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Abstract

Mutual occlusions among targets can cause track loss
or target position deviation, because the observation likeli-
hood of an occluded target may vanish even when we have
the estimated location of the target. This paper presents a
novel probability framework for multitarget tracking with
mutual occlusions. The primary contribution of this work
is the introduction of a vectorial occlusion variable as part
of the solution. The occlusion variable describes occlusion
states of the targets. This forms the basis of the proposed
probability framework, with the following further contribu-
tions: 1) Likelihood: A new observation likelihood model
is presented, in which the likelihood of an occluded target
is computed by referring to both of the occluded and oc-
cluding targets. 2) Priori: Markov random field (MRF)
is used to model the occlusion priori such that less likely
“circular” or “cascading” types of occlusions have lower
priori probabilities. Both the occlusion priori and the mo-
tion priori take into consideration the state of occlusion. 3)
Optimization: A realtime RIMCMC-based algorithm with
a new move type called ”occlusion state update” is present-
ed. Experimental results show that the proposed framework
can handle occlusions well, even including long-duration
full occlusions, which may cause tracking failures in the tra-
ditional methods.

1. Introduction

Multitarget tracking is one of the most fundamental and
important problems in computer vision. It has been re-
searched for a long time, but it is still a challenging task
in some complex scenarios. For example, when there are
occlusions among targets, especially full occlusions, many
traditional methods may fail because the occluded targets
could not be well observed, which is the main problem ad-

dressed in this work. We propose a novel framework for
multitarget tracking, which can handle mutual occlusions,
no matter which are slight occlusions, heavy occlusions or
even long-duration full occlusions.

1.1. Contributions of This Work

In summary, this paper presents a novel occlusion han-
dling multitarget tracking framework with the following
contributions.

The first contribution is the novel probabilistic frame-
work for multitarget tracking, because of the introduction
of “occlusion variable” (section [2). By using the occlu-
sion variable, we can expediently describe the occlusion re-
lationships among targets and observe all the targets in a
more reasonable way even if some of them are occluded.
We present a new appearance observation likelihood model
(section[3), in which the appearance similarity of an occlud-
ed target is calculated by comparing the observation feature
with both occluded and occluding targets, rather than only
the feature of the occluded target.

The second contribution is the design of the priori mod-
els (section [d). The newly priori model called “occlusion
priori model” is modeled by an MRF model, which elimi-
nates the possibility of occlusion between far-away targets
and restrains the uncommon occlusion relationships among
the targets. In addition, the motion priori model is modified
in section The occlusion variable is incorporated by
placing the occluded targets in lower priori probabilities.

The final contribution is the real-time RIMCMC al-
gorithm of the proposed tracking framework (section
B), which includes a totally new move type called
“occlusion state update” to sample occlusion relation-
ships among targets.

1.2. Related Work

Our approach is based on the well-known MCMC par-
ticle filter [9], which could successfully track up to 20



targets. Traditionally, a probabilistic graphical framework
called “recursive Bayesian inference” is adopted in (MCM-
C) particle filters, as shown in fig. (@)} In the recursive
Bayesian inference, the primary task for multitarget track-
ing is to determine the posteriori distribution P(X, | Z%)
over the current joint configuration of the targets X; £
{xi} at the current time step ¢, given all observations

Z' £ {Zy,Zs, ..., Z;} up to that time step.
P(X¢| ZY) = cP(Z | Xy)
X fP(Xt | Xt—l)P(Xt—l | Zt_l)dXt_l

ey
where ¢ = 1/P(Z; | Z'~1) is a normalization constan-
t, P(Z, | X,) is the likelihood of the observation, and
the motion priori P(X; | X;_1) predicts the state X
given the last state X;_;. In fact, eq. (I) could be re-
garded as two steps: 1) Prediction: P(X; | Z'~1)
JP(X; | X4—1)P(Xy—1 | Z'71)dX—1; 2) Verification:
P(X; | ZY) = cP(Z; | X;)P(X; | Z'1). When an tar-
get is heavily occluded, especially fully occluded, the ver-
ification step may be not reliable, because the observation
likelihood P(Z; | X;) for an occluded target may drasti-
cally decrease even if the estimated location is accurate, as
shown in fig. [T]

