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Abstract

We present the first automatic method to remove shad-
ows from single RGB-D images. Using normal cues directly
derived from depth, we can remove hard and soft shadows
while preserving surface texture and shading. Our key as-
sumption is: pixels with similar normals, spatial locations
and chromaticity should have similar colors. A modified
nonlocal matching is used to compute a shadow confidence
map that localizes well hard shadow boundary, thus han-
dling hard and soft shadows within the same framework. We
compare our results produced using state-of-the-art shadow
removal on single RGB images, and intrinsic image decom-
position on standard RGB-D datasets.

1. Introduction

Shadow removal from single images constitutes an ill-
posed problem with more unknowns than equations to
solve. State-of-the-art shadow removal methods operating
on RGB images use custom capture (e.g., narrow-band cam-
era [7]), user interaction [16], specialized algorithms using
texture and gradient similarity [18], chromaticity and Eu-
clidean distance [8] but noneuses depth cues. With depth,
surface normals can be computed and occluding relation-
ship can be inferred, both of which are invaluable to robust
shadow removal from single images. See Figure1 for a
comparison of shadow removal with and without depth cues
using the present algorithm.

(a) (b) (c)
Figure 1. Shadow removal without and with depth cues. (a) is
the input, (b) is the result without depth consideration, (c) result
with depth cues, where the spatially varying shadow is seamlessly
removed and surface shading is preserved.

While depth and 3D information definitely help, their
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robust estimation from single RGB images remain diffi-
cult. The recent emergence of low-cost depth sensors is
likely to overcome this bottleneck. This paper proposes the
first shadow removal algorithm from single RGB-D images,
leveraging depth cues so that a simple and fully automatic
method suffices for robust shadow removal.

Unfortunately, the problem still remains ill-posed since
an RGB-D image is still formed by the complex interaction
of unknown illumination, albedo and 3D geometry (depths
are not true 3D). However, given the same surface, its im-
age typically contains both shadowed and unshadowed pix-
els of the surface. Otherwise, we might not have perceived
the surface as shadowed at all had it been completely under
shadow. Using this observation, we translate the shadow re-
moval problem into one of matching unshadowed samples
to their shadowed counterparts for ‘relighting’ the latter.

Normals computed from depth makes a direct contribu-
tion to our matching problem: pixels with similar normals,
spatial locations and chromaticity should have similar col-
ors in the shadowless image as shown in Figure1. This
assumption has an inherent limitation: lack of unshadowed
samples for removing attached shadows where all their nor-
mals point away from light. Notwithstanding, while nor-
mals provide useful information for each pixel’s shading,
the chromaticity level is strongly connected to the texture.
With no other assumptions used in this paper, both hard
and soft shadows with spatially varying intensity can be ex-
tracted, while the texture and shading under the shadow are
preserved after shadow removal.

Inspired by the recent success of the nonlocal principle
in image denoising [3] and matting [10], we introduce a
modified nonlocal matching method that is normal-aware
to sample relevant unshadowed and shadowed pixels. Us-
ing our feature similarity, a method is proposed to work in
tandem with raw depth information to compute a shadow
confidence map that localizes well hard shadow boundary,
thus handling hard and soft shadows within the same frame-
work. A standard energy minimization using the confidence
map is then used to automatically produce the optimized
shadowless image. Figure2 previews some of our results.
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Figure 2. From left to right: input shadowed image, shadowless image, depth information, shadow image, shadow confidence and shadow
boundary using our method.

2. Related Work

In the absence of shadow removal with RGB-D im-
ages, this section reviews recent and representative works
on shadow removal from single images. Intrinsic images
separation and pertinent works using single RGB and RGB-
D image input are also reviewed.

Shadow Removal. Shadow removal from a single im-
age [5] uses entropy minimization to derive an illumina-
tion invariant grayscale image for shadow removal without
resorting to any calibration; an advancement over the lat-
ter has been made in [7]. These techniques on the other
hand make several assumptions, such as Planckian lighting
(e.g., sunlight) and narrow-band cameras. Recent work [6]
completed the earlier work [5] by introducing a new tech-
nique, quadratic entropy with fast Gauss Transform to min-
imize the entropy. In [16], the proposed interactive tech-
nique allows users to mark up shadowed and unshadowed
samples with similar textures and then an energy minimiza-
tion process solves for the underlying shadow. The user-
interaction approach has been also followed by [11] and
[1]. More recently in [18] the problem of recognizing shad-
ows from monochromatic images was addressed. Variant
and invariant cues are applied to a number of classifiers for
shadow detection. In [9], hard shadow portions located on
the ground are removed by training a decision tree classifier
based on sensitive/variant features around edges. Recently,
a region-based approach [8] was proposed where pair-wise
classification of shadowed and unshadowed regions has led
to successful shadow removal results.

