
Adaptive Object Retrieval with Kernel Reconstructive Hashing

Haichuan Yang1 Xiao Bai1 Jun Zhou2 Peng Ren3 Zhihong Zhang4 Jian Cheng5

1School of Computer Science and Engineering, Beihang University, China
2School of Information and Communication Technology, Griffith University, Australia

3College of Information and Control Engineering, China University of Petroleum, China
4Software School, Xiamen University, China

5Institute of Automation, Chinese Academy of Sciences, China

Abstract

Hashing is very useful for fast approximate similarity
search on large database. In the unsupervised settings, most
hashing methods aim at preserving the similarity defined
by Euclidean distance. Hash codes generated by these ap-
proaches only keep their Hamming distance corresponding
to the pairwise Euclidean distance, ignoring the local dis-
tribution of each data point. This objective does not hold for
k-nearest neighbors search. In this paper, we firstly propose
a new adaptive similarity measure which is consistent with
k-NN search, and prove that it leads to a valid kernel. Then
we propose a hashing scheme which uses binary codes to p-
reserve the kernel function. Using low-rank approximation,
our hashing framework is more effective than existing meth-
ods that preserve similarity over arbitrary kernel. The pro-
posed kernel function, hashing framework, and their combi-
nation have demonstrated significant advantages compared
with several state-of-the-art methods.

1. Introduction

Nearest neighbor (NN) search is a fundamental tool
in computer vision, machine learning and information re-
trieval. The complexity of NN method on a dataset of
size n is O(n), which makes it infeasible on huge dataset.
To make NN search scalable, approximate nearest neigh-
bor (ANN) techniques have been proposed. The idea is to
find the approximate nearest neighbor rather than the exact
one. Locality-sensitive hashing (LSH) was introduced for
this purpose [5] and has attracted lots of attention. It maps
a vector x ∈ Rd to a binary string h ∈ {0, 1}r, and guaran-
tees that neighbors in the original space having similar bi-
nary codes. However, as a data-independent hash method,
LSH needs large code length to reduce the false positive
rate. This increases the storage costs and degrades query

Figure 1. Illustration of the proposed normalized Gaussian ker-
nel method (details are in Section 2). Red circle uses normalized
Gaussian kernel on the retrieval radius, and green circle uses the
Gaussian kernel. For a given threshold, the original Gaussian k-
ernel gives the same retrieval radius. While using the normalized
Gaussian kernel, the retrieval radius is adaptive to the surrounding
distribution of the data points. This gives more consistent result
for k-NN search.

efficiency [22].

Recently, many data-dependent hashing methods have
been proposed, which learn hash functions from a train-
ing set. They normally optimize an objective function
which explicitly preserves data similarity using Hamming
distance [22, 8, 12]. In the unsupervised setting, the
most widely used similarity metrics include Euclidean dis-
tance [2, 3, 6, 4], or the Gaussian kernel as a monotonic
function for Euclidean distance [22, 24, 12]. Several super-
vised hashing methods have also been proposed based on
semantic similarity preservation [20, 21, 14, 11] and have
shown promising results. In practice, we often need to find
the k-nearest neighbors (k-NN) of a query. Because the dis-
tances to the nearest neighbors vary a lot for different da-
ta samples, using threshold based on Euclidean distance or
Gaussian kernel returns different number of neighbors, as



shown in Figure 1. If we want to get consistent results, the
local distribution of data should be taken into consideration.
In [16], Qin et al. proposed an extended Euclidean distance
metric by normalizing the Euclidean distance locally so as
to obtain a unified degree of measurement across different
queries. Inspired by their method, we propose an adaptive
similarity function to replace Euclidean distance or Gaus-
sian kernel. For different data points, this similarity mea-
sure can adapt to their local distribution.