1.2.1 Particle Filter and MCMC PF

There are many approaches based on sequential impor-
tance resampling (SIR), i.e. the well-known particle filter-
s (PF), having been proposed to solve the tracking prob-
lem 7, 11} [17]]. In these approaches, the posteriori P(X; |
Z') is approximated by a set of N weighted particles, i.e.
P(X; | Z%) =~ {Xt(r),wgr)}, where w!" is the weight of
the rth particle. The drawback of SIR is that it is hard to
track more than 2 or 3 interacting targets in real applica-
tions, because the number of the required particles grows
exponentially as a function of the state-space dimension[9].

Markov Chain Monte Carlo Particle Filters (MCMC for
short in this work ) have been shown to successfully track
multiple targets in real time, and the required number of
particles for MCMC tracking is only a linear function of
the number of tracked targets when they do not interact
[2, 9]. Different from SIR, the posteriori in MCMC meth-
ods is approximated by a series of unweighted samples, i.e.,

P(X, | 2 ~ {X{"}.

1.2.2 Occlusion Handling

Recently, occlusion handling in multitarget tracking ap-
proaches can be mainly divided into two classes, according
to whether the occlusion relationships or depth ordering of
the targets is inferred.

The first class of solutions are called "implicit”, in which
the occlusion relationships among targets are not inferred
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Figure 1. An instance of occlusions between two targets is shown
in the middle row. The target A is unoccluded initially and ful-
ly occluded by B finally. The top row shows the measurement
of observation likelihood in traditional methods. The observation
likelihood of A may become not reliable owe to occlusions, even
the estimated location of A is accurate. The bottom row shows the
idea of measuring observation likelihood in this work. If a target
A is estimated to be partially occluded by B, its observation like-
lihood should be measured by comparing the observation feature
with the fusion feature of A and B, rather than only the feature
of A. If the target A is estimated to be fully occluded by B, its
observation likelihood should be measured by comparing the ob-
servation feature with the feature of the area which B occludes
A. Such a measurement can ensure that the observation likelihood
of an occluded target does not drastically decrease if its estimated
location is accurate.

explicitly. Some approaches try to construct robust appear-
ance features and the classifiers[11}[17]. In fact, these meth-
ods are sometimes available because of two factors. One is
that the partial features of occluded targets are well used,
which may lose its ability in the case of full occlusions.
The other is the online learning of target features, which
may fail when heavy occlusion happens, especially long-
duration heavy occlusion, because it may learn a false ob-
ject for an occluded target.

The second class of solutions are called “explicit”, in
which the occlusion relationships among targets or depth
ordering of targets is inferred explicitly. Some approaches
rely on the spatial structure of the scene [19]]. Thus these
methods are difficult to generalize. In [3]], video sequences
are automatically decomposed into constituent layers sorted
by depths by combining spatial information with temporal
occlusions. But it is hard to handle a long-duration occlu-
sion. Senior et al. [16] use appearance models to localize
the targets and use disputed pixels to resolve their depth or-
dering during occlusions. However, it is feasible only in the
scenarios without full occlusions, because it is difficult to
localize a fully occluded target.



Note there are another class of “explicitly” methods, i.e.
data association based methods, which are of offline meth-
ods, e.g., [1, 16} [18]. They can handle occlusions well, but
the targets’ trajectories can be got only when all frames of
the whole video (at least a fragment) have been analyzed.
In contrast, this work is of the online method, which gets
the targets positions immediately when a new frame comes.
Besides, the speeds of offline algorithms are often slovﬂ and
cannot satisfy the real-time requirements of some applica-
tions, thus they are ignored in this paper.