Intrinsic Images. Shadow and shading removal are of-
ten addressed alongside with intrinsic image estimation. In
[15], intrinsic images were separated from a single image
by classifying image derivatives as changes due to either re-
flectance or shading, followed by belief propagation to cor-
rect ambiguous regions. The recent commercialization of
low-cost RGB-D cameras (e.g., Microsoft Kinect) is likely
to make the problem more tractable. In [2] a complex, non-
convex optimization was used to obtain a smoothed depth
map and a spatially varying illumination model from which
the intrinsic images are decomposed. The same problem
was addressed in [4] with a simpler approach using nonlo-
cal regularizers for each decomposition component.

3. Shadow Removal with Depth Cues

We first present the image model, followed by presenting
our normal-aware nonlocal neighbor and feature matching,
which will be used to define the shadow confidence map for
subsequent shadow removal.

3.1. Image Model

We use the same image formation equation in [16] which
is derived from the image model used for intrinsic image
decomposition, but with a different interpretation:

I = βF (1)

whereF is the shadowless image which includesshading,
andβ is the shadowonly, a three-channel fractional factor
each in[0, 1] for scaling the respective color channel. Since
β can be different for different pixels, the equation can han-
dle hard and soft shadows with spatially-varying intensity.

Without normals, in [16] their β cannot distinguish
shadow and shading. Thanks to the use of normals from
depth for feature matching, our shadowβ excludes shading,
or equivalently, the shadowless imageF preserves shading
as shown in Figure1.

3.2. Nonlocal Feature Matching

We assign at each pixel a shadow confidence ranged in
[0, 1] to indicate the likelihood the pixel is shadowed. Sim-
ilar to nonlocal denoising and matting [3, 10], a nonlocal
neighborhood strategy is adopted to match shadowed and
unshadowed pixels except that the region will adapt to the
surface normal orientation which is described next.

3.2.1 Normal-Aware Nonlocal Neighborhood

In nonlocal denoising and matting, a spatial and isotropic
window is used for matching nonlocal neighbors. In our
case, we search within a sufficiently large window to in-
clude shadowed and unshadowed pixels which are similar
in normals, chromaticity and spatial locations. In particular,
we make the searching region normal-aware by orienting it
according to the surface normal thus making it anisotropic
in the screen space.



The bivariate normal distribution is defined as
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Suppose a pixelp with image coordinates(xp, yp)
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neighbor pixelq of (xq, yq). Then

x ∼ N2(µ,Σ) (3)
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is the covariance matrix. Consider the isotropic distribution
in the image space,
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wherer is the sampling radius for including both shad-
owed and unshadowed samples. While samples distribution
should be spatially isotropic, since most of the surfaces in
real scene are not facing the viewing direction, this will re-
sult in anisotropic distribution in image space.

(a) (b)
Figure 3. The probability density function of bivariate distribution
and the surface normal adaptive sampling are presented in (a) and
(b), respectively.

Suppose the samples are isotropically distributed in sur-
face tangent plane, then they are transformed to image space
based on the following equation:
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wherex
′ denotes the coordinates in the surface tangent

plane.M represents the rotation matrix transforming from
the tangent plane to the image plane, which can be easily
computed based on the surface normal. Thenx − µ =
M

′
x
′, whereM′ is formed by extracting the first two rows

and columns fromM. The covariance matrix in the image
planeΣ is given by

Σ = E[(x− µ)(x − µ)T ] = E[M′
x
′
x
′T
M
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′
ΣisoM

′T . (6)

3.2.2 Feature Similarity

Feature similarity is used to estimate the visual distance
between nonlocal neighborsp andq, denoted byq ∈ Np

within the above-mentioned window support. For shadow

removal, our basic assumption is pixels with similar chro-
maticity, normals and spatial locations should have similar
colors:

αc
pq = exp(

‖ch(Ip)− ch(Iq)‖2

2σ2
c

) (7)
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n

) (8)

αd
pq = 1−

‖p̄− q̄‖

max
q∈Np

‖p̄− q̄‖
(9)

where ch(Ip),n(p) andp̄ denote respectively the chromatic-
ity, normal and spatial location ofp.

