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Abstract

Subjective Image Quality Assessment (IQA) is the most
reliable way to evaluate the visual quality of digital images
perceived by the end user. It is often used to construct im-
age quality datasets and provide the groundtruth for build-
ing and evaluating objective quality measures. Subjective
tests based on the Mean Opinion Score (MOS) have been
widely used in previous studies, but have many known prob-
lems such as an ambiguous scale definition and dissimilar
interpretations of the scale among subjects. To overcome
these limitations, Paired Comparison (PC) tests have been
proposed as an alternative and are expected to yield more
reliable results. However, PC tests can be expensive and
time consuming, since for n images they require

(
n
2

)
com-

parisons. We present a hybrid subjective test which com-
bines MOS and PC tests via a unified probabilistic model
and an active sampling method. The proposed method ac-
tively constructs a set of queries consisting of MOS and PC
tests based on the expected information gain provided by
each test and can effectively reduce the number of tests re-
quired for achieving a target accuracy. Our method can be
used in conventional laboratory studies as well as crowd-
sourcing experiments. Experimental results show the pro-
posed method outperforms state-of-the-art subjective IQA
tests in a crowdsourced setting.

1. Introduction

Estimating gold-standard labels (strengths, scores, etc.)
based on subjective judgments provided by humans is a crit-
ical step in psychological experiments with applications in
many research fields [19]. This paper studies the problem of
Quality of Experience (QoE) evaluation, which in general
aims to obtain subjective satisfaction of user’s experience
with a service (for example, web browsing, phone calls,
video chatting or online shopping.) or with some multime-
dia content (for example, videos, images, etc.). Here we in-
vestigate image quality assessment (IQA) problem, but the
proposed method can be applied to any general problem of

QoE evaluation.
Absolute Category Rating [1] is one of the most popu-

lar subjective IQA tests. It consists of having a panel of
subjects rate images using an ordinal scale: 1-“Bad”, 2-
“Poor”, 3-“Fair”, 4-“Good” and 5-“Excellent”. For a given
image, its score is computed as the average scores from all
subjects. This is also known as the Mean Opinion Score
(MOS). Despite the popularity of the MOS test, there are
many known problems [4, 5]. First, most previous work in
QoE [16] treats the MOS scale as an interval scale instead
of ordinal scale and assumes that the cognitive distances
between the consecutive MOS scales are the same. How-
ever, assumptions such as: “Fair”-“Poor”=“Good”-“Fair”,
are not always true in practice. Second, absolute rating
procedures are somewhat obscure so subjects can be eas-
ily confused about which scale they should give in each test
and different subjects may have different interpretations of
the scale. Therefore the resulting rating observations can be
very noisy.

To overcome the limitation of the MOS test, the Paired
Comparison (PC) test [4, 5, 8, 18, 19, 23, 24] has been pro-
posed as an alternative. In the simplest configuration, two
images A and B are shown to a subject who is asked to “pre-
fer” one of them. Compared to the rating test, making a de-
cision in a paired comparison test is much simpler and less
confusing for the subject. However, when n images need to
be compared, the total number of pairs is

(
n
2

)
and when n

is large, the cost for obtaining a full set of pairwise compar-
isons is prohibitively expensive. HodgeRank on Random
Graphs (HRRG) [23, 24] has been introduced to reduce the
cost of the PC test by using a random sampling method
with HodgeRank [11]. We approach this problem differ-
ently by combining the MOS test and the PC test via active
sampling. As will be shown experimentally, the proposed
method outperforms the HRRG for crowdsourcing subjec-
tive IQA.

Our method is motivated by the following observations:
1) Although the MOS test may not be able to accurately
rank two images with similar quality due to the observation
noise, it can provide an estimate of the underlying quality

1



score at a coarse level. 2) In the PC test, we explicitly ask
humans to compare pairs of images, therefore the PC test
can provide fine discrimination on images with similar qual-
ity. 3) Once we have some coarse estimates on the underly-
ing scores, a complete set of PC test would be unnecessary.
For example, it would be unnecessary to perform a paired
comparison on an image with MOS score 1 and an image
with MOS score 5, since we can already tell the difference
with high confidence. Based on these observations, we will
show that combining the MOS and PC tests will provide a
more efficient design for subjective IQA. In this paper, we
will answer the following two questions:
1. Given a collection of observations from the MOS test
and the PC test, how can we combine them to estimate the
underlying score?
2. In both laboratory studies and crowdsourced settings,
subjective judgments are obtained at a defined cost. How
can we effectively sample a subset of MOS and PC tests so
that we can achieve desired accuracy with minimal cost?

