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Abstract

Graph matching and graph mining are two typical ar-
eas in artificial intelligence. In this paper, we define the
soft attributed pattern (SAP) to describe the common sub-
graph pattern among a set of attributed relational graphs
(ARGs), considering both the graphical structure and graph
attributes. We propose a direct solution to extract the S-
AP with the maximal graph size without node enumeration.
Given an initial graph template and a number of ARGs, we
modify the graph template into the maximal SAP among the
ARGs in an unsupervised fashion. The maximal SAP ex-
traction is equivalent to learning a graphical model (i.e. an
object model) from large ARGs (i.e. cluttered RGB/RGB-D
images) for graph matching, which extends the concept of
“unsupervised learning for graph matching.” Furthermore,
this study can be also regarded as the first known approach
to formulating “maximal graph mining” in the graph do-
main of ARGs. Our method exhibits superior performance
on RGB and RGB-D images.

The code will be published later.

1. Introduction

We categorize this research under the fields of both graph
matching and graph mining to better explain the concept
extensions that range across these two fields.

Views of graph matching & task introduction: At-
tributed relational graphs (ARGs) are widely used. For ex-
ample, in computer vision, ARGs can represent scenes or
objects, taking part features and the spatial relationship be-
tween the parts as the local and pairwise attributes, respec-
tively. Attributed graph matching aims to estimate node cor-
respondences between a small graph template (an object)
and a large ARG (an image), based on the similarity of lo-
cal and pairwise attributes. In the general case1 of ARGs,
the graph matching is formulated as a quadratic assignment
problem (QAP) and requires global optimization.

1Unlike ARGs in [12], local attributes in ARGs may not, in general, be
sufficiently distinguished to independently provide matching correspon-
dences (candidates) between ARGs without global optimization.
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Figure 1. Concept extension. We extract the soft attributed pattern
(SAP) from ARGs, and the size of the SAP is maximized. This
study overcomes a key challenge in graph mining, as it can be
considered as the mining of maximal frequent subgraphs defined
in the graph domain of ARGs, rather than conventional labeled
graphs. From another perspective, we also extend the concept of
unsupervised2 learning for graph matching. Given an initial graph
template and a set of large ARGs, we simultaneously discover the
missing nodes, delete redundant nodes, and train attributes, so as
to obtain a graphical model with good matching performance.

The learning for graph matching has demonstrated its su-
perior performance in terms of improving matching accura-
cy. Indeed, the concept of learning graph matching has been
extended in recent years. We focus on unsupervised2 ap-
proaches, which are analogous to automatic category mod-
eling from cluttered scenes. [17] mainly trains the attribute
weights for matching, and [30, 6] further incorporate struc-
tural refinement of the graph template.

In this paper, we propose a new concept of learning
graph matching, by considering the discovery of missing
graph parts3, i.e. the ability to recover a general graphi-
cal pattern from a fragmentary graph template, as shown
in Fig.3. This is orthogonal to conventional unsupervised

2The word “unsupervised” means that people do not need to label the
matching correspondences manually for training.

3The missing parts appear in different ARGs with similar local at-
tributes, and have a similar pairwise relationship with the graph template.
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methods for learning attribute weights and structural refine-
ment. Given a graph template and a number of ARGs, our
method simultaneously 1) discovers missing parts of the
template, 2) eliminates redundant parts, and 3) adjusts its at-
tributes in an unsupervised manner, so as to grow the initial
template into the common subgraph pattern among these
ARGs, and achieve good matching performance (Fig. 1).

Views of graph mining & the proposed method: From
another perspective, the proposed learning of graph match-
ing can be understood as the mining of maximal4 graph pat-
terns. In fact, related techniques in graph mining, such as
maximal frequent subgraph (MFS) extraction and maximal
clique mining, have been extensively investigated and de-
veloped in the past.

However, a bottleneck for maximal pattern mining lies in
the constraints of the target graphs. It is mainly applied to
graphs that are generated from tabular data, and have distin-
guishing structures, distinct node and edge labels, or a list of
pre-determined potential node correspondence candidates.