Chromaticity.The chromaticity is adopted as a feature in
order to handle the texture parts of the image. The absolute
distance is appliedwithout the normalization done in [4].
In contrast to [4] where the neighbors are sampled from
the whole image, our sample distribution is less global and
thus the chromaticity variation is likely to be smaller. The
other reason lies on cases where extremely dark shadows
slightly corrupt the background’s chromaticity. This causes
the difference in chromaticity to be magnified by such nor-
malization. We setσc to be 0.15 for tolerating chromaticity
corruption error.

Normals. Surface normals are estimated based on the
depth information. Since the specific process is familiar
to computer vision community, all details are provided in
the supplementary file for gaining space purposes. Nor-
mals help to distinguish shading and shadow, both of which
exist in low frequency domain, since normals can indicate
whether the illumination change is caused by shading or
irradiance blocking. Significant illumination variation for
pixels with the same normal is likely to be caused by occlu-
sion. Theσn parameter is set to 0.5 in our experiments.

Spatial locations.Unlike αc
pq, normalization is done for

αd
pq to account for scale variation. While such relative sim-

ilarity linearly penalizes neighbors away from the center,
the distribution radiusr can be increased to compensate the
effect.

3.2.3 Shadow Confidence

The feature similarityαpq between nonlocal neighborsp
andq is

αpq = αc
pqα

n
pqα

d
pq (10)

The confidence ofp being shadowed, denoted byC (p), is
estimated based on the feature similarity between nonlocal
neighbors:

mp =
1

∑
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αpq

∑
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αpqIq (11)
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C (p) =
Dp

|Np|

∑

q∈Np

αpq (13)

wheremp is the corresponding weighted average intensity
based on their similarity. There are three cases:

Both shadowed and unshadowed pixels exist. If p is
shadowed, thenIp will tend to be lower than the average
thus yielding high confidence. Otherwise the confidence
values will be clamped to 0 owing to themax function.

All neighbors are unshadowed pixels. ThenIp will be
very close to the average leading to an extremely low confi-
dence.

All neighbors are shadowed. Then the confidence will be
low either. However, the proposed sampling strategy with
the right choice ofr has inhibited this case. Moreover, if it
does happen, the term1

|Np|

∑

q∈Np
αpq in Eq. (13), which

regulates the shadow confidence by the average similarity,
acts as the bootstrap when the estimated confidence is unre-
liable due to only few similar neighbors being present (i.e.,
low average similarity).

The complex nature of real scenes imparts unavoidable
error during the estimation of the confidence map, which is
caused by depth inaccuracy along object boundary and dark
textures. Such error can be ameliorated by the smoothing
constraint in the optimization which will be introduced in
Section3.3.

3.2.4 Shadow Boundary Confidence

The removal ofhardshadow boundary over a textured area
constitutes one of the most challenging tasks in shadow re-
moval. Background texture and shadow boundary details
co-exist locally in the high frequency domain making it dif-
ficult to identify the main cause for the irradiance change.

To deal with this complex situation, the prevailing ap-
proach is to isolate the boundary information from the tex-
ture details intersecting in high frequency in order to esti-
mate the shadow limits. Segmentation-based method [6] is
not general due to thea priori information provided clear
boundaries, and probability-based method [16] relies on
user hints. We propose a new approach, namely, shadow
boundary confidence, which is based on the assumption
that illumination change caused by shadows in a fairly large
scale is greater than the one caused by texture.

To make the boundary confidence bias to neither shadow
nor non-shadow area, we compute a confidence measure
called “nonlocal bright” confidence:

Bp = 1− exp

(

max(Ip −mp, 0)
2

2σ2

)

(14)

C
B
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∑

q∈Np

αpq (15)

Note that theC previously defined can be regarded as
the corresponding “nonlocal dark” version, now denoted as

CD . For both dark and bright confidence we compute the
windowed total variationD andwindowed inherent varia-
tionL, which are introduced in [17]:

D{B ,D}
x,y (p) =

∑

q∈R(p)

gp,q|∂x,yC
{B ,D}
q | (16)

L{B ,D}
x,y (p) = |

∑

q∈R(p)

gp,q(∂x,yC
{B ,D}
q )| (17)

whereR(p) is the rectangular region centered atp andgp,q
represents a weighing function defined by a Gaussian fil-
ter. Intuitively shadow boundary contributes more direc-
tional gradients than textures, leading to a largerL. Thus
the overall shadow boundary confidence is defined as:

V {B ,D}(p) =

√

L
{B ,D}
x (p)2 + L

{B ,D}
y (p)2

√

D
{B ,D}
x (p)2 +D

{B ,D}
y (p)2 + ǫ

(18)

C
bound

p =
√

V B(p)V D(p) (19)

ǫ is set to prevent zero division. The estimated boundary
confidence will be used in the regularization of the smooth-
ing constraint during optimization.