2. Related Work

2.1. Crowdsourceable QoE

Conventional subjective QoE experiments conducted in
laboratory settings can be expensive and time-consuming
and typically only a small number of subjects are involved.
With the ubiquitous internet access and the rise of inter-
net micro-labor markets such as Amazon Mechanical Turk,
there has been an increasing interest in designing subjective
QoE tests for crowdsourced settings.

Previous work on Crowdsourceable QoE considers the
MOS and PC tests independently. Ribeiro et al. [16] per-
formed the MOS test for QoE assessment using crowd-
sourcing. They developed a two-way random effects model
to model the uncertainty in subjective tests and proposed a
post-screening method and rewarding mechanism to facili-
tate the process. Chen et al. [5] proposed a crowdsource-
able QoE assessment framework for multimedia content,
in which interval-scale scores are derived from a full set
of paired comparisons. However, since a complete set of
paired comparisons has to be performed, this method cannot
be applied on a large scale. To address this problem, Xu et
al. [23, 24] introduced the HodgeRank on Random Graphs
(HRRG) test, where random sampling methods based on
Erdös-Rényi random graphs were used to sample pairs and
the HodgeRank [11] was used to recover the underlying
quality scores from the incomplete and imbalanced set of
paired comparisons. This method can effectively reduce the
cost of PC tests required for achieving a certain accuracy.
We will show experimentally that by combining informa-
tion from MOS and PC tests via active sampling, we can
further reduce the cost of experiments.

2.2. Preference Aggregation

The problem we are trying to solve is essentially an
information aggregation problem, where we want to inte-
grate information from multiple sources into a consensus
score. The problem of preference aggregation has been
extensively studied in the information retrieval community
[6, 14, 20]. In particular, there has been some recent work in
this field that applied active learning for preference aggre-
gation. Given a pair of objects, a utility function is defined
that measures the “usefulness” of performing a paired com-
parison. Then pairs with high utilities are chosen as queries
and sent to an oracle or to human subjects.

Pfeiffer et al. [14] introduced an active learning method
based on the Thurstone-Mosteller model [13, 18] for pair-
wise rank aggregation. At each iteration of an experiment,
this method adaptively chooses one pair of objects to com-
pare. The paper shows the advantage of using an active
sampling method over a random sampling method. Chen
et al. [6] proposed an active learning model based on the
Bradley-Terry Model [3] which adopts an efficient online
Bayesian updating scheme that does not require retraining
of the whole model when new observations are obtained.
All these previous works focus solely on aggregating infor-
mation obtained from PC tests. A single optimal pair is
usually chosen at each iteration of the experiment. This is
inefficient in a crowdcourced setting, where multiple sub-
jects may work in parallel and workers may expect to work
on multiple tests instead of taking one single test in each
working session. It is desirable to develop a batch-mode
active learning method for the crowdsourceable subjective
QoE problem.

Gleich and Lim [10] introduced several ad-hoc methods
for building a preference matrix from rating observations
based on the arithmetic mean of score differences, geomet-
ric mean of score ratios, binary comparisons, strict binary
comparisons and logarithmic odds ratios. We may apply
these methods to convert the rating observations into the
preference observations. However, it is not clear how to
measure the utility of the MOS test. Our method com-
bines the MOS test and the PC test directly via a unified
probabilistic model and the utility of each individual MOS
test and PC test is defined as the expected information gain
given by the test.

3. Combining Ratings and Paired Compar-
isons

This section presents a probabilistic model for com-
bining the MOS test and the PC test. Suppose we
have n images A1, A2, .., An with underlying scores s =
(s1, s2, ..., sn). We model a subject’s perceived quality of
image Ai as a random variable: ri = si + εi, where the
noise term is a Gaussian random variable εi ∼ N (0, σ2).



