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Abstract

In this paper, we propose an efficient method to recon-
struct surface-from-gradients (SfG). Our method is formu-
lated under the framework of discrete geometry processing.
Unlike the existing SfG approaches, we transfer the contin-
uous reconstruction problem into a discrete space and effi-
ciently solve the problem via a sequence of least-square op-
timization steps. Our discrete formulation brings three ad-
vantages: 1) the reconstruction preserves sharp-features, 2)
sparse/incomplete set of gradients can be well handled, and
3) domains of computation can have irregular boundaries.
Our formulation is direct and easy to implement, and the
comparisons with state-of-the-arts show the effectiveness of
our method.

1. Introduction

The reconstruction of surfaces from estimated gradients,
calledsurface-from-gradients(SfG), is an essential step for
the methods such asshape-from-shading(SfS) [1] andpho-
tometric stereo(PS) [2]. SfS and PS methods can estimate a
dense and noisy gradient field, which is used to calculate the
height field by integration. Mathematically, a gradient field
generated from a three-dimensional surface should be inte-
grable – that is the integral along any closed path should be
equal to zero and integration results should be independent
to the selection of path choice. However, in practices, the
gradient fields produced by PS (or SfS) are rarely integrable
due to the inevitable noises generated during the estimation
process. To integrate a noisy gradient field for obtaining a
continuous surface, prior methods (e.g., [3, 4, 5, 6, 7]) en-
force the integrability constraints over the entire gradient
field. Such enforcement perturbs the input gradients, which
also are the indicated normal vectors of surfaces to be re-
constructed. As a result, it is effective in curbing noises for
the objects with smooth surfaces. But when applying this
enforcement on objects with sharp features, it smooths out
the sharp features and leads to large distortion.

In this paper, we reformulate the surface estimation prob-
lem in a discrete setup so that avoid to adding the integrabil-

ity constraints. Specifically, the surface to be reconstructed
is computed on a mesh modelM consists of many facets
(see Figure1), where each facet is corresponding to a sam-
ple in the gradient field. After converting the gradients at
samples to the target normal vectors of the facets, adiscrete
geometry processing(DGP) method is conducted to deform
the meshM to let its facets follow the demanded normal
vectors. The deformation ofM is computed iteratively. In
each iteration, a local shaping step is first performed to de-
termine the position and orientation of each facet according
to its target normal and its current shape. Then, a global
blending step is applied to glue all the facets (have been
broken after the local shaping) back into a connected mesh
surface. The blending is formulated under a least-square
optimization framework, which can be solved efficiently.

Comparing to the prior research, we directly manipulates
the discrete geometry of a piecewise linear surface. To the
best of our knowledge, this is the first approach formulat-
ing the SfG problem in DGP. Advantages of the DGP-based
formulation are three-fold:

• Sharp-feature Preservation: As the normal vectors
are only enforced inside facets in the local shaping
step, sharp-features can be formed along the boundary
of facets. Meanwhile, the surface smoothness is pre-
served by the least-square optimization in the global
blending step.

• Incomplete Data: The formulate of our DGP-base
SfG approach can be applied to incomplete data sets,
in which the gradients on some pixels are not known.
Examples with up to55% information missed can be
successfully reconstructed.

• Irregular Domain Boundary: Benefit from trans-
forming the computing media to a mesh surface, the
reconstruction of surfaces with boundaries in general
shapes can be easily supported by our approach.

Besides, our direct formulation can be easily implemented
– a primary code in MATLAB contains only 95 lines. Our
method outperforms conventional and state-of-the-art ap-
proaches in experiments on a dataset with 20 real or syn-
thetic models.
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Figure 1. The computation ofsurface-from-gradients(SfG) is for-
mulated as adiscrete geometry processing(DGP) problem: (left)
the mesh surface before processing, (middle) the facets are posi-
tioned along the orientation of target normals in the local shaping
step, and (right) the facets are glued together into a mesh surface
in the global blending step. The final result can be obtained by
applying the steps of local shaping and global blending iteratively.