3.3. Shadow Removal

The shadow confidence map is used to optimize theβ
(andF = I/β). The input RGB image is first transformed
to the logarithmic domain:

ip = bp + fp (20)

The energy minimization formulation is:

E(b) = EF (b) + λSES(b) + λAEA(b) (21)

whereb is the set of allβ to be optimized,EF (b), ES(b)
andEA(b) are respectively the shadowless constraint term,
the smoothing constraint term and the absolute scale con-
straint term.

3.3.1 Shadowless Constraint Term

Recalling our basic assumption that unshadowed pixels
with similar features are likely to have the same color or
illumination. Two pixelsp and q with a large similar-
ity αpq tend to have same shadowless imagef , that is,
bp − bq = ip − iq. The shadowless constraint is defined
as

EF (b) =
∑

p

C (p)
∑

q∈Np

αpq‖bp − bq − (ip − iq)‖
2 (22)

Recall also thatC (p) contains themax function to truncate
negative values to 0, which means that pixels brighter than
the mean value will be assigned with a confidence value
equal to 0. In practice, a thresholdthrec is applied, typically
set as 0.1, in order to exclude pixels with low confidence.
This significantly reduces the computational load when the
majority of the pixels are unshadowed.
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Figure 4. Indoor scenes. From left to right: input shadowed image, the albedo image by Chen and Koltun [4], the shadowless image of Guo
et al. [8], and the shadowless image of our method. Specific areas are zoomed for better visualization. Refer to supplemental material for
other results.

3.3.2 Smoothing Constraint Term

Consider soft shadows whereβ varies slowly, in contrast
with hard shadows where a rapid change exists across the
boundary. A smoothing constraint onβ that is aware of hard
shadow boundary is needed. The smoothing regularization
should also ameliorate sparse errors in the confidence map,
which is defined as

ES(b) =
∑

p

(1− C
B (p))

∑

q∈N l
p

‖bp − bq‖
2 (23)

whereN l
p denotes the local spatial neighbors.

3.3.3 Absolute Scale Constraint Term

During the optimization process, there exist pixels that
should not participate in the process: they are neither high
confidence pixels (NC = {p|C (p) > threc}) nor neighbors
of high confidence pixels (NN = {

⋃

p∈NC
{q|q ∈ Np}}).

Pixels not existing in the union of the two sets are the ones
that should maintain their colors (i.e.,β = 1) and should
not be involved in the shadowless constraint. Since pix-
els involved in this term are usually located relatively dis-
tant from the shadow area and only smoothing regulariza-
tion will be imposed on them, they have little impact to the
shadowless regularization.

EA(b) =
∑

p∈N\(NC∪NN )

‖bp − 1‖2 (24)

whereN represents the whole pixel set.
The absolute scale constraint is also essential because the

shadowless constraint reconstructsβ up to a scale, where in
Eq. (22) ‖((bp − γ)− (bq − γ))− (ip − iq)‖2 for any real
and positiveγ can be used to produce the same effect.

4. Experimental Results

This is a first major attempt to demonstrate depth cues
can significantly improve shadow removal results with a
simple strategy as described, and we expect other state of
the art shadow removal algorithms to benefit when depth
cues are taken into consideration. All softwares have been
developed in the MATLAB 2012b environment, while all
experiments were executed on a laptop with an Intel Core
Duo 3.00GHz CPU with 8GB RAM. For an image of size
640 x 480 it typically takes 5 to 7 minutes, noting that the
processing time varies with the total number of unshadowed
pixels and those that are uninvolved in the energy minimiza-
tion.