2. A New Multitarget Tracking Framework
2.1. Occlusion Variable

The proposed approach belongs to the class of “explic-
itly”” handling occlusions. In this work, a vectorial variable
O; £ {04} expressing the occlusion relationships among
the multiple targets is introduced, which is named as “oc-
clusion variable”. In this paper, a target A is considered to
be occluded by another target B, only if we only see the part
of B rather than A in the occluded areaﬂ as shown in fig.
Combining X; with Oy, the new configuration of mul-
tiple targets is denoted as {X;, O;}. Herein the occlusion
variable is defined as follows:

if target ¢ is not occluded,

2
Qit = { j,J #1, iftarget i is occluded by j. 2)

2.2. The Probabilistic Framework

As a result of adding the occlusion variable, we adopt
a novel probabilistic framework as shown in fig. 3(b)] In
this framework, we suppose that the priori probability of
the occlusion states is independent of previous occlusion s-
tates O;_1, i.e. it is only determined by the current state
Xyl According to the probabilistic framework, the posteri-
ori P(Xy, Oy | Z') is expressed as:

P(X4,01 | Z%) = cP(Z: | X, 00)P(X,04 | Z71) (3)

I'We tested two offline trackers, i.e. Discrete-Continuous Optimization
algorithm [1] and GMCP-Tracker [18]. The speeds of both algorithms are
less than 10 fps, which are much slower than our algorithm.

2The mutual occlusion relationship of the targets can be totally de-
scribed by a boolean matrix. In this work, we adopt a vector to label each
target is occluded by which one or un-occluded. This simplification greatly
reduce the computational cost and it is enough for our most applications.
In fact, a single occlusion variable cannot describe the occlusion of one
target by 2 or more other targets. However, at each frame the proposed
algorithm get a lot of samples with different posteriori probabilities, which
may assign different (2 or more) occluders to an occluded target.

3Temporal independence of occlusion variable is also a practical sim-
plification in order to decrease the calculation cost. In fact, this assump-
tion has few infection to the tracking results. Generally, the inappropriate
occlusion relationship gets a low posteriori likelihood, because the obser-
vation likelihood may be very small. In addition, when the video frame
rate is low or the speed of the targets are large, there is little correlation
between the occlusion states in different frames.

(b)

Figure 2. (a) An instance of occlusions, where target A is occluded
by B, C' and D, and B is occluded by C. (b) is the projection
image in the camera. Note there is only a part of C' being seen in
the lower right area of A, therefore in the opinion of this work, the
lower right of A could be considered to be occluded not by B, but
by C. In this case, the occlusion variable of A may be 04 = A
(not occluded), 04 = C (occluded by C)oroa = D (occluded by
D), with different posteriori probabilities. The occlusion variable
of B may be op = B or og = C, while the occlusion variables
of C'and D could only be oc = C and op = D, respectively.

(@ (b)
Figure 3. (a) Recursive Bayesian Inference. (b) The proposed
probabilistic graphical framework. Here O, is the “occlusion vari-
able” at time step t.

where

P(X1,0: | 287" ) = PO | Xy) [ [ P(X¢ | Xi—1,01)

XP(Xt_l,Ot_l | Ztil)dXt_ldOt_l

“)
We can see that the observation likelihood model P(Z; |
X, Oy) incorporates the occlusion variable, which will be
presented in section [3] Compared with eq. (I), there is
a new term in eq. (@), i.e. the occlusion priori model
P(O; | X:). Similar as the observation likelihood model,
the motion priori model P(X; | X;_1,0;_1) incorporates
the occlusion variable. These two priori models will be p-

resented in detail in section 4]

3. Observation likelihood Model

In this paper, two kind of observation likelihoods are
taken into account, i.e. Global Mask Similarity and Ap-
pearance Similarity. The observation likelihood model is
defined as

P(Z, | X¢,01) = M(X4)S(Xy, Or) ®)

where M is the Global Mask Similarity defined in [2]], and
S is the Appearance Similarity incorporating occlusion re-
lationships, which is defined as