2. Related Work

Surface-from-gradients is a problem studied for many
years. At the early stage, it appears as an auxiliary algo-
rithm of SfS and PS in estimating depths from gradients.
After being developed for decades, the existing approaches
can generally be classified into two main categories: the
ones based on enforcing integrability constraints and the
methods fitting kernel basis functions. We briefly review
these approaches as well as the local/global approaches in
discrete geometry processing that inspire our work.

Integrability Enforcement: The first approach of integra-
bility enforcement is proposed by Frankot and Chellappa
[3], where they enforce integrability by projecting a dense
non-integrable field of gradients onto a set of integrable
slopes using the Fourier basis functions. In [8], an inte-
grable surface is defined in terms of an orthonormal set of
gradients field, and then the gradient field is partially pro-
jected onto the gradient space to obtain a partially integrable
field. Kovesi [6] projected the input dense gradients onto a
set of wavelet basis functions that satisfy the constraintsof
integrability. The approach of Goldman et al. [9] aimed at
solving the problem of PS with spatially varying BRDFs,
where the surface is estimated from the projected gradi-
ents that are integrable. The integrability was also enforced
by using the zero curl constraints in [10]. After that, they
demonstrated a general framework in [7], under which mul-
tiple approaches, including Poison [4], Fourier basis func-
tion [3], alpha-surface [7], M-estimator [11], regularization
[12], and anisotropic diffusion [13] can be generated by the
same objective function. However, a common problem of
approaches enforcing integrability is that important sharp-

features may be lost when the integrability constraints are
not satisfied on the input gradients.

Kernel Method: The method introduced by Ng et al. in
[14, 15] assumes the input set of gradients can be either
dense or sparse. Their approach transforms the integration
problem into a high-dimensional fitting problem, which can
be solved by using certain kernel basis functions. Their ap-
proach can deal with the outlier and also claims to have
good performance in repairing missing data. One charac-
teristic of their method is that it always outputs continuous
surfaces by distorting the input gradients to satisfy the con-
straints of continuity. As a result, over-flat results couldbe
generated – this is also observed in our experimental tests
by using the source code provided by Ng et al. [16]. For a
SfG problem withn unknown heights to be determined at
the grid nodes, their algorithm needs to solve a system of
linear equations with the size of3n×3n, which is triple the
size of linear systems solved in our formulation.

Discrete Geometry Processing: Unlike prior approaches,
our work is completely based on a DGP formulation to solve
the SfG problem. We convert the input gradients into nor-
mal vectors to be satisfied on the facets of a mesh surface
M , and then deformM into a shape following these de-
manded normal vectors. As will be discussed in the follow-
ing section, a straight-forward formulation for solving this
problem is constrained deformation (ref. [17, 18]). How-
ever, as the constraints in facet normal are not linear to the
positions of mesh vertices, the computation could converge
very slowly. Recently, following the strategy of local/global
formulation [19, 20], the non-linearly constrained geometry
processing problems are solved by iteratively applying the
local projection and the global blending step (ref. [21]).
This motivates our formulation, in which the orientation
of facets is adjusted in a local shaping step and the mesh
surface is deformed according to the new orientations in a
global least-square optimization. Besides, this approachis
further extended to process the cases with sparse normals
and/or singular normals.

3. SfG as Discrete Geometry Processing

We consider the surface-from-gradients problem as a
mesh deformation problem in discrete geometry process-
ing. The input of SfG is usually a set of 2D points in the
image domain, where each point is assigned with an input
gradient(p, q) with p andq being thex- andy-components
of a gradient. The output is assumed to be aC0-continuous
surface. To solve the SfG problem, we make a DGP setup
as follows.

• For every sample(i, j), a quadrangular facetfi,j is
constructed for it.fi,j ’s boundary is defined by four
verticesvi,j , vi+1,j , vi+1,j+1 andvi,j+1.