Due to space limitation we highlight a subset of our re-
sults in the paper. Refer to the supplemental material for all
the results. A set of 30 images were collected from two dif-
ferent datasets commonly applied in RGB-D method eval-
uations. The NYU dataset [14] comprises of indoor scenes
while the Cornell dataset contains both outdoor [13] and
synthetic [12] RGB-D images. The goal here is to demon-
strate that the proposed algorithm constitutes a generic so-
lution independent of the scene nature (indoor, outdoor or
synthetic) as compared to the latest state of the arts [8] and
[4]. Chen and Koltun [4] is the most recent state of the art
for intrinsic image separation from single RGB-D images.
Their albedo image, which is supposed to be free of shading
and shadow, is compared while noting that this is not ex-
actly the shadowless image we optimize for. In the absence
of shadow removal methods that use depth cues to the best
of our knowledge, Guo et al. [8] is compared since it is the
state-of-the-art shadow removal focusing on outdoor scenes
with considerably high quality results. Moreover, since Fin-
layson et al. [5, 7] results for outdoor images are state of the
art, comparison will be presented in supplementary mate-
rial for gaining space. A comparison with interactive tech-
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Figure 5. Outdoor scenes. From left to right: the house-yard, the road and the school-yard are depicted. For each scene, we respectively
show the input shadowed image, the shadowless image by Guo etal. [8], the albedo image by Chen and Koltun [4], and the shadowless
image by our method. Refer to supplemental material for other results.

niques [16, 1] will also be presented based on the same used
images, since the high complexity of shadows and the scene
in the indoor/outdoor images in [14, 13] does not allow easy
user interaction. Although quantitative comparison is rare
for previous shadow removal works, we give one based on
the synthetic images, by comparing the Mean Square Error
(MSE) and the Structural Similarity Index Method (SSIM)
between the corresponding ground truth shadowless images
and the shadowless results.

4.1. Indoor Scenes

Ten indoor images are selected from the NYU dataset
which was captured by both the RGB and depth camera us-
ing the Microsoft Kinect. The corresponding aligned depth
maps are also provided and used in our method and [4].
Since [8] does not take into consideration the depth infor-
mation, only the RGB image is used as the algorithm’s in-
put. Figure4 shows the most representative results.

The complexity of the selected indoor images is obvious
with all multi-sized objects casting shadows to the rest of
the scene. The majority of soft or hard shadows are suc-
cessfully detected and removed by our method. In [4], the
shadow portions of the images are also detected, a fact that
also justifies the significance of depth. However, there exist
portions that have been missed basically due to its global
nature. Specifically, a globally spatial smoothing constraint
is imposed as regularization term of indirect illumination.
Therefore, a locally rapid change of illumination cannot be
handled successfully. In Guo et al. [8] the matching pair
approach considering the RGB average intensity or chro-
maticity features partially removes the shadowed portions.
However, this method takes into consideration the environ-
mental light (reflections) and the direct light (sun), the latter

missing in indoor scenes and thus the shadow detection per-
formance is adversely affected. Conclusively, it should be
noted that despite our high shadow removal performance,
attached shadow areas (see bed sides in Figure4) where nor-
mals point away from light are better handled by [8] and [4].

4.2. Outdoor Scenes

The complexity of outdoor scenes is widely known to the
shadow detection community raising the challenge level.
Since depth information is necessary in our method, the
dataset published by Saxena et al. [13] has been selected
for this experiment. The specific dataset contains numerous
outdoor images along with the corresponding depth maps,
10 of which are selected for evaluating the tested algo-
rithms.

The results depicted in Figure5 justify the good perfor-
mance of [8], since the majority of the shadow portions are
detected. However the chromaticity of the shadowless im-
ages seems to be locally affected. In [4], even the most
complex shadowed areas are detected but the removal pro-
cess is not satisfying. On the contrary, the proposed method
manages to detect and remove the majority of the shadowed
portions producing high quality results favorably compared
to [8]. However, for outdoor scenes under strong sun-
light, the chromaticity of shadow regions is usually cor-
rupted making it difficult to strike a good balance between
removing shadows and preserving texture. It should be also
noted though that raw outdoor depth information can be
often inaccurate affecting the algorithm’s performance i.e.
missing depth information in distant areas like background
trees, building’s facade and school building’s passagewayin
Figure5 leads to failure shadow removal cases. Although
[8] does not have to cope with this issue using only the RGB
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Figure 6. Synthetic scenes. The plate, the mug and the martini glass are depicted. For each scene, we respectively show the input shadowed
image, the albedo image by Chen and Koltun [4], the shadowless image by Guo et al. [8], the shadowless image by Wu et al. [16] and the
shadowless image by our method. Refer to supplemental material for other results.

image, still our results are convincing in most cases.

4.3. Synthetic Scenes

A dataset created by Saxena et al. [12] provides us with
numerous RGB-D synthetic images illustrating single ob-
jects along with their corresponding shadows. Considering
their shadow complexity, 10 images have been selected for
the experimental evaluation of our algorithm. Some sample
results are depicted in Figure6.