Therefore, we extend this field to much “fuzzier1” ARGs,
whose matching is formulated as a QAP based on attribute
similarities. As shown in Fig. 1(bottom), conventional
graph patterns based on graph isomorphisms can no longer
be applied. Alternatively, we redefine the concept of the
graph pattern as a new “soft” attributed pattern (SAP).
Consequently, the learning process actually extracts the S-
AP with the maximal graph size among the ARGs.

Moreover, for the mining of maximal graph patterns, ex-
isting methods based on node enumeration are hampered in
the new graph domain of ARGs. They produce NP-hard
solutions. Fortunately, we demonstrate the existence of an
approximate solution to the discovery of new nodes from
ARGs without any enumeration, using the typical squared
penalties in graph matching.

Summary: The contributions of this paper can be sum-
marized as follows. 1) This study redefines the concept of
unsupervised2 learning for graph matching, as it idealizes
the spirit of training graphical structures. To the best of
our knowledge, this is the first attempt to formulate the dis-
covery of missing parts into the theory of attributed graph
matching. 2) In terms of graph mining, this research also
extends the target domain for the mining of maximal graph
patterns to fuzzy ARGs. 3) In this new graph domain, we
propose the maximal SAP to define the graph pattern, and
demonstrate the existence of a direct solution that does not
require computationally intensive node enumeration.

1.1. Brief introduction of potential applications

This method can be considered as a general platform for
model learning from cluttered scenes, where small target
objects are unlabeled and randomly localized in large im-

4The word “maximal” indicates that we should grow the target graph
pattern so as to obtain the maximal graph size.

ages with some variations in texture, rotation, and structure.
Thus, it has many extended applications, e.g. learning 3D
reconstruction from ubiquitous RGB-D images [31]. In ad-
dition, given the appropriate design of unary and pairwise
attributes, we can use this method to either recover global
object shapes from fragments (Fig. 3) or train models for
matching deformable objects.

Of course, the application is not limited within the field
of computer vision. We can apply this approach to any prob-
lem that is formulated using ARGs.

2. Related work
Views of graph matching: Given a graph template and

a number of ARGs, conventional algorithms for learning
graph matching [4, 16, 17, 24] mainly train matching pa-
rameters, and Cho et al. [5] proposed to learn a model for
matching. Most of them are supervised methods that re-
quire the target subgraphs in ARGs to be labeled for train-
ing. Leordeanu et al. [17] proposed the first unsupervised
method that did not require such manual labeling.

[30] considered the structural refinement as a part of the
unsupervised learning for graph matching. [9] utilized a
similar idea to mine spatial patterns from ARGs. [6] aimed
to learn the node linkage, and this can also be regarded
as structural refinement. However, they only consider the
matching between two ARGs.

Essentially, structural refinement just deletes “bad” n-
odes from the graph template, rather than recovering the
prototype graph patterns. Therefore, to perfect the learning
of a graph structure, we encode the challenging task, i.e.
the discovery of missing parts from large ARGs, into our
definition of learning graph matching.

Views of graph mining: The discovery of missing
parts relates this study to the mining of maximal4 graph pat-
terns, as it is usually meaningful to mine the pattern with
the maximal graph size. This idea has been realized by MF-
S extraction [22] and maximal clique mining [25, 28] in the
field of graph mining (reviewed in [11]).

As shown in Fig. 1(bottom), MFS extraction [22, 12,
10, 23] is based on graph isomorphisms and usually re-
quire 1) the distinguishing (topological) structure of the
graph pattern, and 2) pre-defined distinct node/edge la-
bels or potential inter-graph node correspondences deter-
mined by local consistency. Thus, node numeration is used
to mine the MFS. The distinct graph structure and label-
s are used to prune the enumeration range, thereby avoid-
ing possible NP-hard computation. Similarly, maximal
clique mining [25, 28, 26, 19] mainly extracts a dense graph
clique to maintain geometric consistency during matching.
This method also requires distinguishing local features to
pre-determine local matching correspondence candidates a-
mong graphs (as discussed in “Views of applications”).