Figure 2. An illustration of the local/global solution for the SfG problem, where each iteration consists of a local shaping step followed
by a global blending step. The point,v, denotes the current position of vertices andCis represent the feasible regions determined by the
target normals on facets.

• Every vertexvi,j is initially positioned on thexoy
plane with coordinate((i − 1

2
)h, (j − 1

2
)h, 0). h is

the user specified pixel width as an input.

• The mesh surfaceM is now constructed by the set of
vertices and quadrangular faces. The geometric shape
of a sample(i, j) in the image space is represented by
the facetfi,j in the Euclidean space.

Without loss of generality, the input gradient(p, q) specified
at a sample can be converted into a normal vector of the
corresponding facet as:n = (−p,−q, 1)/

√

p2 + q2 + 1.

3.1. Constrained optimization

Given the target normal vector,ni,j , for each facetfi,j ,
we are going to lift up the mesh surfaceM by moving
every vertexvi,j away from thexoy plane to a new posi-
tion ((i − 1

2
)h, (j − 1

2
)h, di,j)). Thex- andy-coordinates

of vertices will not be changed and the values ofdi,js
are unknown variables to be determined in this setup. A
straightforward formulation of this problem is to minimize
the shape variation meanwhile fulfilling the requirement on
facets’ normals as hard constraints. That is,

min{di,j} E(M) s.t. n(fi,j) = ni,j

whereE(M) is a functional measuring the shape variation
(and/or smoothness) ofM andn(· · · ) returns the normal
vector of a facet. As discussed in [22, 23], computation of
this optimization converges slowly and may lead to large
distortion. More seriously, unlike most deformation setups
in geometric modeling, here the initial shape ofM does not
satisfy the hard constraints – i.e., the initial value is outof
feasible region. Directly computing the values of{di,j} by
constrained optimization is hard to obtain a surface follow-
ing the input gradients. Moreover, to enforcen(fi,j) = ni,j

on facets is too restrictive for letting the normal vectors of
resultant surfaces follow the input gradients. Instead, our
formulation solves a weak form of the constraints – that is,
n(fi,j)//ni,j .

3.2. Local/global solution

We solve the problem of deforming a mesh surfaceM
according to requested facet normals by a local/global strat-
egy. For a vertexv, a local shaping step can be taken in its
four adjacent facets to adjust their orientations. As a result,
four facets with new orientation will give four target posi-
tions ofv. As illustrated in Figure2, if the target orientation
of each facet is considered as a feasible region (e.g.,Ci in
Figure2), the local shaping step actually project the current
position ofv onto its closet points in the feasible regions.
Thereafter, a global blending step is applied to determine a
compromised position ofv according to the projected four
positions, which determines a new shape of mesh surface
M . Iteratively applying these two steps can result in a shape
of M agree with all the requested normal vectors on facets.

Geometrically, such a local/global approach mimics the
phenomenon of first projecting a particle (formed by all the
unknown variables{di,j}) onto the feasible regions one by
one and then blending the projected positions. Repeatedly
applying the projection and the blending, the particle will
be iteratively dragged to a position in the overlapped area
of all feasible regions – that is the solution satisfying allthe
normal requirements on the facets ofM .

Now, we analyze the reason why this local/global ap-
proach outperforms other existing methods. The ‘magic’
comes from the local/global decomposition. The local step
avoids the problem of finding a good initial guess that
is needed by most optimization methods in solving non-
convex problems, in which iterations with a ‘bad’ initial
guess can be easily stuck at local optimum. In short, the
advantage of our approach is to solve a non-convex prob-
lem by a local shaping step to estimate good starting points
for the following global blending step, which is solving a
convex problem.



4. Formulation in DGP

This section details the formulation for solving the SfG
problem under the framework of local/global geometry pro-
cessing. The efficient numerical scheme for determining
the positions of vertices in iterations is also discussed. The
cases with sparse input gradients and singular normals are
also considered.