Although the synthetic scenes are arguably simple, they
still present challenges to the state-of-the-art methods.The
absence of direct lighting condition seriously affects there-
sults produced by Guo et al. [8] which is designed to oper-
ate mainly on outdoor images. On the contrary, Chen and
Koltun [4] successfully detects and partially removes the
shadow parts of the image. However, the boundary effect
cannot be properly smoothed the same as [16]. Since [4]
is focused on distinguishing the reflectance variation from
shading, the aforementioned phenomenon is not considered
within the optimization process. In [16], the boundary
effect is considerably better but still noticeable. On the
other hand, the shadow boundary confidence (Eq.13) in our
method can alleviate the boundary artifact.

Since the ground-truth images can be easily created for
the synthetic images, a quantitative comparison is also pre-
sented hereafter. The perceptual quality of the shadowless
imageF is assessed based on SSIM which takes the HVS
into consideration. In addition, the MSE measuring the in-
tensity distance betweenF and the ground truth images is
calculated for: the local foreground object, the local back-
ground under the extracted shadow, and the complete im-
age. The results indicate that our proposed algorithm satis-
fies the perceptual requirement preserving also the error in
low levels. Note that the foreground area in [16] is masked
off from any processing achieving slightly better perceptual

results.

MSE MSE MSE SSIM
Foreground Background F F

[16] - 2.791 4.667 0.9974
[8] 39.540 342.473 312.560 0.9846
Ours 32.630 1.139 3.675 0.9956

Table 1. Quantitative results on synthetic images. The average
MSE and SSIM values of [16], [8] and our method.

4.4. User-assisted Methods

Shadow removal using user-assisted methods are hard
to be applied in the outdoor images [13] and indoor
scenes [14] due to their high complexity. Therefore, it
seems fair to have a comparison with [1] and [16] based
on their image results and in particular, on textured images.
Since they do not use depth, we turn off the depth cue in
our algorithm for comparison. Figure7 shows that our al-
gorithm produces the shadowless images which are compa-
rable if not of higher quality, justifying our texture treatment
using chromaticity, windowed total variation and windowed
inherent variation in [17]. Moreover, our method is fully
automatic and can be applied to complex indoor or outdoor
scenes.

4.5. Application

Using our shadow removal as preprocessing, we found
that intrinsic image separation can be significantly en-
hanced. For instance, since the goal in [4] is to decompose
a single RGBD image into the corresponding albedo and
shading image, the use of the shadowless image produced
by our algorithm contributes considerably in their final re-
sults as shown in Figure8. We expect other state-of-the-art
methods can directly benefit using our shadowless images.
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Figure 7. Comparison with user-assisted shadow removal on tex-
tured surfaces. (a) is the input. (b), (c) and (d) are shadowless
images respectively produced by [1], [16] and our method.

5. Conclusions and Limitations

We have presented a novel method that capitalizes depth
cues to successfully detect and remove shadows from still
images. Surface normals are estimated from depth obtained
from low-cost sensor for the automatic shadow detection
and removal on real-world photos. Our method uses a mod-
ified nonlocal matching where feature similarity is defined
by normals, chromaticity, and spatial locations. The pro-
posed shadow confidence boundary model detects both hard
and soft shadows and adaptively applies smoothing along
the boundary. The performance of our algorithm has been
evaluated using indoor, outdoor and synthetic datasets. A
comparison with four related algorithms have demonstrated
the high quality results.

Generally our method’s performance can be affected by
the non-existence of corresponding unshadowed samples.
A satisfying ratio between shadowed and unshadowed pix-
els has been experimentally justified to be at least 1:1. How-
ever, failure cases are generated by dealing with attached
shadows where the corresponding normals point away from
light and areas and completely under shadow areas, both
of them lacking of unshadowed samples. Moreover, the al-
gorithm’s performance is connected to the accuracy of the
input depth map, while noting that we do not need very
accurate depth to produce good results as shown in our
experimental section. Aforementioned limitations/failure
cases for single-image RGB-D shadow removal can in fact
be overcome, e.g., with better depth sensors and relaxing
full automation: one mouse click to cluster normals of
the same material for removing attached shadows. Con-
clusively, datasets with outdoor and synthetic RGB-D im-
ages with accurately aligned depth maps are still missing.
With the growing popularity of RGB-D sensors, we expect
a more thorough RGB-D datasets for shadow removal is un-
derway.
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