In contrast, fuzzily defined ARGs usually have neither
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Figure 2. Visualization of the SAP in Definition 2. Colors in ARGs
denote different local and pairwise attributes. Note that in graph
matching, we use pairwise attributes (edge colors), rather than on-
ly geometric distances between nodes (although such distances can
be used as one of the NQ types of pairwise attributes).

distinguishing structures nor distinct node labels. In many
applications, nodes are connected in a uniform style and
have not-so-strong local attributes. Thus, it requires a new
mining strategy (without node enumeration) to deal with the
ARGs. Considering the fuzzy condition1, the matching be-
tween ARGs can only be solved by global optimization (i.e.
a QAP). Thus, we redefine the graph pattern as the SAP
based on the attributes’ consistency, rather than a graph iso-
morphism w.r.t the structure and labels.

Views of applications: For some certain graph-
matching applications, the iterative methods for estimat-
ing common graph structures have been proposed [18, 3],
which is a pioneer that discovered common structural pat-
terns of edges from images. In fact, many visual appli-
cations involve the detection of common objects (or co-
appearing parts) in a set of images. However, they are main-
ly designed with some data-driven techniques oriented to
their own applications. For example, many studies of com-
mon object extraction from images [13, 21, 27, 32, 7, 20]
use techniques related to maximal clique mining [25, 28]
to some extent. They thereby require target objects to have
high-quality patch features (with little texture variations),
thus pre-determining a set of potential inter-image match-
ing correspondences using local features. In contrast, our
approach is formulated in the theory system of attributed
graph matching. Thus, it is not limited to some specific CV
applications, although we use certain ARGs generated from
RGB and RGB-D images for testing.

3. Problem formulation

Definition 1 (ARG) An ARG G is a three element tuple
G = (V,FV ,FV×V ), where V is the node set. Undi-
rected edges connect each pair of nodes to form a com-
pleted graph. G contains NP types of local attributes for
each node and NQ types of pairwise attributes for each
edge. FV = {Fsi |s ∈ V, i = 1, 2, ..., NP } and FV×V =
{Fstj |s, t ∈ V, s 6= t, j = 1, 2, ..., NQ} denote the local and
pairwise attribute sets, respectively. Each attribute corre-

Figure 3. Structure modification from different graph templates
(object fragments) to SAPs (fuzziness τ = 0.4).

sponds to a feature vector.

Actually, this definition can be extended to incomplete
graphs with the formG∗=(V,E,FV ,FE). We can transfor-
m G∗ to our ARG by setting a pairwise attribute Fstj =1 if
edge (s, t)∈E, and 0 otherwise.

Attributed graph matching: Given a set of ARGs
GS = {G′k|k = 1, 2, ..., N}, G′k = (Vk,FVk

,FVk×Vk
),

the graph template G = (V,FV ,FV×V ) represents an at-
tribute pattern among the ARGs in GS, and is not exactly
embedded in any G′k. The matching between G and G′k
aims to compute a set of matching assignments between G
and G′k, denoted by xk = {xks |s ∈ V }. Each matching
assignment xks ∈ Vk ∪ {none} maps node s in G to a n-
ode in G′k or a dummy choice none. none is used when
some nodes in G do not exist in G′k. The attributed graph
matching is formulated as a typical QAP with the following
energy function:

E(xk|G,G′k)=
∑
s∈V

Ps(x
k
s |G,G′k)+

∑
(s,t)∈V,s6=t

Qst(x
k
s , x

k
t |G,G′k) (1)

Function E(xk|G,G′k) indicates the total matching energy.
The functions Ps(·) and Qst(·, ·) denote matching penalties
for local and pairwise attributes. Various graph matching
optimization techniques can solve the energy minimization
of E(xk|G,G′k), and we choose TRW-S [14]. In this study,
matching penalties are defined using squared differences.

Ps(x
k
s |G,G′k)=

{∑NP
i=1 w

P
i ‖Fsi −F

xks
i ‖

2, xks∈Vk
Pnone, xks=none

(2a)

Qst(x
k
s , x

k
t |G,G′k)=


∑NQ

j=1w
Q
j ‖F

st
j −F

xk
sxk

t
j ‖2

‖V ‖−1
, xks 6=xkt∈Vk

+∞, xks = xkt ∈ Vk
Qnone
‖V ‖−1

, xks orxkt =none

(2b)

where Pnone andQnone are relatively large constant penal-
ties for matching to none. ‖ · ‖ is the Euclidean nor-
m. We use infinite penalties to avoid many-to-one match-
ing assignments. wPi and wQj denote the weights for lo-
cal and pairwise attribute differences. We require the pair-
wise penalty to be symmetric, i.e. Qst(xs,xt|G,G′k) =
Qts(xt,xs|G,G′k), and to be normalized by (‖V ‖ − 1)5.