In the remainder of this section, we first derive the likeli-
hood functions of the underlying score given the MOS and
PC observations independently. We then present a hybrid
system which estimates the underlying score using Maxi-
mum A Posteriori estimation (MAP).

3.1. Mean Opinion Score Test

Thurstone’s law of categorical judgment [19] is applied
for analyzing the rating observations. Assume the perceived
categorical observation for Ai is mi and mi ∈ M, where
M is a finite set of K ordered categories and K = 5
in the case of the MOS test. Without loss of general-
ity, these categories are denoted as consecutive integers:
M = {1, 2, ...,K}. We further introduce a set of cutoff
values −∞ ≡ γ0 < γ1 < γ2 < ... < γK−1 < γK ≡ ∞1.
When ri falls between the cutoffs γc−1 and γc, the observed
categorical label is c, i.e. mi = c, and we have

Pr(mi|si) = Pr(γmi−1 < si + εi ≤ γmi
)

= Φ(
γmi
−si
σ )− Φ(

γmi−1
−si

σ )
(1)

where Φ(·) represents Cumulative Density Function
(CDF) of standard Gaussian distribution.

In the MOS test, repeated observations are made for each
image. We define the rating observation matrix M as fol-
lows:

M =


M1,1 M2,1 · · · Mn,1

M1,2 M2,2 · · · Mn,2

...
...

. . .
...

M1,K M2,K · · · Mn,K

 (2)

where Mi,j is the number of times the image Ai is ob-
served as in the j-th category. Given the underlying score s,
we assume the categorical observations of each image are
conditionally independent and follow a multinomial distri-
bution. We then have the probability of observing M as
follows:

Pr(M |s) =
∏n
i=1 Pr(Mi,1,Mi,2, ...,Mi,K |si)

=
∏n
i=1

(
Mi,1+...+Mi,K

Mi,1,...,Mi,K

)∏K
k=1 Pr(mi = k|si)Mi,k

= c1
∏n
i=1

∏K
k=1(Φ(γk−siσ )− Φ(γk−1−si

σ ))Mi,k

(3)
where c1 is a constant.

3.2. Paired Comparison Test

In the PC test, if the perceived score ri > rj , we say that
Ai is preferred to Aj , which is denoted as Ai � Aj . The

1The original law of categorical judgment [19] assumes the randomness
of γc, for simplicity, we assumes γc to be deterministic as in [7].

probability of Ai � Aj is given by:

Pr(Ai � Aj) = Pr(si + εi > sj + εj) = Φ(
si−sj√

2σ
)

(4)
Eq. 4 is known as the Thurstone-Mosteller Case V model

[13, 18]. Preferences obtained from a set of PC tests can
be characterized by a preference matrix and we define the
preference matrix P as:

P =


0 P1,2 · · · P1,n

P2,1 0 · · · P2,n

...
...

. . .
...

Pn,1 Pn,2 · · · 0

 (5)

where Pi,j is the number of times Ai � Aj is observed.
Then the probability of observing P is:

Pr(P |s) =
∏
i,j∈1,...,n,i<j Pr(Pi,j , Pj,i|si, sj)

=
∏
i<j

(
Pi,j+Pj,i

Pi,j

)
Pr(Ai � Aj)Pi,jPr(Aj � Ai)Pj,i

=
∏
i<j

(
Pi,j+Pj,i

Pi,j

)
Φ(

si−sj√
2σ

)Pi,jΦ(
sj−si√

2σ
)Pj,i

= c2
∏
i 6=j Φ(

si−sj√
2σ

)Pi,j

(6)
where c2 is a constant.

3.3. Posterior Probability of the Underlying Score

Given observations from both MOS and PC tests, the hy-
brid system estimates the underlying score by maximizing
the posterior probability

ŝ = argmaxsPr(s|P,M) (7)

Computing Pr(s|P,M) is not a trivial task. The likelihood
functions in Eq. 3 and Eq. 6 are conditioned on several
unknown model parameters including: the noise variance
σ and the cut-off parameters γ1, ..., γK−1. Since the likeli-
hood functions are scale-invariant, i.e. Pr(M |s, γ, σ) =
Pr(M |ks, kγ, kσ) and Pr(P |s, σ) = Pr(P |ks, kσ) for
a constant k 6= 0, without loss of generality, we may fix
σ = 1/

√
2. With σ fixed, the likelihood functions are

still translation-invariant, i.e. Pr(M |s, γ) = Pr(M |s +
k, γ + k) and Pr(P |s) = Pr(P |s + k) for a constant
k. To make the objective identifiable, we further assume
γ1 = 0. K − 2 model parameters γ2, ..., γK−1 remain un-
known. We denote the set of unknown model parameters
γ = {γ2, ..., γK−1}.