Kernel methods enable flexible models be built for a va-
riety of applications by adopting different kernel functions.
Some hashing methods have already taken kernel function
as input. Kulis and Darrell proposed a binary reconstructive
embedding (BRE) approach [8] with a kernelized hashing
function. The objective of BRE is minimizing the recon-
struction error between the pairwise Euclidean distances in
the kernel space and the Hamming distances of the binary
codes in the mapped feature space. Both the original dis-
tance and the Hamming distances are scaled to the same
range in [0, 1]. However, this objective function is non-
convex, and the reconstructions are binary which makes the
objective not differentiable. When a coordinate-descent op-
timization scheme is used [8], the objective function con-
verges to a local minimum. Its training time is highly de-
pendent on the amount of the input data pairs and that has
constrained the scale of the training set. Besides BRE, K-
ernelized Locality-Sensitive Hashing (KLSH) [9] can also
preserve the kernel similarity by generalizing the principle
in LSH [2] to arbitrary reproducing kernel Hilbert spaces.
Its time complexity is much lower than BRE, but it has the
same problem as LSH in that its performance degrades with
compact code. In [12], Liu et al. proposed a graph-based
hashing method called Anchor Graph Hashing (AGH). It
builds a neighborhood graph and uses graph Laplacian to
solve the relaxed graph partition problem. For efficient
training and indexing, this method approximates the neigh-
borhood graph by a sparse anchor graph. Although it can
take any customized similarity including kernels, the spar-
sity of the anchor graph limits the degree of the approxima-
tion.

In this paper, we address the problem of unsupervised
learning of hashing function. There are two main contri-
butions with our method. Firstly, We explore the idea of
normalization on the Gaussian kernel, which is motivat-
ed by [16], so that a new similarity function is proposed.
This similarity function is proved to be a positive semi-
definitive (PSD) kernel. Secondly, we present a hashing
method which aims at reconstructing the kernel function us-
ing binary code. This method enables linear training time
with respect to the size of the training set, and enables con-
stant time for indexing by the proposed hash function. In the
experiments, we show that both proposed similarity func-
tion and the hashing method are more effective than sev-

eral baseline methods. When the normalized Gaussian k-
ernel is combined with proposed hashing framework, our
method outperforms the state-of-the-art unsupervised hash-
ing methods.

The rest of the paper is organized as follows. We intro-
duce a normalized Gaussian kernel in Section 2, and present
the hashing framework in Section 3. In Section 4, we show
the experimental results, and finally conclude the paper and
discuss the future work in Section 5.

2. Normalized Gaussian Kernel
In this section, we introduce a normalized Gaussian k-

ernel. We show that this kernel has positive semi-definite
property.

2.1. Symmetric Adaptive Similarity

Euclidean distance is the most common metric to mea-
sure the similarity between local feature descriptors. In or-
der to derive a measure that is adaptive to the query feature,
Qin et al. [16] proposed the normalized the Euclidean dis-
tance as follows

dn(xi, xj) =
d(xi, xj)

E(d(xi))
(1)

where d(xi, xj) and dn(xi, xj) are the Euclidean distance
between xi and xj and its normalized version, respectively.
E(d(xi)) is the expected Euclidean distance between xi and
its non-matching features which can be randomly sampled.
This normalized Euclidean distance aims at obtaining uni-
fied degree of measurement across different queries. Notice
this normalized Euclidean distance is not symmetric, which
means that dn(xi, xj) ̸= dn(xj , xi).

Motivated by the above normalized method, we propose
a normalized Gaussian kernel. A Gaussian kernel can be
expressed as

κG(xi, xj) = exp(−(d(xi, xj))
2/2σ2) (2)

where σ is used to scale the exponential function. It map-
s the data points to an infinite dimensional Hilbert space,
which derives a nonlinear model. Gaussian kernel also ben-
efit from the special property of the squared exponential
curve, which makes it more natural than the Euclidean dis-
tance.

In [16], normalization of Euclidean distance is per-
formed based on the non-matching features of the query be-
cause estimating the distance distribution between the query
and its correspondences is intractable. While this approach
is only established for local feature retrieval, we need an
adaptive similarity which considers the surrounding distri-
bution of the data and improves the performance in k-NN
search. Inspired by Bag-of-Words method [10] which us-
es clustering method to cluster local features as different



“visual words”, we treat the points in the same cluster as
correspondences to each other. If we designate the cluster
center index of data point a as ι(a), we can get the expected
similarity CκG(a) of a to its corresponding points by aver-
aging the Gaussian kernel between a and points in cluster
ι(a). Furthermore, if the distribution of pairwise Gaussian
kernel function values in the same cluster is approximately
uniform, we can obtain CκG(a) via:

