

tv/monitor 9.73 10.45 10.28 9.67 10.08

Mean 6.96 8.01 7.53 9.57 9.40

Table 1. Root mean square error between reconstructed and ground

truth 3D models. Lowest errors are displayed in bold. We compare

our full model (Full), with severed versions without our proposed

camera refinement process (-CRef) and reference silhouette im-

printing (-SImp). As baselines we consider a recent single view

silhouette-based reconstruction method [25] and the convex hull

of the 3D points returned by our rigid structure from motion com-

ponent (SFMc).

nents of our proposed methodology. Since no other existing

class reconstruction technique scales to such a large and di-

verse dataset using simple 2D annotations we compare to

two simple baselines: an inflation technique originally pro-

posed for silhouette based single-view reconstruction [25]

and a multi-view baseline based on our rigid SFM. Our

method is significantly better for most classes, and a visual

comparison of resulting reconstructions obtained is avail-

able in the supplementary material. Fig. 6 suggests large

gains of our simple ranking approach over random selec-

tion but also that there is much to improve with the addition

of more advanced features.

7. Conclusion

We have proposed a novel data-driven methodology for

bootstrapping 3D reconstructions of all objects in detection

datasets, based on a small set of commonly available anno-

tations, namely figure-ground segmentations and a small set

of keypoints. Our approach is the first to target class-based

3D reconstruction on a challenging detection dataset, PAS-

CAL VOC, and is demonstrated to achieve very promis-

ing performance. It produces recognizable 3D shapes for
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Random

Top−ranked

Best available

Figure 6. Average per class RMS reconstruction error when con-

sidering the top ranked, randomly selected and best available re-

constructions for each individual object. ”Random” and ”Best

available” represent, respectively, lower and upper bounds on

ranking performance.

most categories, handling widely different objects such as

animals, vehicles and indoor furniture using the same in-

tegrated framework. We believe this paper contributes to

the recently renewed interest in 3D modeling in recogni-

tion (eg. [16, 24]) and that it will facilitate progress in this

direction since it provides the first semi-automatic solution

to 3D model acquisition of detection data, which has pos-

sibly been the main obstacle to any previous attempts to

3D model-based recognition. As future work we plan to de-

velop more advanced features to rank reconstructions, better

surrogate shape sampling approaches and more constrained

forms of our imprinted visual hull optimization.
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Figure 7. Examples of our reconstructions for all 20 PASCAL VOC categories. For each object we show the original image, the original

image with the reconstruction overlaid and two different viewpoint of our reconstruction. Blue is closer to the camera, red is farther (best

seen in color). For most classes, our reconstructions convey the overall shape of the object, which is a remarkable achievement given the

limited information used as input and the large amount of intra-class variation.