4.1. Local shaping

In the local shaping step, the vertices of a quadrangu-
lar facetfi,j are projected onto the plane with the normal
ni,j , where the plane is supposed passing through thecur-
rent center,ci,j , of fi,j .

ci,j = (ih, jh,
1

4
(di,j + di+1,j + di+1,j+1 + di,j+1)) (1)

The projection of a vertexvk,l alongz-axis onto the plane
can be obtained by

pi,j(vk,l) = czi,j −
[nx

i,j(k − i)h+ n
y
i,j(l − j)h]

nz
i,j

(2)

with k ∈ {i, i + 1} andl ∈ {j, j + 1}. The superscript in
{x, y, z} indicates thex-, y- andz-components of a vector
respectively. The projection gives a new depth component,
dk,l, for the vertexvk,l (as illustrated in Figure3(a)). A
vertexvk,l of M surrounded by four facets will have four
projected positions computed by Eq.(2). Simply assigning
vk,l to the average position of these four points does not
lead to a good result. A more sophisticated blending method
is developed below.

4.2. Global blending

In the global blending step, we wish to deformM to a
shape that the positions of the vertices in every facet (e.g.,
fi,j) give the same shape as the projected facet. Specifically,
let z(fi,j) denote a column vector of the facetfi,j formed
by its vertices’s depths as

z(fi,j) =
[

di,j di+1,j di+1,j+1 di,j+1

]T
. (3)

The vector of projection,pi,j(· · · ), for fi,j is defined as
p(fi,j). On an optimal shape ofM , the vectorsz(fi,j)
andp(fi,j) should represent the same shape of a facet. A
straightforward formulation is to minimize a functional

Φ({dk,l}) =
∑

fi,j

‖z(fi,j)− p(fi,j)‖
2, (4)

which enforcesz(fi,j) to have the same value asp(fi,j).
By minimizing the above functional can eventually ob-

tain a mesh surfaceM , the face normals of which are close
to the target ones. However, the enforcement of letting

Figure 3. The illustration for (a) the projection of local shaping
and (b) the optimal result in global blending based on the relative
vectors w.r.t. the centers (i.e., blending with mean-substraction).

z(fi,j) = p(fi,j) is too restrictive. In practice,z(fi,j) and
p(fi,j) are only expected to represent the same shape in-
stead of coincident. Borrowed the idea of [21], we formu-
late a new functional by comparing their relative vectors
with reference to their own center. This can be realized by
subtracting the mean of vertices insidez(fi,j) andp(fi,j).
For this purpose, a matrixN can be defined as

N = I4×4 −
1

4
1, (5)

where1 is a4× 4 matrix with all elements equal to1. Note
that, Nz(fi,j) returns the relative vectors ofz(fi,j) with
reference to its own center, and the same rule applies to
Np(fi,j). Then, the functional with mean-subtraction is
defined as

Φ({dk,l}) =
∑

fi,j

‖Nz(fi,j)−Np(fi,j)‖
2. (6)

As shown in Figure3(b), this functional returns minimum
when z(fi,j) andp(fi,j) having the same shape and the
same orientation. Figure4 shows a comparison on the speed
of convergence, where the same input is tested on the func-
tionals with vs. without mean-subtraction.

4.3. Numerical scheme

Without loss of generality, the mesh surfaceM is as-
sumed to haven vertices andm quadrangular facets. As
M is a two-manifold quadrangular mesh surface, we have
n ≃ m. The minimum of functional in Eq.(6) can be ob-
tained by solving a linear system withn equations such as
∂Φ/∂dk,l = 0. When computing in this way, the linear sys-
tem will need to be constructed and solved repeatedly for
many times. A more efficient numerical scheme is devel-
oped below.