5During the learning process, we insert/delete missing/redundant n-



Definition 2 (SAP) Given a set of ARGs GS = {G′k|k =
1, 2, ..., N} and a threshold τ , a graph template G =
(V,FV ,FV×V ) is an SAP among the ARGs in GS, iff

(a) x̂k = argminxk E(xk|G,G′k); we set X̂ =
⋃N
k=1 x̂

k

= {xks |s ∈ V, k = 1, 2, ..., N};

(b) (FV ,FV×V )← argminFV ,FV×V

∑N
k=1 E(x̂k|G,G′k);

(c) ∀s ∈ V , Es(X̂|G,GS) ≤ τ ;

where Es(X̂|G,GS) is defined as the average matching
penalty related to node s in G among all the ARGs in GS.

Es(X̂|G,GS)=
1

N

N∑
k=1

[
Ps(x̂

k
s |G,G′k)+

∑
t∈V,t 6=s

Qst(x̂
k
s,x̂

k
t |G,G′k)

]
Maximal SAP: The definition of the SAP can be visu-

alized in Fig. 2, and we introduce the physical meaning of
each item in Definition 2, as follows.

Condition (a) directly matches the SAP G to each large
ARG G′k in GS to determine the SAP’s corresponding sub-
graphs embedded in these ARGs.

Condition (b) trains the local and pairwise attributes of
the SAP G. G should represent the average attribute pattern
among all its corresponding subgraphs determined by Con-
dition (a). In other words, the SAP’s attributes (FV ,FV×V )
should minimize the total matching energy, given all the
matches between G and the ARGs in GS.

Condition (c) sets a threshold τ to control the fuzziness
of G. We require each node s in the SAP to have a low
average matching penalty among all the matches to ensure
that all the SAP’s nodes represent the common parts in the
ARGs.

With these preliminaries, our goal is to mine the SAP
G with maximal graph size ‖V ‖, i.e. the largest common
subgraph pattern among the ARGs.

4. Algorithm
To extract a maximal SAP, the initial graph templateG is

modified in the following EM framework. In each iteration,
we use the current G to estimate the matching assignments
in the ARGs in GS, X̂, and then use X̂ to update the at-
tribute sets of FV and FV×V ofG. The new FV and FV×V
are finally used as feedback to modify the structure of G by
(probably) discovering a missing node from the ARGs, or
deleting a redundant one. Thus, the initial graph template
G is iteratively modified to the maximal SAP (see Fig. 3).

Attribute estimation: According to Definition 2(a),
matching assignments X̂ are first estimated based on the

odes into/from G to obtain the maximal SAP. However, this operation will
increase/decrease the overall weights for pairwise attributes in both the
graph matching (1) and the calculation of Es(X̂|G,GS), causing an un-
stable performance. Therefore, we normalize Qst(xs, xt|G,G′k) using
(‖V ‖ − 1) to prevent such effects.

Algorithm 1 Maximal SAP extraction
Input: The initial graph template G = (V,FV ,FV×V );
a set of ARGs GS = {G′k|k = 1, 2, ..., N}, where
G′k = (Vk,FVk

,FVk×Vk
); a threshold τ controlling the

SAP’s fuzziness; the maximum iteration number M .
for iteration = 1 to M do

1. Use the currentG to estimate matching assignments
in all the N ARGs as X̂ (see Definition 2(a)).
2. Given X̂, update the attribute sets FV and FV×V of
G (see (3) and Definition 2(b)).
3. With the updated attributes, compute the local
matching penalty Es(X̂|G,GS) of each node s in G
matching the ARGs in GS. Select the worst node ŝ =
argmaxs∈V Es(X̂|G,GS), and if Eŝ(X̂|G,GS) >
τ , then delete ŝ from G (see Definition 2(c)).
4. Create a new node y as the potential missing node
of G, and thus construct Gnew. Estimate the optimal
attributes and matching correspondences for y (see (6)
and (8)). If Ey(Xnew|Gnew, GS) ≤ τ , then insert
node y into G. (see Definition 2(c))

end for

current G. We then use Definition 2(b) to estimate the local
and pairwise attributes of G, given X̂. As E(x̂k|G,G′k) is
a convex function with respect to F′V and F′V×V (see (1)
and (2)), the minimization problem can be directly solved
by ∂