CκG(a) =

∑
ι(xi)=ι(a),ι(xj)=ι(a) κG(xi, xj)

#({(xi, xj)|ι(xi) = ι(a), ι(xj) = ι(a)})
(3)

where #(·) is the number of elements in the set.
Notice that CκG(a) only relies on ι(a), for simplicity, we

denote it as Cι(a), and Ci = Cι(a)=i defines the expected
similarity of cluster i. If we use the corresponding points
to normalize the Gaussian kernel, the generated similarity
function between a and b is κG(a, b)/Cι(a), while normal-
ized similarity between b and a is κG(a, b)/Cι(b). This sim-
ilarity is asymmetric because Cι(a) and Cι(b) are not always
the same. To overcome this problem, we set the geometric
mean

√
Cι(a)Cι(b) as the denominator. Formally, if the to-

tal number of clusters is l, let δ(a) ∈ {0, 1}l×1 indicate
which cluster that a belongs to. The normalized Gaussian
kernel for points a and b is

κGn(a, b) = (δ(a)TDδ(b))κG(a, b) (4)

where D is an l × l matrix and Dij = 1/
√

CiCj . We will
prove that κGn is a valid kernel. In this paper, we use the
k-means algorithm to obtain the cluster centers and δ(a).
Figure 1 shows a simple example on the adaptability of the
proposed similarity function.

2.2. Positive Semidefinite Property

Having defined a symmetric normalized similarity mea-
sure, we prove that this kernel is positive semi-definite (PS-
D), which is necessary for every valid kernel function.

Definition 2.1. Let X be a nonempty set. Function f :
(X × X ) → R is a positive semi-definite kernel if and only
if f is symmetric and for all m ∈ N, xi, ..., xm ∈ X , and
ci ∈ R

m∑
i,j=1

cicjf(xi, xj) ≥ 0 (5)

Based on this definition, we introduce a theorem which
can be proved directly by the the Schur product theo-
rem [19]:

Theorem 2.1. If κ1, κ2 are all positive semi-definite ker-
nels. Then their product κ1 · κ2 is a positive semi-definite
kernel.

Recall matrix D defined in equation (4), we rewrite it as
D = γγT where γ is an l×1 vector and γi = 1/

√
Ci. Then

δ(a)TDδ(b) becomes (γT δ(a))(γT δ(b)). Because γT δ(a)
is a feature mapping of a, δ(a)TDδ(b) can be considered
as the inner product between features γT δ(a) and γT δ(b)
which is obviously PSD. Since we have already known that
the Gaussian kernel is PSD, by using the Theorem 2.1, the
function κGn(a, b) defined in equation (4) is also PSD.

3. Kernel Reconstructive Hashing

After defining the similarity measure in a kernel form,
now we show how to perform fast retrieval based on this
metric. In this section, we propose a hashing scheme called
Kernel Reconstructive Hashing (KRH) which can preserve
the similarity defined by an arbitrary kernel using compact
binary code.

3.1. Objective Formulation

First of all, we formulate the objective function. Let
X = {x1, x2, ..., xn} be a training set of size n, and
κ(xi, xj) be a kernel function over X . Our objec-
tive is learning a set of r hash functions which gen-
erate the binary code of xi as a {−1, 1}1×r vector
x̃i = [h1(xi), h2(xi), ..., hr(xi)]. The Hamming distance
dh(x̃i, x̃j) between the binary codes for all instance pairs
in X should has a negative correlation with the similarity
represented by the kernel function κ(xi, xj), i.e., a smaller
dh(x̃i, x̃j) corresponds to a larger κ(xi, xj). In [11], Liu
et al. showed that the inner product ⟨x̃i, x̃j⟩ = x̃ix̃

T
j be-

tween binary codes has a one-to-one correspondence with
the Hamming distance: ⟨x̃i, x̃j⟩ = r − 2dh(x̃i, x̃j). This
implies that the inner product also has a negative correla-
tion with the Hamming distance. Therefore, our objective
is to use the inner product ⟨x̃i, x̃j⟩ to reconstruct the kernel
κ(xi, xj). To do so, we minimize the reconstruction error:

min
∑

xi,xj∈X

(s · ⟨x̃i, x̃j⟩ − κ(xi, xj))
2 (6)

where s is a positive number for scaling the inner product. It
should be noted that although ⟨x̃i, x̃j⟩ ∈ [−r, r], the kernel
κ(xi, xj) is not bounded by this range.