In a full Bayesian treatment, computing Pr(s|P,M) re-
quires integrating the model parameters over all possible
values, which can be implemented using Monte Carlo meth-
ods. However, these computations might be prohibitively
expensive. Alternatively, we approximate Pr(s|P,M) by
Pr(s|P,M, γ̂) where γ̂ refers to the optimal setting of



γ. Specifically, γ̂ = argmaxγPr(M,P |γ), which is the
Maximum Likelihood Estimate of γ. To obtain an ana-
lytical form of the gradients of Pr(M,P |γ) w.r.t γ and a
Gaussian form approximation to the posterior probability
Pr(s|M,P, γ̂), we apply the Laplace approximation [2]. To
illustrate the approximation procedure, let us define:

Fγ(s) = −logPr(M |s, γ)− logPr(P |s)− logPr(s) (8)
where we assume a Gaussian prior on s ∼ N(µ,Ω). The

Hessian matrix of Fγ(s) is given by:

Rγ(s) =
∂2Fγ(s)

∂s∂sT
(9)

Denoting the minimizer of Fγ(s) as ŝγ and R̂γ =
Rγ(ŝγ), applying a Laplace approximation, we have

Fγ(s) ≈ Fγ(ŝγ) +
1

2
(s− ŝγ)T R̂γ(s− ŝγ) (10)

Using the above approximation, Pr(M,P |γ) can be
computed analytically as follows:

Pr(M,P |γ) =
∫
Pr(s)Pr(M |s, γ)Pr(P |s)ds

=
∫
exp(−Fγ(s))ds ≈ exp(−Fγ(ŝγ))(2π)

n
2 |R̂γ |−1/2

(11)
Using Eq. 11, the gradients of the log(Pr(M,P |γ))

w.r.t γ can be computed analytically. Gradient-based op-
timization methods can be used to find MLE of γ.

Given the optimal cut-off parameter γ̂, the posterior
probability of s can be approximated by:

Pr(s|P,M) ∝ Pr(M |s, γ̂)Pr(P |s)Pr(s)

= exp(−Fγ̂(s)) ∝ N(ŝγ̂ , R̂
−1
γ̂ )

(12)

The MAP estimate of s is ŝγ̂ . In order to ensure a
global optimal solution of the MAP estimate, Eq. 8 has
to be a convex function. It has been shown in [7] that
−logPr(M |s, γ) − log(Pr(s)) is convex. However, in or-
der to make sure −log(Pr(P |s)) has a unique minimizer,
Ford’s condition [9] has to be satisfied. In practice, this can
be achieved by adding a small constant to each zero-valued
element in the preference matrix P . This is also known as
smoothing.

4. Active Sampling
Subjective judgments are usually obtained at certain cost

and it is desirable to design cost-efficient experiments. We
propose an active random sampling method which con-
structs a set of queries consisting of MOS and PC tests
based on the expected information gain provided by each.
Let Ei denote the experiment which makes one absolute
judgment on the object Aj and Eij be the experiment that
makes a pairwise comparison between Ai and Aj .

4.1. Information Measure of Experiments

The purpose of experiments is to gain knowledge about
the state of nature. We adopt the Bayesian Optimal Design
framework introduced by Lindley [12] and evaluate an ex-
periment using the Expected Information Gain (EIG) pro-
vided by conducting this particular experiment. In the sub-
jective IQA problem, the state of nature (or parameter) to
be estimated is the quality score s = {s1, ..., sn}. Before
conducting the experiment E , our knowledge of s is char-
acterized by the prior distribution of s ∼ Pr(s). The EIG
provided by an experiment E is denoted I(E , P r(s)). The
general formula of I(E , P r(s)) is given by [12]:

I(E , P r(s)) = Es

[∫
log{Pr(x|s)