∑N
k=1 E(x̂

k|G,G′k)
∂F ′si

= 0 and ∂
∑N

k=1 E(x̂
k|G,G′k)

∂F ′sti
= 0. We

thus have that G’s attributes are equal to the average at-
tributes among all subgraphs matched to G in the ARGs.

Fsi = average
k:δ(x̂k

s )=1

F x̂
k
s

i , Fsti = average
k:δ(x̂k

s )δ(x̂
k
t )=1

F x̂
k
s x̂

k
t

i (3)

where δ(·) indicates whether a node in G is matched to
none. If x̂ks = none, δ(x̂ks) is set to 0; otherwise 1.

Structure modification: We grow the initial G in-
to the maximal SAP using a greedy strategy (see Algo-
rithm 1). In each iteration, we delete the “worst” (not
well matched to the ARGs) node from G, and insert the
“most probable” missing node. Both the insertion and e-
limination depend on the unified requirement for the local
matching quality in Definition 2(c). We choose node ŝ =
argmaxs∈V Es(X̂|G,GS) in G. If Eŝ(X̂|G,GS) > τ ,
we delete ŝ from G; otherwise, this node is retained.

The key part is the node insertion. This involves two
issues, i.e. the attribute estimation of the new node and
the determination of its matching assignments to the ARGs.
However, this has the appearance of a chicken-and-egg
problem. On the one hand, the local and pairwise attributes
related to the new node represent the pattern of their corre-
sponding nodes and edges in ARGs6. They are thus deter-
mined by the matching assignments of the new node (see

6Conventional enumeration of the new nodes in the graphs cannot en-



Definition 2(b)). On the other hand, the matching of the
new node cannot be applied without knowing its attributes.

Fortunately, we have developed an efficient solution that
simultaneously determines the attributes and matching as-
signments of the missing node, thus overcoming the chicken-
and-egg problem. Let y be the missing node of G, and let
Fy = {Fyi |1≤i≤NP } and F{y}×V = {Fytj ,F

ty
j |t ∈ V, 1≤

j≤NQ} denote the local and pairwise attribute sets related
to y. Consequently, in ARG G′k, the node matched by y can
be denoted by xky ∈ Vk \ x̂k (x̂k = {x̂ks |s ∈ V }). Thus,
y’s matching assignments in all the ARGs are denoted by
Xy = {xky |k = 1, 2, .., N}.

We use Gnew =(V new,FV new,FV new×V new) to denote
the dummy enlarged model after node insertion. We de-
fine the notation for Gnew in the same way as that for G:
V new = V ∪ {y}, FV new = FV ∪ Fy , FV new×V new =

FV×V ∪F{y}×V , xknew = x̂k∪{xky}, Xnew =
⋃N
k=1 x

k
new.

Thus, the local matching penalty of y is transformed to

Ey(X
new|Gnew, GS) = Py +

∑
t∈V

Qyt

Py =
∑N

k=1
Py(x

k
y |Gnew, G′k)/N

Qyt =
∑N

k=1
Qyt(x

k
y , x̂

k
t |Gnew, G′k)/N

(4)

The goal of node insertion is transformed to

argmin
Fy,F{y}×V

∑N

k=1
E(xknew|Gnew, G′k) (5a)

argmin
Xy

Ey(X
new|Gnew, GS) (5b)

Equation 5a corresponds to Definition 2(b). Given the
matching assignments of y in the ARGs (Xy), y’s attributes
(Fy,F{y}×V ) are trained to minimize the matching energy,
i.e. representing the attributed pattern among the ARGs.