S(X;,0;) = P(n) H O(xt, 0it) (6)



where O is the appearance similarity of a single target. P(7)
is a penalty factor for invisible parts of the targets. The vari-
able 7 is the proportion of total invisible area and it depends
on X; and O;. Here invisible parts mean the target parts
that are occluded by some other targets or out of the camera
region. The penalty factor is a monotonic decreasing func-
tion, and it aims at expressing the thought of ”seeing is be-
lieving”. In this paper, it is simply defined as P(n) = ﬁ

Due to introduction of the occlusion variable, the appear-
ance model of single target is different from other methods,
which is defined as

O(Xit,04) = { (i, 20),

ifo =1

ifo; =jand j #£ i 7

7(2it, Fij),

where z; is the storage image feature vector of the target ¢,
such as the well known RGB or HSV histogram, LBP, HOG
feature etc. z;; denotes the image observation of target i,
at the time step t. 7 is a similarity function measures the
similarity between two features. J;; is the fusion feature of
the targets i and j. For example, as fig. [T|shows, if o4 = B
(target A is occluded by B), the appearance similarity of A
should be calculated by O(x4,04) = 7(za, FaB)-

In this paper, HSV histogram is used as the target fea-
ture, and Bhattacharyya coefficient is used to measure the
similarity. The fusion feature of targets ¢ and j is simply
calculated as F;; = (1 — ry;)2; + r4j2;, where r;; is the
“degree of the occlusion” defined as the proportion of the
area occluded by j to the total area of the target 7.

4. Priori Models
4.1. An MRF Occlusion Priori Model

At each frame, to model the occlusion relationships a-
mong the multiple targets, we dynamically construct an M-
RF that addresses the possible occlusions between nearby
targets. Specifically, each target could be regarded as a node
and the links between the nodes determine whether occlu-
sion may occurs between each pair of targets, as shown in
fig. @

In this work, a pairwise MRF is adopted, where the
cliques are restricted to the pairs of nodes that are direct-
ly connected in the graph. The joint probability of occlu-
sion state Oy is defined as the following model, where the
P(0jt, 0;;) are pairwise interaction potentials:

P(O; | X;) o HP(Oit | X¢) H P(0i,05:)  (8)
i iGEN

Here the P(0;; | X;) is the priori probability of target 4
either being not occluded (o;; = ¢) or being occluded by an-
other target (0;; # 1), without considering the occlusion re-
lationships of the rest targets. In this paper, a simple model

Figure 4. To model occlusion relationships, an MRF is constructed
at each frame, with edges for close target couples, such as the tar-
get couples (1,2), (2,3) and (5,6). The far-away target couples
are not linked, e.g. (1,3), (3,4) etc., indicating that it is impos-
sible to exist occlusions between them. The ellipses indicate that
predicted possible positions of the targets.

is adopted for this individual probability, shown as follow-
ing.

0, j &N,
Ploq=j|Xe) =4 ~F&wxd - jex, O
and

1, if ¢ = j or the targets ¢ and j overlap,
B (xit Xje) = { 0, otherwise.

(10)
where N; = N; U{¢}, NV, is the target set connecting with
the target ¢ in MRF.

Using this form, when a target is overlapped with some
other targets, the priori probability of this target being not
occluded or being occluded by any other is identical. In-
tuitively, for the overlapped targets, they have the same op-
portunity to become the most front” (closest to the camera)
one.