3.2. Realvalued Relaxation

The objective function in equation (6) is difficult to solve
because optimization on the binary code is not straightfor-
ward. However, if we do not constrain the output to be bi-
nary, the problem will be much easier to solve. Here, we
use a R1×r vector x̂i to substitute x̃i in equation (6)

min
∑

xi,xj∈X

(⟨x̂i, x̂j⟩ − κ(xi, xj))
2 (7)



The scaling factor s in formula (6) is absorbed by x̂i. This
is a basic metric multidimensional scaling (MDS) prob-
lem [17]. It’s optimal solution can be obtained by the spec-
tral decomposition of the n× n kernel matrix K whose en-
tries Kij = κ(xi, xj). If λ1, λ2, ..., λr > 0 are the top
r largest eigenvalues, and their corresponding eigenvectors
are v1, v2, ..., vr ∈ Rn×1, the optimal solution is

(x̂i)α =
√
λα(vα)i (8)

for i = 1, 2, ..., n, α = 1, 2, ..., r

Using standard algorithm to perform the spectral de-
composition of the n × n kernel matrix K requires O(n3)
time [23]. This is very infeasible for large training set.
A possible solution to this problem is using the low-rank
matrix approximation. We adopt the Nyström method to
construct a low-rank matrix K̃ for K [23]. Randomly
choose m (m < n) columns of K to form an n × m
sub-matrix A, let I be the set of indices of the sampled
columns, and M be an m × m sub-matrix of K such that
Mij = Kij , i ∈ I, j ∈ I . Then the low-rank approxima-
tion for matrix K is K̃ = AM−1AT . If M is not invert-
ible, Moore-Penrose generalized inverse is used to substi-
tute M−1. In our method, the operation for the inverse and
the generalized inverse are similar, so we assume M is in-
vertible. Approximation K̃ is exactly the same as K when
the rank of K is equal to the rank of M . Using this approx-
imation, we perform the eigen decomposition on K̃ instead
of K.

Here we show how to solve the eigenvalues and eigen-
vectors on K̃ efficiently. Firstly we perform the eigen de-
composition M = ZΣZT , where Σ is a diagonal ma-
trix containing the eigenvalues of M , and columns of Z
are the corresponding eigenvectors. Since M is a posi-
tive semi-definite matrix and is invertible, we have M−1 =
ZΣ−1ZT = ZΣ−1/2Σ−1/2ZT . Furthermore, introducing
an m × m matrix B = ZΣ−1/2, we have M−1 = BBT .
Designating AB as an n × m matrix F , we can get K̃ =
FFT . Introducing E = FTF , E is an m×m matrix whose
eigenvalues and eigenvectors can be computed in O(m3).
Directly perform eigen decomposition on E

E = UΛUT (9)

where Λ and U are eigenvalues and eigenvectors of E.
Based on the singular value decomposition (SVD) of F , we
know that FFT has the same nonzero eigenvalues as FTF ,
so the m positive eigenvalues of K̃ are diagonal entries of
Λ: λ1, λ2, ..., λm, and the rest n−m eigenvalues are all ze-
ro. If V is an n×m matrix whose columns are eigenvectors
of K̃ corresponding to λ1, λ2, ..., λm, by SVD, we have:

V = FUΛ−1/2 = ABUΛ−1/2 (10)

From equations (9) and (10), we can obtain the m posi-
tive eigenvalues and their corresponding eigenvectors of K̃.

Pick r largest ones, x̂i for xi ∈ X can be computed accord-
ing to equation (8).