First of all, the functional in Eq.(6) can be reformulated
into the form as

Φ({dk,l}) = ‖Ax− b‖2, (7)

whereA is a 4m × n matrix derived fromNz(fi,j), b is
a vector with4m components derived fromNp(fi,j). The



Figure 4. Statistics show that the computation using mean-
subtraction converges in 2 iterations on this example while the
computation without mean-subtraction takes a few thousand steps.

vectorx contains all the unknown depth values on the ver-
tices ofM . This is a standard least-square problem, which
can be solved by

ATAx = ATb. (8)

Here,A only depends onN and the connectivity of vertices
onM , which are invariant during the iteration. Therefore,
we conduct Cholesky factorization to pre-factorizeATA,
and only need to substitute the pre-factorized results to de-
termine the values ofx during iterations.

4.4. Extensions

A computing domainΩ with irregular boundary can be
easily solved in our framework. We construct facets only for
the pixels falling insideΩ. Unlike other approaches based
on numerical PDE solver (e.g., [4]), our numerical scheme
does not rely on a rectangular domain.

A more difficult problem is the inputs with sparse gradi-
ents, which happens when information is lost on some sam-
ples. That is, the gradients (i.e., the target normal vectors)
are not given on some facets. For these facets, we apply the

Figure 5. Tests of our approach on inputs with different amount of
noises added: (a) Color maps illustrate the distribution of noises
and colors denote the amount of perturbation in terms of angle
degree. (b) When treating all noisy samples as inliers, the compu-
tation of our approach converges in 5 steps. (c) When considering
the noisy samples as outliers and removing them from the compu-
tation – that leads to an input with sparse samples, our approach
can successfully converge to a reconstruction with more higher
quality in 18, 38, 143 and 195 steps of iteration respectively.

current normal vectors asni,j used in Eq.(2) for the local
shaping step. This manipulation tends to keep the shape of
a facet as what determined by the previous global blending
step. In other words, the shapes of these facets are deter-
mined by their neighbors with known target normals. Our
algorithm can reconstruct the surface from an incomplete
set with up to55% data lost (see Figure5).

The local shaping step by projecting points onto a plane
with normalni,j becomes unstable when the plane is nearly
perpendicular to thexoy-plane – that can be detected by
checking ifni,j · (0, 0, 1) ≤ ǫ. We useǫ = 0.0871557 in
our implementation, which indicates the angle less than5◦.
Such normals are defined as outliers and again the corre-
sponding facets’ target normals are set as their current ones.
In other words,z(fi,j) determined in the previous step is
used as the vectorp(fi,j) in the current step.

5. Experimental Results

We have implemented our algorithm in both MATLAB
and C++ code and tested its performance on a variety of
models. All the results are generated on an Intel i7 CPU
with 2.67GHz and 4GB RAM. We also compare our ap-
proach with the existing methods in literature. Results show
that our approach is efficient and outperforms others in the
accuracy of reconstruction. Details are discussed below.

Generally, the approach proposed in this paper is effi-



Table 1. Statistics on Computing Time (ms)

Input Time of Avg. Time for Each Step†

Res. Factorization Local Shaping Global Blending

128
2 187 0.620 62.1

256
2 905 3.42 252

512
2 4,961 17.5 1,018

†The average time is computed from an iteration with 50 steps.

Figure 6. Saddle surfaces reconstructed by eight different methods
– the input gradients are free of noise, and the errors have been
normalized by the range of depths on all samples.

cient. Statistics of applying our approach on inputs with
rectangular domain in different resolutions are listed in Ta-
ble 1. The statistics are generated on a C++ code us-
ing TAUCS library as linear solver, and the average time
needed for each step (obtained from 50 steps of iteration)
is reported. The most time-consuming step is factorization,
which however only needs to be computed once through-
out the whole procedure of surface reconstruction. More-
over, for two normal fields having the same resolution and
boundaries, the factorization ofATA should be the same
(i.e., can be reused). Our DGP-based SfG method usually
converges in a few steps on inputs with noises in a relative
low degree. Note that, in practice the time needed for each
step should be even smaller than what reported in Table1
as the computing domain with irregular boundary will have
much less unknown variables to be determined in each step
of iteration.