In the actual scenarios, the “circular” relationships are
rare, e.g., target a and b occlude each other, or target a oc-
cludes b, b occludes ¢ and ¢ occludes a. Furthermore, when
the occlusion relationship of the targets is “cascading” as
the A, B and C in fig. [2] the bottom targets A and B are
often both considered being occluded by the most front one,
i.e. C. Namely, in the opinion of this paper, the priori prob-
ability for an occluded target occluding another one is low.
This can be ensured by using an MRF interaction potential.
It is defined as

. — iand o,
vow o) ={ 1" St 74 an
where 19 < 1. In the experiment, we empirically select

Yo = 0.1.
4.2. Motion Priori Model

In the motion priori model, a common form except for
incorporating the occlusion variables is adopted, which is



shown as follows:

P(X; | Xi-1,041) = HP(Xit | Xi(t—1), 0it—1)) (12)

Gaussian distribution is often adopted as the motion pri-
ori model of a single target. In this paper, Discretized
Wiener velocity model [15] is used, i.e.,

P(x | Xi(t—l)voi(t—l)) ~ N(xi | AXi(t—l)v qx) (13)

where A is a constant transmission matrix of the motion
priori model, ¢ is the diffusion coefficient and X is a con-
stant symmetry matrix. The detailed form of A and ¥ is
referred to [[15]]. Different diffusion coefficients result dif-
ferent noise covariance matrices. We set a larger diffusion
coefficient if the target was occluded at last time step, which
means that the transmission are less reliable when the target
was occluded, i.e.,

_ ) 4,

? { q2;

where g2 > ¢;. In fact, the thought of ”seeing is believing”
is expressed again.

if Oi(t—1) = i,

otherwise. (14)

5. Multitarget Tracking Algorithm

The proposed algorithm is an extension of the method
in [9]]. The posteriori P(X;_1,0:—1 | Z;—1) at time step
t—1 is approximated as a set of N samples P(X;_1, O;_1 |
Zi_1) ~ {x", 0"} | The MCMC approximation of
(3) can be obtained as following equation.

P(Xt,Ot | Zt) =~ CP(Zt | Xt,Ot) l_L P(Oit | Xt)

X HijGN ¥(0it, 0;t) 27{21 P (Xt | Xi((rt)—l)’ ngat)—l))
15)
In this paper, we adopt Metropolis-Hastings algorithm to
approximate the posteriori distribution.

5.1. Metropolis-Hastings algorithm

The Metropolis-Hastings (MH) algorithm is the most
popular MCMC method [5} [13]. An iteration step in the
MH algorithm involves sampling a candidate value =’ giv-
en the current value x according to a proposal distribution
q(«’ | ). The Markov Chain then moves towards z’ with
the acceptance probability A. Otherwise it remains at x.
More details could be seen in [15, 9} [13]].

The MH algorithm adopted in this work is a ”Reversible
Jump” MCMC (RIMCMC) version for handling a variable
number of targets. In RIMCMC, the MH algorithm starts
the chain in an arbitrary configuration and then selects a
move type m from a finite defined set of moves that may
change the dimensionality of the state. A move that changes
the dimensionality of the state is referred to as a ”jump”.

Each jump has a corresponding reversed jump defined, e.g.,
a target adding move should have a corresponding target
deleting move. In other words, if it can jump from state A
to state 3, it must be able to reversed jump from state B
to state A. After selecting the move type and proposing the
candidate configuration, the acceptance ratio is defined as
follows

. p(@') po g (2 | 2)
A=min {1, o) o e 5 } (16)

where m and m/ is the reversed jump move to each other,
and p,,, and p,,,/ are the corresponding proposal densities of
the move types m and m/’, respectively.

In the present case, the posteriori distribution P(X, O |
Z;) could be approximated, in which the acceptance ratio
should be calculated as follows.

A= P2IX;00 I Pl IX)) ijen $(0i050)
P(Ztlxtaot) 1_[7 P(Oitle) Hije,r\/’ w(oitvo.it)
() o)
=, P(XXD00M) b Qx,.041X1.00)
5, P(Xelx{"y,0{7; ) P QX101 X:,00)

a7

5.2. Data Driven Proposals

At each frame, a target detector could detect out some
targets by the target detectors to provide a set of target-
s with noises can be used to update the current target set
X,. Different strategies may be used for the specific appli-
cations. In this paper, we adopt the background subtraction
described in [12] as the target detector.