This procedure only generates the r-dimension real-
valued reconstructions for the training data. For an arbitrary
input, we generalize the eigenvectors to the eigenfunctions
ϕα(·), α = 1, 2, ..., r that for xi, it gives the i-th entry of the
eigenvector for eigenvalue λα. Given a novel input y, we al-
so obtain the eigenfunctions using the Nyström method [1]

ϕα(y) =
n∑

i=1

κ(y, xi)(vα)i/λα (11)

This eigenfunction costs O(n) time for each data point,
we can decrease the time complexity to O(m) by Nys-
tröm approximation. Let φ(y) be a 1 × n vector that
φ(y)i = κ(y, xi), and φ(y)I be a 1 ×m vector whose en-
tries correspond to the sampled indices set I , then the Nys-
tröm approximation of φ(y) is φ(y)IM−1AT . Putting them
together, we get the approximate eigenfunction ϕ̃α(y):

ϕ̃α(y) = (φ(y)IM
−1ATV Λ−1)α

= (φ(y)IBBTATABUΛ−3/2)α

= (φ(y)IBEUΛ−3/2)α

= (φ(y)IBUΛ−1/2)α (12)

Let J be the set of α that λα is in the r largest eigenvalues.
According to equations (8) and (12), we get the 1 × r real-
valued reconstruction for y:

ŷ = (φ(y)IBU)J (13)

Notice that this formula is established no matter y is a train-
ing data or a novel input.

3.3. Minimizing the Quantization Loss

We have already got the optimal solution for the problem
in equation (7). Now we need to transform the real-valued
result to be binary. The most common method is using ỹ =
sign(ŷ). However, sometimes, directly using the sign(·)
may make ŷ be largely deviated from ỹ. To address this
problem, we define the following quantization loss Q(·)

Q(G) = ∥G− s̃ · sign(G)∥2F (14)

where ∥ · ∥F denotes the Frobenius norm. G is an arbitrary
real-valued matrix, sign(G) is a same sized matrix as G
that sign(Gij) = 1 for Gij ≥ 0, and sign(Gij) = −1
otherwise. Scaling factor s̃ is introduced to match the range
between the real-valued matrix and the binary matrix. A
similar loss function was adopted in [3], which, however,
does not have the scaling factor. This is not optimal because
the range of G and sign(G) may be very different.

Let X̂ be an n×r matrix whose rows are the real-valued
reconstructions x̂i, then Q(X̂) is the quantization loss for



our solution. Recall that x̂i, i = 1, 2, ..., n target at approx-
imating the kernel κ(xi, xj) by inner product x̂ix̂

T
j . Be-

cause multiplying an arbitrary orthogonal matrix R does not
change the inner product x̂ix̂

T
j = x̂iR(x̂jR)T , X̂R has the

same effect as X̂ . Then we need to find the matrix R which
gives the minimum Q(X̂R). A similar problem was pro-
posed and solved in [3] by iteratively updating R using the
classic orthogonal procrustes method [18]. In our method,
we iteratively update both R and s̃. In each iteration i, we
solve the optimal orthogonal matrix R(i) by

argmin
R(i)

∥X̂R(i) − s̃(i−1) · sign(X̂R(i−1))∥2F (15)

This is a classic Orthogonal Procrustes problem [18] and
can be solved by singular value decomposition: if the SVD
of X̂T (s̃(i−1)sign(X̂R(i−1))) is ŪSV̄ T , then R(i) should
be Ū V̄ T . The optimized s̃(i) can be obtained by setting the
partial derivative ∂Q(X̂R(i))/∂s̃ = 0, such that

s̃(i) =
tr(sign(X̂R(i))

T X̂R(i))

tr(sign(X̂R(i))sign(X̂R(i))T )
(16)

We initialize R(0) as a random orthogonal matrix and s̃(0) as
1. Minimizing the quantization loss makes s̃·sign(X̂R) ap-
proximate X̂R, then s̃2⟨sign(x̂iR), sign(x̂jR)⟩ is approx-
imate to inner product ⟨x̂i, x̂j⟩, which is an approximation
of kernel κ(xi, xj). Therefore, we get an approximate so-
lution of objective function in (6): x̃i = sign(x̂iR) and
s = s̃2.

3.4. Complexity Analysis

Here we analysis the time complexity of KRH. In the
training process, if A is given, M−1 and its eigen decom-
position can be computed in O(m3). Matrix multiplication
for obtaining E needs O(n × m2), and performing eigen
decomposition for E costs O(m3). So obtaining BU in
equation (13) needs at most O(n × m2). In the proce-
dure of minimizing quantization loss, each iteration needs
O(r2 × n). In the experiments, we have found that 50 it-
erations is usually enough to get the quantization loss be
converged. In the search phase, for each query y, comput-
ing ŷ in equation (13) costs O(m × r), and the orthogonal
transformation needs O(r2). Therefore, the training time is
linear with the size of training set, and binary code can be
generated in constant time.