Pr(x)
}Pr(x|s)dx

]
(13)

where Es(·) is the expectation taken w.r.t Pr(s). For the
MOS test, suppose the outcome of Ei is xi ∈ {1, 2, ...,K}
and pik = P (xi = k|s). It is easy to verify that p(xi =
k) = Es(p(xi = k|s)) = Es(pik) and we have

I(Ei, P r(s)) = Es[
∑K
k=1 piklog( pik

p(xi=k)
)]

= Es[
∑K
k=1 piklog(pik)]−

∑K
k=1Es(pik)logEs(pik)

(14)
For the PC test, suppose the outcome of Eij is xij and

xij = 1 if Ai � Aj ; xij = 0 if Ai ≺ Aj . Define pij =
p(xij = 1|s) and qij = 1 − pij . It is easy to verify that
p(xij = 1) = Es(p(xij = 1|s)) = Es(pij) and p(xij =
0) = Es(qij). The information gain provided by Eij is:

I(Eij , P r(s)) = Es[pij log(
pij

p(xij=1) ) + qij log(
qij

p(xij=0) )]

= Es[pij log(pij) + qij log(qij)]

−Es(pij)log(Es(pij))− Es(qij)log(Es(qij))
(15)

It is worth noting that the prior distribution Pr(s) is ac-
tually conditioned on previous observations as in Eq. 12,
but we omit the conditions here for ease of representa-
tion. In Eq. 12, we introduced a Gaussian approxima-
tion to the posterior distribution. Therefore, we can use
the Gauss-Hermite quadrature [15] to compute the expec-
tation efficiently. Fig. 1 shows how the EIG I(Eij , P r(s))
changes with the expectation and the standard deviation of
si − sj . We can see that the utility of the PC test increases
as E(si − sj) decreases and std(si − sj) increases. This
implies that the EIG obtained by performing a PC test on
two images with similar quality is higher than that for those
with very different quality.



Figure 1: Contour plot of I(Eij , P r(si, sj)) as function of
the expectation and the standard deviation of si − sj .

4.2. Active Sampling

Suppose we have n images, we would like to make one
observation related to each image at each round of the ex-
periment. For an image Ai, n different tests related to Ai
can be conducted including one MOS test Ei and n− 1 PC
tests Eij , j = 1, ...n, j 6= i. We select the test which has the
highest EIG to perform. At the t-th iteration of the experi-
ment, the test selected to perform for image Ai is:

Et(Ai) = argmaxE∈{Eij ,Ei|j 6=i}I(E , P r(s|Mt−1, Pt−1))
(16)

where Mt−1 and Pt−1 summarize all rating and preference
observations in the previous iterations of the experiment.

The proposed model assumes that the observation noise
has the same standard deviation σ = 1/

√
2 for both the

MOS test and the PC test. However, in practice, this as-
sumption may not be true and the MOS test is usually asso-
ciated with higher noise levels. Therefore the utility of per-
forming a MOS test computed under this assumption may
be higher than its true utility. A quick fix can be applied
by imposing a slightly higher σ when computing the EIG
for the MOS test. In particular, we set σmos = 1√

2
(1 + α),

where α is a small positive constant. It is worth noting that
α is the only system parameter that is relatively sensitive
and needs to be carefully specified in the experiment.

5. Experiments
5.1. Dataset

We have not found any publicly available dataset with
a large set of rating and preference judgments for crowd-
sourcing QoE problems, so we built our own dataset starting
with the LIVE IQA dataset [17]. The LIVE IQA dataset in-
cludes 779 distorted images with five different types of dis-
tortions derived from 29 reference images. For this work,

we selected a subset of 120 images from the Fast-Fading
category. The 120 images include 20 undistorted reference
images and 100 distorted images derived from the 20 refer-
ence images. Each image in the LIVE dataset is associated
with a subjective DMOS score which was obtained through
the MOS test. Note that we will not use the DMOS as
groundtruth for our experiments, since the accuracy of the
DMOS is limited by the nature of the MOS test. Alterna-
tively, we will generate more realistic groundtruth through
the proposed experimental design.