Equation 5b estimates y’s matching assignments (Xy)
based on Definition 2(c). Given the attributes of y, the
nodes in ARGs matched by y (Xy) should have simi-
lar attributes to y. In other words, they should mini-
mize the local matching penalty (Ey(Xnew|Gnew, GS)). If
Ey(X

new|Gnew, GS) < τ , then y satisfies Definition 2(c).
Similar to (3), attributes in Fy and F{y}×V are repre-

sented by xky as the solution to (5a).

Fyi = average
k:δ(xk

y)=1

Fx
k
y

i =
∑N
k=1F

xk
y

i /N

Fyti = average
k:δ(xk

y)δ(x̂
k
t )=1

Fx
k
y x̂

k
t

i = average
k:δ(x̂k

t )=1

Fx
k
y x̂

k
t

i (6)

F tyi = average
k:δ(x̂k

t )δ(x
k
y)=1

F x̂
k
t x

k
y

i = average
k:δ(x̂k

t )=1

F x̂
k
t x

k
y

i

sure the algorithm’s stability, as the attributes of the enumerated nodes
may be greatly biased. Moreover, owing to the existence of the dummy
matching choice (“none”), we cannot limit the node enumeration within
any single ARG to reduce computation.
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Figure 4. Discovery of the missing node y in G. We have
demonstrated a direct solution to the determination of y’s match-
ing assignments Xy = {xky} in the N ARGs that minimize
Ey(X

new|Gnew, GS), without requiring any prior knowledge of
y’s attributes. The ARGs are connected to each other to construct
a Markov random field that solves this problem.

where δ(xky)=1, k=1,2,...,N . This is because, as the new
node y should be well matched to most of the ARGs, we
approximate Fyi , Fyti , and F tyi by ignoring the possibility
of matching y to none, so as to simplify the calculation. We
substitute Fyi and Fyti into Py and Qyt in (4), and it is easy
to demonstrate that

Py =
1

2N2

NP∑
i=1

wPi
∑

1≤k,l≤N

‖Fx
k
y

i −F
xly
i ‖

2 (7)

Qyt =

∑NQ

i=1 w
Q
i

∑
k,l:δ(x̂kt )δ(x̂

l
t)=1‖F

xky x̂
k
t

i −Fx
l
y x̂

l
t

i ‖2

2‖V ‖N
∑
j δ(x̂

j
t)

+ Ct

where Ct =
∑
k:δ(x̂k

t )=0
Qnone

‖V ‖N =
Qnone

∑
k(1−δ(x̂

k
t ))

‖V ‖N is a

constant w.r.t xky , given X̂. Because Ct is a constant w.r.t
Xy , we insert Py and Qyt into (4) and (5b), and obtain

argmin
Xy

Ey(X
new|Gnew, GS) =argmin

Xy

∑
1≤k,l≤N

Mkl(x
k
y , x

l
y),

where, Mkl(x
k
y , x

l
y) =

1

2N2

NP∑
i=1

wPi ‖F
xky
i −F

xly
i ‖

2

+
∑

t∈V :δ(x̂kt )δ(x̂
l
t)=1

∑NQ

i=1 w
Q
i ‖F

xky x̂
k
t

i −Fx
l
y x̂

l
t

i ‖2

2‖V ‖N
∑
j δ(x̂

j
t)

(8)

Thus, the problem of (5b) is transformed to a QAP, which
can be directly solved using a Markov random field (MRF).
As shown in Fig. 4, the ARGs are connected to each other to
construct the MRF and determine y’s matching assignments
Xy . In this study, we use TRW-S [14] to solve the energy
minimization of the MRF. y’s attributes Fy and F{y}×V are
computed by (6). If Ey(Xnew|Gnew, GS) ≤ τ , we replace
G by the enlarged graph template Gnew.

5. Experiments
The proposed method is meaningful in the field of com-

puter vision, enabling the discovery of a general category
model for image matching when the target objects are ran-
domly placed in large and cluttered scenes. In particular,
our technique satisfies the condition of relatively weak lo-
cal attributes for matching. We have designed two experi-
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Figure 5. Notation for the ARGs based on line segments of object
edges in RGB and RGB-D images [30]. Please see [29, 30] for
more details of attribute settings.

ments to validate the proposed method on the ARGs gen-
erated from RGB and RGB-D images. We compare the
proposed method with unsupervised approaches to learning
graph matching, although the discovery of missing nodes is
orthogonal to conventional learning of attribute weights.