There are a total of six move types in the proposed algo-
rithm, i.e. M = { Add, Delete, Stay, Leave, Perturb,
Occlusion state update }. The first five models are sim-
ilar as [9]] except the computation of the acceptance ratio
(T7). The new move type "Occlusion state update” aims
at drawing the occlusion relationships among the targets.

At each step, only one target’s occlusion state
could be changed. The proposal is done as fol-
lows: randomly select a target x, from the target
set {Xit };e 0 (Xt Yo (xir x,0)=1 (1 X¢» that denotes al-
1 the targets, each of which has been already added to
X, and there are some targets “near” it in MREF, as
well overlapping with it. The definition of ® is re-
ferred to (I0). Then randomly sample its occlusion s-
tate o, from {Xit};cx (W{Xjt}a(x,x;)=1(1 X, Where
{Xit}iexr, M{Xjt}o(x, x,.)=1 denotes all the targets “near”
X, in MRF, overlap with x,, and have already been added
to current sampler X;.

6. Experimental Results

We first evaluated the occlusion module of our approach
by tracking a long-duration full occluded target and com-
paring the proposed framework with traditional framework.
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Figure 6. Tracking errors of the occluded target.

Then a real-time multitarget tracking system was demon-
strated in some real outdoor scenarios under the platform of
Mac OS X 10.7, 2.4GHz Intel Core 2 Duo CPU, 4GB RAM
without GPU or any other parallel computing device.

6.1. Evaluation of Occlusion Module

We evaluated the availability of the occlusion module in
an indoor environment (fig. E]), under Matlab R2011b. The
tracking results are evaluated in comparison with several
state-of-art trackers with default parameters in their articles,
including VTD [[10], Context [4] and TLD [8]], besides the
SIR PF [14]] and MCMC [2] E] under the traditional frame-
work. In this experiment, the black card was occluded by
the white one for a long duration (exceeds 100 frames). The
proposed method can not only track the two targets, but al-
so indicate the occlusion relationship and occlusion degree
between them.

The tracking results of occluded target are compared in
fig. [fland Table[I] We stored the tracked center locations of
target 2, and calculated absolute error in each frame and the
mean error in a certain interval frames before the target is
failed tracked. From the figure, we can see the tracking er-
rors were close before the target was occluded (before 14th
frame). During the target was occluded, the absolute errors
of the proposed method almost kept within a certain range.
However, the performances of other methods tobogganed
from the frame when the target started to be occluded. The
results exhibited the effect of the occlusion module, which
can be seen from the table.

6.2. A Real-time Tracking System

We demonstrated the results of the proposed method for
tracking multiple targets in three outdoor scenarios, includ-
ing a campus scenario of the public dataset PETS2001, a re-
al surveillance scenario of a street and a more complicated

“In this experiment, since the targets are manually labeled at first frame
rather than detected by object detector, in both the proposed tracker and
RIMCMC tracker [2]], we set M(X¢) = 1in .

Table 2. Processing Capability of the System

Number of Mean Frame Rate Mean Frame Rate

Samples of the System (fps) | of the Tracker (fps)
100 76.07 243.32
200 73.52 211.18
500 64.59 151.62
1000 53.28 102.54
1500 45.74 79.06
2000 39.82 62.54
3000 31.69 44.76

scenario of a square, as shown as fig[7] There were some oc-
clusions in all the three videos. For example, in the second
video, the target 270 successively interacted with 266, 264,
265 and 269. As fig[7(b)|shows, there were tracking failures
for the interacting targets using traditional methods. During
a target was occluded, its appearance feature was interfused
much appearance information of occluding target when up-
dating the appearance features of targets. However, the pro-
posed tracker knew the occlusion relationship between the
interacting targets, thus it can avoid leaning false informa-
tion when updating appearance features (in this work, the
appearance feature did not update when a target was occlud-
ed). Therefore the proposed algorithm successfully tracked
all the targets during the whole process of their interactions.