The subjective judgments of the set of images were ob-
tained using the Amazon Mechanical Turk (MTurk) plat-
form2. In the MOS test, images are labeled by five ordinal
scales: “Bad”, “Poor”, “Fair”, “Good” and “Excellent”. For
each image, we collected 50 rating observations and a total
of 6000 rating scores for 120 images were obtained from
86 subjects. A complete set of paired comparisons of this
dataset includes

(
120
2

)
= 7140 pairs. For each pair, we col-

lected five repeated observations for a total of 35700 pairs
from 196 subjects.

Using MTurk, each working session is considered one
HIT (human intelligence task). In our studies, each HIT
includes 10 images for the MOS test or 10 pairs for the PC
test. Images were randomly permuted to display in each
HIT and for the PC test, the display order of a pair of images
was also randomized. Additionally, the maximal number
of HITs of PC tests that could be done by one worker was
limited to 40 so that we would not have a large set of paired
comparisons from the same subject.

5.2. Evaluation Measure

We used the Kendall’s τ Coefficient and Linear Corre-
lation Coefficient (LCC) for evaluating the performance of
subjective tests. Given two global scores on a set of images
xi and yi i = 1, ..., n, Kendall’s τ coefficient is defined as

τ(x, y) =

∑
i6=j XijYij

1
2n(n− 1)

(17)

where Xij = sign(xi−xj) and Yij = sign(yi−yj). A
pair is concordant if Xij = Yij and is discordant otherwise.
τ(x, y) measures the percentage of concordance pairs mi-
nus the percentage of discordant pairs. For identical rank-
ings τ(x, x) = 1 and for reversed rankings τ(x,−x) = −1.

LCC estimates the strength of the linear relationship be-
tween x and y. A high value of LCC(x, y) does not nec-
essarily imply a high τ(x, y). Kendall’s τ coefficient is a
stricter measure in that it is based on pairwise comparisons.

5.3. GroundTruth

Groundtruth is obtained by solving the MAP problem
described in Section 3.3 given all observations, including

2https://www.mturk.com/



(a) (b)

Figure 2: Example of Image Pairs.

6000 rating observations and 35700 preference observa-
tions. A smoothing constant 0.5 was added to each zero-
valued entry in the preference matrix P obtained from the
PC test. The observation matrices M and P are normal-
ized so that P (i, j) + P (j, i) = 1 and

∑5
k=1M(k, i) = 1.

We use Ipopt [22] for computing the MAP estimate of the
underlying score, i.e the minimizer of Eq. 8. The prior dis-
tribution of the underlying score is specified by an uninfor-
mative prior defined N(µ,Ω), where µ = 0,Ω = 1000× I
and I is an identity matrix. The correlations between the
estimated score obtained from our crowdsourced data and
the DMOS data provided in the LIVE dataset are LCC =
0.978 and SROCC = 0.859. We can see that the LCC
value is high, but the Kendall’s τ correlation value is rela-
tively low. Examples of image pairs that DMOS disagrees
with our estimates are shown in Fig. 2. In this case, the
two images are fairly close in quality. In our studies, the
first image is preferred to the second image. Taking a closer
look at these two images, the first image preserves more de-
tailed information and the second image is more blurred.
However, the first image has slightly higher ringing effect
compared to the second image. Making a preference judg-
ment between these two images is a highly subjective task
and different subjects may have different preferences. In
our study, it seems the subjects are more sensitive to blur
distortion and prefer sharper images.

5.4. Evaluation

To test the performance of our hybrid system with ac-
tive sampling, we simulate the crowdsourcing experiment
by repeatedly and randomly sampling from real judgments
collected from MTurk. All the raw data is included and no
post-screening process is applied, because we want to sim-
ulate a real crowdsourcing scenario where we do not have
enough data to evaluate the rater’s reliability for several ini-
tial rounds of the experiment .

At each round of the experiment 120 observations were

obtained using four different methods:
HY-ACT: The proposed hybrid system with active sam-
pling (described in Section 4) and α = 0.2.
HY-RND: A hybrid system using the random sampling
method. For image Ai, with probability 0.5 that the MOS
test Ei is sampled, and with probability 0.5 a PC test is sam-
pled and it is uniformly randomly chosen from {Eij |j =
1, .., n, j 6= i};
MOS: A standard MOS test, where at each iteration of the
experiment, we make one additional MOS observation for
each image.
HRRG [24]: A standard PC test with random sampling.
At each iteration, 120 random pairs are sampled based on
Erdös-Rényi random graphs.