We use the category dataset of Kinect RGB-D im-
ages [1, 29], published as a standard RGB-D object dataset7

for graph-matching-based model learning. This dataset
have been applied with [29] and the competing method [30].
The seven largest categories—notebook PC, drink box, bas-
ket, bucket, sprayer, dustpan, and bicycle—in this dataset
contain enough RGB-D objects, and are chosen for train-
ing. These images depict cluttered scenes containing ob-
jects with different textures and rotations, and both experi-
ments were performed on these scenes.

5.1. Learning from RGB & RGB-D images

We apply the two types of ARGs proposed in [29, 30],
each of which uses [2] to extract object edges from images
and then discretizes continuous edges into line segments as
the graph nodes (see Fig. 5). The two models use different
attributes to represent objects in RGB and RGB-D images.
Here, we briefly introduce these attributes (please refer to
[29, 30] for more details of attribute settings).

Experiment 1: For ARGs generated from RGB im-
ages, one local attribute (NP = 1) and three pairwise at-
tributes (NQ = 3) are designed, as illustrated in Fig. 5.
We use the HOG features [8] of two local patches collect-
ed at line segment terminals of s ([$A

s , $
B
s ]) as the on-

ly local attribute. The three pairwise attributes consist of
1) the angle between each pair of lines s and t (θ2Dst ), 2)
the angle between the “centerline” and each of s and t
([θcenters , θcentert ]), and 3) the relative segment lengths of s

7This is one of the largest RGB-D object datasets, and fits the require-
ments of learning graph matching.
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and t w.r.t the “centerline” ( 1
lcenter

[l2Ds , l2Dt ]). The attribute
weights are simply set to wP1 = 0.2 and wQj=1,2,3 = 1.

Experiment 2: For ARGs generated from RGB-D im-
ages, two local attributes (NP = 2) and three pairwise at-
tributes (NQ = 3) are designed, as illustrated in Fig. 5.
The local attributes describe the HOG feature (as mentioned
above) and the spatial length of the line segment s (l3Ds ).
The three pairwise attributes are the spatial angle between
s and t (θ3Dst ), and the length and orientation of the relative
spatial translation between s and t (cst). The setting of at-
tribute weights for the RGB-D images is similar to that for
RGB images, i.e. wP1 = 0.2, wP2 = 0.1, and wQj=1,2,3 = 1.

5.2. Quantitative analysis and evaluations

In the experiments, we set Pnone and Qnone as 0.4 and
0.2, respectively. We use different thresholds τ for learning
to extract maximal SAPs with different loose constraints.
Larger threshold values τ indicate a fuzzier level of the
maximal SAP, and lead to a larger graph size. Fig. 6 shows
the size growth of the SAP with an increase in the threshold.

We compare our method with seven competing ap-
proaches for learning graph matching. First, we take graph
matching without training, denoted by MA, as the baseline.
MA uses TRW-S [14] to match the initial graph template to
the target objects in images. As the benchmark method in
unsupervised learning for graph matching, [17], proposed
by Leordeanu et al., is also used for comparison. This it-
eratively trains the attribute weights for matching, i.e. wPi
and wQj in the matching penalties Ps(xs) and Qst(xs, xt).
Different from our energy minimization in (1), their graph-
matching assignments are computed based on another typi-
cal form, i.e. compatibility maximization argmaxx C(x)=∑
s,te
−Ps(xs)−Pt(xt)−Qst(xs,xt), where Ps(·) and Qst(·, ·)

are defined using absolute differences. Thus, based on [17],
the two competing approaches of LS and LT are obtained by
applying spectral techniques [15] and TRW-S [14], respec-
tively, to solve the matching optimization argmaxx C(x).
Note that the original version of [17] applies a uniform ini-
tialization for wPi and wQj , but risks biased learning (which
will be discussed later). To enable a fair comparison and