Then the processing capability of the proposed system
was evaluated on the first scenario (320 x 240), using a 100
to 3000 particles chain. Table[2]shows the mean frame rates
for different number of samples. The last column shows the
processing capability of the tracker without target detection,
while the middle column is the processing capability of the
whole system including the target detection [12]]. The sys-
tem can be run in real time even if the number of samples
achieves 3000.

6.3. Failures

Of course, the proposed method can not successfully
work for all scenarios. In fact, only the simple HSV his-
togram and the Bhattacharyya coefficient were respectively
adopted as the appearance feature and the measurement of
appearance similarity, a scenario with drastic illumination
and pose variations is hard to handle. In addition, the oc-
clusion studied in this paper is the mutual occlusion among
targets. The targets occluded by the background may cause
tracking failures. Fig[8|shows some examples of the track-
ing failures.

7. Conclusions

This paper presented a novel probabilistic framework for
multitarget tracking, which could handle mutual occlusions
among targets. By introducing a vectorial variable called
“occlusion variable”, the occlusion state of each target can
be expressed. In the new framework with this “occlusion
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Figure 5. In the video (640 x 480), there are two targets need tracking, which are initial manually labeled at first frame. The green and
yellow rectangles are the groundtruth of the two targets, respectively. The tracking results of occluding target are close to the groundtruth,
thus we only show the tracking results of the occluded target. The results of the proposed tracker, MCMC [2]], PF [14], TLD (8], VID
[10], Context [4] are depicted as red, cyan, blue, dark green, magenta, white rectangles respectively. The rectangles of dashes denote the
target is considered to be occluded. The degree of the occlusion here is divided to three classes: slight occluded (0.2 < r < 0.5), heavy
occluded (0.5 < r < 0.8) and full occluded (r > 0.8), where 7 is the ratio of the occluded target area.

Table 1. Mean error of the tracking results

Frames 1~10 | 11 ~40 | 41 ~ 100 | 101 ~ 140 | 141 ~ 170 | 1 ~ 170 | total frames
Proposed 8.07 17.74 23.02 15.96 19.7815 18.98 170
MCMC 7.19 35.70 - - - - 47
PF 6.83 36.96 - - - - 76
Context 16.38 64.17 107.37 - - - 132
TLD 25.48 33.44 51.66 121.30 - - 160
VTD 3.60 35.69 135.74 - - - 167

(a) The proposed method. Note there were some people being not tracked in the last row, because they were too small and they were regarded as noises by
the target detector.

MCMC: ¢ 897 Context: § 889

=

TLD: ¢ 874 VTD: £ 875

(b) Traditional methods

Figure 7. Tracking in the outdoor scenarios.

variable”, the appearance observation model can be con-
structed to continuously compute the likelihoods of the oc-
cluded targets. The priori models were also designed to in-
corporate the occlusion variable. There is a new priori mod-

el called “occlusion priori model” being modeled using M-
RF. A real-time RIMCMC algorithm which can achieve the
requirements of many applications was designed based on
the proposed framework. Besides the real-time processing
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Figure 8. Tracking Failures. The images are from the database of
CAVIAR2004 and PETS2009, respectively.

capability, the main advantages of the proposed approach
are summarized as follows.

The first advantage is the good performances in occlu-
sion handling. Section|[6.1]shows that the proposed tracking
model is robust for full occlusion for a long duration, even
though only the simple HSV histogram and Bhattacharyya
coefficient were respectively adopted as the appearance fea-
ture and the measurement of appearance similarity.

The second advantage is brought by the ”occlusion vari-
able”. At each video frame, we can know the degree of the
occlusion of each occluded target from the tracking results,
the appearance features of the targets can therefore be up-
dated more flexibly.

In addition, the proposed multitarget tracking framework
is general in that it caters for modification of any module in
it. For example, if we adopt another appearance feature and
similarity measurement (classifier), rather than the simple
HSV histogram and Bhattacharyya coefficient, the observa-
tion likelihood model can be improved. It is hopeful that
the more robust feature and classifier could bring better per-
formance, which is our next work.
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