After each iteration of the experiment, estimates of the
underlying scores are obtained using all previously ob-
served data. In particular, HY-ACT and HY-RND esti-
mate the underlying scores by solving the MAP problem
described in Section 3.3. MOS simply takes the average of
all observations for one particular image as its score. HRRG
uses the HodgeRank [11] with an angular transform model
to obtain the underlying score. In the first iteration of the ex-
periment, HY-ACT and HY-RND were initialized with 120
MOS tests. After initialization, 150 rounds of experiments
were preformed and in the end a total of 151×120 = 18120
observations were obtained. In this experiment, we simply
set γ = {1, 2, 3} since we found that with this approxima-
tion the performance of the proposed method does not vary
much and it is faster to run the experiment. The process was
repeated 100 times and the median values of the Kendall’s
τ correlation and LCC are presented in Figs. 3 and 4, where
the x-axis represents the number of observations for all 120
images. When the number of observations is very small (for
example, less than 10 observations can be made for each
image), the HY-ACT curve and the MOS curve are almost
identical. This is because at the first several rounds of the
experiment, MOS tests have higher EIGs than PC tests and



Figure 3: Kendall’s τ in the Crowdsourcing experiment.

Figure 4: LCC in the Crowdsourcing experiment.

all 120 selected tests are MOS tests. As more observations
are obtained, the active sampling method starts to sample
more PC tests. Fig. 5 shows the average number of MOS
and PC tests performed at each iteration of the experiment.

Due to high observation noise associated with the MOS
test, the Kendall’s τ coefficients of the MOS test is low
even with a large number of rating observations and the PC
test is indeed more accurate than the MOS test. The active
sampling is critical to the success of the hybrid test, since
when a random sampling method as in HY-RND is used,
the performance of the hybrid system drops. Table 1 shows
the average number of observations required for each im-
age to achieve a given Kendall’s τ coefficient. Compared to
HRRG, HY-ACT significantly reduced the required number
of observations to achieve a given accuracy. Fig. 6 shows
the standard deviation (STD) of the Kendall’s τ coefficients
of the 100 repeated experiments. We can see that HY-ACT
has smaller STD than other methods, which implies that
HY-ACT has more consistent performance and is thus more
reliable.

Figure 5: Number of MOS and PC tests sampled in each
iteration.

Figure 6: Standard deviation of Kendall’s τ .

Kendall 0.85 0.90 0.91 0.92 0.93
HRRG 27 67 82 107 138

HY-ACT 15 28 36 47 61

Table 1: Average number of required observations per im-
age for achieving a given Kedall’s τ .

6. Discussions and Conclusions

The proposed model assumes that the variances of obser-
vation noise for different images in different types of tests
are the same. This assumption does not necessarily hold in
practice. Our future work will extend this model to take
into consideration these factors. In our experiments, we
have used an uninformative prior for the underlying score,
however, when additional information about the underly-
ing score is available, it can easily be incorporated into our
model by constructing the prior distribution using prior in-
formation. The current model can also be extended to an
online learning setting using the techniques introduced in



[21].
We have presented a hybrid system which combines the

MOS test and the PC test via a unified probabilistic model
for estimating the underlying quality scores of images. An
active sampling method has been introduced to efficiently
construct queries of tests which maximize the expected in-
formation gain. The proposed method effectively reduced
the required number of observations for achieving a certain
accuracy and improved on the state of the art.

Acknowledgment
The partial support of this research by DARPA through

BBN/DARPA Award HR0011-08-C-0004 under subcon-
tract 9500009235, the US Government through NSF
Awards IIS-0812111 and IIS-1262122 is gratefully ac-
knowledged.

References
[1] Subjective video quality assessment methods for multimedia

applications. ITU-T Recommendation P.910, Apr. 2008.
[2] A. Azevedo-Filho and R. D. Shachter. Laplace’s method ap-

proximations for probabilistic inference in belief networks
with continuous variables. In Uncertainty in Artificial Intel-
ligence, pages 28–36, 1994.

[3] R. A. Bradley and M. E. Terry. Rank analysis of incom-
plete block designs: I. the method of paired comparisons.
Biometrika, 39(3/4):324–345, 1952.