Our approach is robust to noisy data and sparse data. As
shown in Figure5, we randomly select different amount
(15%, 30%, 50% and55%) of scattered samples in the nor-
mal fields of a face model to perturb random angles up to
20◦, where the colored dots in Figure5(a) are these per-

Figure 7. Surfaces with sharp features reconstructed by eight dif-
ferent methods – the input gradients are free of noise, and the er-
rors have been normalized by the range of depths on all samples.

turbed samples and colors denote the amount of perturba-
tion in terms of angle degree. We first treat all samples
as inliers; the computations converge in 5 steps on all the
noisy inputs. The reconstruction results can be found in
Figure5(b). In the second test, the samples with perturbed
normals are considered as outliers and removed from the
computation – i.e., the input becomes sparse. Our approach
still can reconstruct the surface of face model successfully
(see Figure5(c)). The terminal condition of iteration is set
by comparing average angle deviations in the current step
and the previous step. When the difference is less than
10−3, we stop the iteration. Generally, more iteration steps
are needed for the models with more outliers removed. And
the results obtained by removing outliers have better quality
than treating all samples as inliers.

Lastly, we compare this approach with seven other
methods including Frankot-Chellappa [3], Poisson [4],
alpha-surface [7], M-estimator [11], regularization [12],
anisotropic diffusion [13] and kernel-based fitting [15, 16].
These eight approaches are evaluated on a set of 20 models
downloaded from the shape repository of Aim@Shape.For
every model, we first sample them by rendering them via
OpenGL and reading back its depth map and the sampled
normal map. The depth map serves as the ground-truth for
surface reconstruction. All the sampled normal vectors are
perturbed with additional Gaussian noises having standard
deviation of5◦. Then, tests are conducted on two types of
inputs – the noise-free normals and the perturbed normal
with Gaussian noises. After the reconstruction, a recon-
structed model is moved to let its center coincident with the
ground truth’s center to measure the depth-error on the cen-



Figure 8. Face models reconstructed by eight different methods
– the input gradients are free of noise, and the errors have been
normalized by the range of depths on all samples.

ter of every facet. The values of errors are normalized by
the range of depths on samples. The distribution of normal-
ized errors are displayed as color maps in Figures6, 7 and8,
where the inputs are noise-free. Note that, some examples
tested here have sharp-features (e.g., Figure7), which are
well recovered by our approach. Moreover, we also com-
pute the average of relative errors on results generated by
different approaches and compare them in Figure9. It is
found that our approach outperform others. Note that, re-
sults generated by the Frankot-Chellappa method [3] have
not added into this comparison as the errors are too large.

A photometric stereo system has also been built to gener-
ate gradient-fields from real objects such as 3D fingerprints.
Again, reconstructions by different methods have been con-
ducted. As there is no ground-truth, we measure the vari-
ations of normals on the reconstructed surface versus the
input gradients, where an example is given in Figure10.
Both the average error,Eavg, and the maximal error,Emax,
are measured in terms of angle degrees.

6. Conclusion

We present a new algorithm for solving the SfG problem
in this paper. First, our algorithm is based on discrete ge-
ometric constraints and completely abandons integrability
constraints. We compute a piecewise linear surface that well
preserves fine details. Second, we prove that the formula-
tion with mean-subtraction can greatly improve the speed of
convergence. Third, we show that our DGP-based SfG al-
gorithm can reconstruct surface from sparse normals where

Figure 10. Reconstructed surface of a 3D fingerprint from a gra-
dient field generated by the photometric stereo. Errors are mea-
sured in terms of angle variation in degrees. Note that, the code of
kernel-based method [16] fails on this example.

the missing data is up to55%. Besides, when the inputs
are perturbed with noisy, our method can reconstruct more
accurate results than that generated by other methods.
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