The proposed KRH method is summarized in Algorith-
m 1.

4. Experiment Results
We evaluate the performance of our method on two

datasets. The first one is SIFT-1M from [21], which con-
tains 1 million local features represented as 128 dimension-

Algorithm 1: Kernel Reconstructive Hashing
Data: training data X , kernel function κ(·) , code

length r
Result: r hash functions hp(·), p = 1, 2, ..., r
Randomly sample m indices I to generate
sub-matrices A, M ;
Eigen decomposition: M = ZΣZT ;
Assign B = ZΣ−1/2, F = AB;
Assign E = FTF , solve its eigenvectors for the r
largest eigenvalues, build m× r matrix UJ ;
Assign X̂ = ABUJ , assign R(0) as random
orthogonal matrix, and s̃(0) = 1;
while R, s̃ is not converged do

Update R by equation (15);
Update s̃ by equation (16);

end
Define row vector φ(y) as in Section 3.2, and hash
functions [h1(y), h2(y), ..., hr(y)] = φ(y)IBUJR

al SIFT descriptors [13]. We selected 10, 000 random sam-
ples as queries and left the others as the target database.
The second is CIFAR-10 dataset [7] that consists of 60,000
32×32 color images in 10 classes. Figure 2 shows some
sample images in this dataset. We used 384 dimensional
GIST descriptor [15] to represent each image. For retrieval,
1, 000 images were randomly sampled as queries and the
rest were taken as the database.

Figure 2. Sample images in CIFAR-10 dataset. Each row contains
10 images of the same class.

To evaluate the performance of different methods un-
der comparison, we have used precision-recall and recall
curves, in which the precision and recall are calculated by

precision =
Number of retrieved relevant pairs

Total number of retrieved pairs
(17)
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(b) CIFAR-10

Figure 3. Precision-recall curves of k-NN search on SIFT-1M and
CIFAR-10 when different distance metrics are compared.

recall =
Number of retrieved relevant pairs
Total number of all relevant pairs

(18)

In the comparison with state-of-the-art hashing methods, we
also use the recall curves. All the evaluations are based on
hash lookup usage [3, 6].

In our method, there are some parameters to be set. For
the proposed kernel, the length l of δ(a) in equation (4)
and the constant σ in the Gaussian kernel function in equa-
tion (2) can be selected empirically. In the experiments, we
found that the accuracy is relatively stable when l ≥ 30,
and large l makes κGn complex, so we set l = 30 in all the
experiments. For fair comparison, we set σ as the averaged
Euclidean distance for all methods which use Gaussian ker-
nel. In KRH, there is nearly no difference in performance
when the sample number m ≥ 1000, so we set m = 1000.
For parameters in other methods, we set them the same val-
ues as in their papers correspondingly.

4.1. Find kNN Using Normalized Gaussian Kernel

In this section, we show the superiority of the proposed
normalized Gaussian kernel in the k-NN search task. For
every query, we took the 100 nearest neighbors in Euclidean
distance as the ground-truth. By decreasing the threshold of
similarity measures, we get various precision and recall val-
ues by equations (17) and (18), and generate the precision-
recall curves. In this setting, Gaussian kernel and the Eu-
clidean distance is equivalent.

Figure 3 shows the results using Gaussian kernel and
normalized Gaussian kernel as the similarity function. It
can be seen from the figure that the proposed normalized
Gaussian kernel has significantly outperformed the non-
normalized counterpart.

4.2. Performance of Kernel Reconstructive Hashing

Note that our KRH can use arbitrary kernel function, we
compared it with several similar hashing methods: BRE [8],
KLSH [9] and AGH [12]. For all methods, we used the
same Gaussian kernel as in equation (2). Here we want-
ed to evaluate the degree of similarity preserving based
on the kernel, therefore, we defined τ as the average Eu-

clidean distance between queries and their 50th nearest
neighbors. For each query y, we set all points xi whose
kernel κG(y, xi) ≥ exp(−τ2/2σ2) as the true neighbors.
The precision-recall curves under different code length are
illustrated in Figures 4 and 5. We find that our method has
significant advantages over the competitors on the SIFT-1M
dataset. On the CIFAR-10 dataset, our method leads the
other method with great margin when the precision is high.
It should be mentioned that KLSH is quite sensitive to code
length.