[4] B. Carterette, P. N. Bennett, D. M. Chickering, and S. T. Du-
mais. Here or there: preference judgments for relevance. In
Proceedings of the IR research, 30th European Conference
on Advances in information retrieval, pages 16–27, Berlin,
Heidelberg, 2008.

[5] K.-T. Chen, C.-C. Wu, Y.-C. Chang, and C.-L. Lei. A crowd-
sourceable QoE evaluation framework for multimedia con-
tent. In Proceedings of the 17th ACM International Confer-
ence on Multimedia, pages 491–500, 2009.

[6] X. Chen, P. N. Bennett, K. Collins-Thompson, and
E. Horvitz. Pairwise ranking aggregation in a crowdsourced
setting. In Proceedings of the Sixth ACM International Con-
ference on Web Search and Data Mining, pages 193–202.
ACM, 2013.

[7] W. Chu and Z. Ghahramani. Gaussian processes for ordinal
regression. Journal of Machine Learning Research, 6:1019–
1041, Dec. 2005.

[8] H. David. The Method of Paired Comparisons. Hodder
Arnold, second edition, 1988.

[9] J. Ford, L. R. Solution of a ranking problem from bi-
nary comparisons. The American Mathematical Monthly,
64(8):pp. 28–33, 1957.

[10] D. F. Gleich and L.-h. Lim. Rank aggregation via nu-
clear norm minimization. In Proceedings of the 17th ACM
SIGKDD International Conference on Knowledge discovery
and data mining, pages 60–68, 2011.

[11] X. Jiang, L.-H. Lim, Y. Yao, and Y. Ye. Statistical ranking
and combinatorial Hodge theory. Mathematical Program-
ming, 127(1):203–244, 2011.

[12] D. V. Lindley. On a measure of the information provided
by an experiment. The Annals of Mathematical Statistics,
27(4):pp. 986–1005, 1956.

[13] F. Mosteller. Remarks on the method of paired comparisons:
I. the least squares solution assuming equal standard devia-
tions and equal correlations. Psychometrika, 16:3–9, 1951.

[14] T. Pfeiffer, X. A. Gao, A. Mao, Y. Chen, and D. G. Rand.
Adaptive polling and information aggregation. In The 26th
Conference on Artificial Intelligence (AAAI’12), 2012.

[15] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vet-
terling. Numerical Recipes in C : The Art of Scientific Com-
puting. Cambridge University Press, October 1992.

[16] F. Ribeiro, D. Florencio, C. Zhang, and M. Seltzer. Crowd-
mos: An approach for crowdsourcing mean opinion score
studies. In 2011 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages 2416–
2419, May 2011.

[17] H. R. Sheikh, M. F. Sabir, and A. C. Bovik. A statisti-
cal evaluation of recent full reference image quality assess-
ment algorithms. IEEE Transactions on Image Processing,
15(11):3440–3451, 2006.

[18] L. Thurstone. A law of comparative judgment. Psychologi-
cal Review, 1927. 34:273-286.

[19] W. Torgerson. Theory and methods of scaling. John Wiley
& Sons, New York, 1958.

[20] M. N. Volkovs and R. S. Zemel. A flexible generative model
for preference aggregation. In Proceedings of the 21st In-
ternational Conference on World Wide Web, pages 479–488,
2012.

[21] R. C. Weng and C.-J. Lin. A bayesian approximation method
for online ranking. Journal of Machine Learning Research,
12:267–300, 2011.

[22] A. Wchter and L. T. Biegler. On the implementation of an
interior-point filter line-search algorithm for large-scale non-
linear programming. Mathematical Programming, 106:25–
57, 2006.

[23] Q. Xu, Q. Huang, and Y. Yao. Online crowdsourcing sub-
jective image quality assessment. In Proceedings of the 20th
ACM International Conference on Multimedia, pages 359–
368. ACM, 2012.

[24] Q. Xu, T. Jiang, Y. Yao, Q. Huang, B. Yan, and W. Lin.
Random partial paired comparison for subjective video qual-
ity assessment via hodgerank. In Proceedings of the 19th
ACM International Conference on Multimedia, pages 393–
402. ACM, 2011.