Category From RGB images From RGB-D images
Method NP DB BA BU SP DU BI NP DB BA BU SP DU BI
MA 44.30 69.93 45.44 68.71 66.88 58.43 58.94 69.00 75.25 57.97 75.33 72.65 83.96 77.78
LS 46.40 49.46 50.25 54.74 none none none 57.40 55.66 56.99 59.15 none none none
LS-O 53.62 69.52 55.21 70.74 71.31 73.24 81.44 64.63 74.18 60.75 77.99 76.48 84.53 87.61
LT 48.83 51.24 50.97 56.39 none none none 61.94 57.91 59.59 60.51 none none none
LT-O 56.57 73.01 57.35 73.66 72.84 80.15 82.60 69.04 75.09 65.37 80.44 77.31 85.47 89.33
SR 60.31 79.38 79.59 85.92 91.76 93.43 84.15 72.23 85.84 88.65 86.91 84.69 95.47 91.05
SM 72.02 85.90 72.16 83.56 79.87 83.91 71.75 89.05 85.97 75.61 84.95 90.85 95.31 94.82
Ours 72.91 96.18 91.49 91.18 94.45 99.01 88.99 99.06 98.74 98.57 96.76 93.62 96.65 97.69

Table 1. Comparison of average matching rates. NP, DB, BA, BU, SP, DU, and BI indicate the notebook PC, drink box, basket, bucket,
sprayer, dustpan, and bicycle categories.

ease the bias-learning problem, LS and LT are further mod-
ified to perform with the same weight initialization as our
method8, denoted by LS-O and LT-O. The structural refine-
ment [30] is also used for comparison, denoted by SR. This
modifies the graph template by deleting “bad” nodes for
learning. Finally, we design a competing framework that
iteratively estimates model attributes, according to Defini-
tion 2(a,b) without structure modification, namely SM.

As in [30, 29], the evaluation is achieved via cross vali-
dation. We pick each RGB or RGB-D image in a category
to start an individual learning process, thus obtaining a set
of maximal SAPs. To extract each maximal SAP, the tar-
get object in the picked image is labeled as the initial graph
template, and we randomly select 2/3 and 1/3 of the re-
maining images for training and testing, respectively. Note
that, given the same divisions of training and testing im-
ages, SR modifies the graph template with the same number
of nodes as our method, for a fair comparison.

We use the average matching rate (AMR) to evaluate the
matching performance. This is widely used for the evalu-
ation of learning graph matching [30, 17, 16]. The AMR
is measured across all matching results produced by the ex-
tracted maximal SAP in the cross validation.

Fig. 7 illustrates the object detection performance of the
maximal SAPs extracted using RGB-D images. Table 1 lists
the quantitative results for comparison, where the threshold
τ is set to 0.25 for the learning of all the categories in both
RGB images and RGB-D images. Except SR, the compet-
ing methods do not have the ability to refine the topological
structure of the graph template. Thus, they are sensitive to
the bias in the initial graph template, including biased at-
tributes, occluded nodes, and redundant nodes. The biased
graph template may produce a biased matching, and this
would, in turn, increase learning bias, thus propagating in-
to a significant bias. In contrast, our method modifies the
biased structure in early iterations to reduce the prevalence
of biased matching in further iterations. Besides the elim-
ination of “bad” parts as in SR, our approach also discover
missing parts, thereby exhibiting better performance.

8As a tradeoff, we apply a raw setting for the weights of just one or two
attributes (see Section 5.1) to ease the bias learning problem.

6. Discussion and conclusions
In this paper, we redefined the unsupervised learning of

graph matching to model the discovery of missing parts, and
thus idealize the spirit of structural learning.

The proposed method corrects errors in the topological
structure of the initial graph template. As the threshold τ
controls the fuzziness of the maximal SAP, it should be set
up corresponding to the maximal graph (object) deformabil-
ity in the ARGs. Given a suitable setting of τ , our method
exhibits very good performance.

In terms of graph mining, this study can also be under-
stood as the mining of maximal graph patterns. We pro-
posed the SAP as the graph pattern of fuzzy ARGs, and
demonstrated a plausible method of achieving the idea of
mining the maximal graph pattern in the challenging graph
domain of ARGs. We provided an approximate solution for
maximal SAP extraction that does not require node enumer-
ation. Another difference between conventional graph min-
ing methods and our approach lies in the need for the graph
template. This is because the matching between ARGs is
formulated as a QAP, meaning that this graph matching can
only be reliably achieved when an approximate area of in-
terest for the graph pattern has been provided.
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