4.3. Comparison with the Stateofthearts Hashing
Methods

Finally, we incorporate the KRH scheme with the nor-
malized Gaussian kernel, and compare it with several state-
of-the-art unsupervised hashing methods. These method-
s are locality sensitive hashing (LSH) [2], spectral hash-
ing (SH) [22], unsupervised sequential projection learn-
ing hashing (USPLH) [21], iterative quantization (ITQ) [3],
Isotropic Hashing (IsoHash) [6] and K-means Hashing
(KMH) [4]. As in [21], the top 2 percentile nearest neigh-
bors in Euclidean distance are taken as the true positive.

The resulting recall curves are shown in Figures 6 and 7.
Since we follow the hash lookup usage, the recall values
are obtained by evaluating the recall for the average first N
Hamming neighbors of all queries. Due to the space limi-
tation, we do not show the precision-recall curves but sub-
stitute them with a more succinct measurement, mean aver-
aged precision (mAP) which is the area under the precision-
recall curve, as shown in Figure 8. We can see that the per-
formance from various methods being compared on the two
datasets follows the same trend. The proposed method has
outperformed all the other methods with clear margin. It can
be observed from Figure 8 that the advantage of our method
become larger when the code length increase. This is be-
cause large code length gives more precise approximation
of the normalized Gaussian kernel, which is reasonable for
k-NN search. Among all other methods, ITQ is the most
competitive. Performance of LSH grows fast with the in-
crease of code length, while USPLH performs worse with
longer code. We also found that our method can retrieve
more semantically similar images. Figure 9 shows some
sample retrieved images on CIFAR-10.

To compare the efficiency of various methods, we show
the training time on CIFAR-10 in Table 1. All experiments
were implemented with MATLAB code and ran on a PC
with Intel Core-i7 3.4GHz CPU, 16GB RAM. Since BRE
and KLSH cannot work on large training set, the size of
training set for them were based on the settings in [8, 9].
For methods using kernelized data, we do not count the
time of kernel computation in this training time. We can see
that BRE, USPLH and KMH are relatively time consuming
compared with other methods.
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Figure 4. Precision-recall curves for kernel similarity preserving on SIFT-1M.
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Figure 5. Precision-recall curves for kernel similarity preserving on CIFAR-10.
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Figure 8. Mean averaged precision of several unsupervised hash-
ing methods on SIFT-1M and CIFAR-10.

query

KRH-normalized ITQ USPLH

IsoHash KMH SH LSH

Figure 9. Qualitative results on CIFAR-10. We used 64-bit hashing
codes, and show the false positives in red rectangle.

#bit 32 bits 64 bits 96 bits 128 bits
KRH 5.63 8.27 11.02 14.20
BRE 53.61 279.23 492.81 931.54

KLSH 7.83 8.21 8.58 8.75
AGH 4.26 4.43 4.97 5.33
ITQ 2.14 4.04 6.41 9.14

USPLH 35.38 72.24 110.62 143.94
IsoHash 0.35 0.51 0.72 1.61
KMH 289.85 313.47 338.21 358.42

SH 0.54 0.58 0.70 0.85

Table 1. Training time (seconds) on CIFAR-10.

5. Conclusion and Future Work
We have presented a novel normalized Gaussian kernel

function and a kernel reconstructive hashing framework
KRH which can reconstruct the kernel between data points
using binary code. By considering the local distribution
around data point, the proposed kernel function is consis-
tent with the k-NN search. Incorporating this kernel in
KRH, we can improve the ANN performance under the
k-NN protocol. KRH costs linear time to train the efficient
hash function with respect to the size of the training set
by low-rank approximation. Their effectiveness have been
validated on two public datasets. In the future, we will try
more kernel based models with the proposed normalized
Gaussian kernel. Since our method can reconstruct the
pairwise value of kernel function by binary codes, we
believe its usage is not constrained on ANN search, for
example, it can be useful for some scenarios where fast
kernel computation is required.
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Figure 6. Recall curves of several unsupervised hashing methods on SIFT-1M.
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Figure 7. Recall curves of several unsupervised hashing methods on CIFAR-10.
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