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Abstract

In this paper we present a novel autonomous pipeline to
build a personalized parametric model (pose-driven avatar)
using a single depth sensor. Our method first captures a
few high-quality scans of the user rotating herself at mul-
tiple poses from different views. We fit each incomplete
scan using template fitting techniques with a generic human
template, and register all scans to every pose using global
consistency constraints. After registration, these watertight
models with different poses are used to train a parametric
model in a fashion similar to the SCAPE method. Once
the parametric model is built, it can be used as an anim-
itable avatar or more interestingly synthesizing dynamic 3D
models from single-view depth videos. Experimental results
demonstrate the effectiveness of our system to produce dy-
namic models.

1. Introduction
Human body modeling, because of its many applica-

tions, has been an active research topic in both computer
vision and computer graphics for a long time. In particular,
with the recent availability of low cost commodity depth
sensors such as the Microsoft Kinect sensor, getting the raw
3D measurement has been easier than ever. A number of
approaches have been developed to make 3D models using
these sensors. However, due to the relatively low-quality
depths they produce, multiple overlapping depth maps have
to be fused together to not only provide more coverage, but
also reduce the noise and outliers in the raw depth maps.
Therefore these modeling approaches are limited to static
objects (e.g., the well-received KinectFusion system [9]), or
human in mostly static poses (e.g, the home body scanning
system [18] and the 3D self-portrait system [12]).

In this paper we present a complete system that can sig-
nificantly improve the 3D model quality for human subject
with dynamic motion. Our main idea is to first create a driv-
able and detailed human model, and then use the personal-
ized model to synthesize a full 3D model that best fit the
raw input depth map containing dynamic human motion.

Our system first capture the human subject under differ-
ent poses. The subject needs to stand still for a few seconds

Figure 1. The pipeline of our system. We take several Kinect Fu-
sion partial scans of different poses as initial setup (upper left) and
register them to each pose. Watertight 3D models reconstructed at
each pose are then used to train the pose parametric model (upper
right). For an incoming video sequence, our model is drivable to
fit the partial data, leading to a high-quality output model.

per pose while a single depth sensor that is mounted on a
motorized tilt-unit scans the subject to obtain a relatively
high-quality partial 3D model. Unlike previous methods,
the subject does not need to rotate around and be scanned
in the same pose from multiple angles. From the collec-
tion of partial scans of different poses (some from the front,
some from the back, and some from the side), a complete
3D model is reconstructed using non-rigid point registra-
tion and merging algorithms. The model is not only per-
sonalized to the subject, but also rigged to support anima-
tion. Now our system is ready to synthesize high-quality
dynamic models using the low-quality depth input directly
from the sensors. Note that we are not simply driving the
personalized model using standard skeleton-based anima-
tion techniques. In each frame, the personalized model is
updated to produce a best fit to the input for the visible part.
Figure 1 shows a complete example of our system. It should
be noted that we achieve all of these using no more than a
single depth sensor.

To the best of our knowledge, our system is the first
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that can automatically reconstruct a human model that is
not only detailed but also drivable while using only a single
commodity depth camera. Our method does not rely on any
training database, requires very little user cooperation (each
pose is scanned only once), and can create high-quality dy-
namic models of human motions. Therefore we believe our
system can be used to expand the applications of depth sen-
sors to the dynamic human modeling area.

2. Related Work
We review the related recent works in 3D human model

reconstruction, mesh deformation and registration.

SCAPE-base Methods The SCAPE (Shape Completion
and Animation for PEople) [1] provides a data-driven
method for building the 3D human model that spans vari-
ation in both subject shape and pose and fitting the trained
model to incomplete point cloud data for different body
shapes in different poses.

The succedent home 3D body scan [19] applies the
SCAPE approach to Kinect point cloud data and utilizes
the silhouette constraints to make the fitting more robust to
side views. The TenBo (Tensor-Based Human Body Mod-
eling) [4] decomposes the shape parameters and combines
the pose and shape in a tensor way to add shape variations
for each body part.

Based on the general SCAPE model, many variant ap-
plications have been developed. The Naked Truth [2] esti-
mates human body shape under clothing. DRAPE (DRess-
ing Any PErson) [8] uses the naked body under clothing and
learn the clothing shape and pose model. All these methods
rely on a large training database. These result models lack
facial details, hairs, and clothing effect.

Mesh Deformation and Registration The mesh embed-
ded deformation [16] uses a rough guided graph to deform
the mesh as rigid as possible. Based on the embedded
model, the approach of Li et al. [11] uses a pre-scanned
object as shape prior and register . Despite of the nonlinear
embedded approach, linear mesh deformation methods such
as [15, 20] are more likely to deal with small deformation
and details transfer.

For handling the loop closure problem, the real time
method [18] diffuses the registration error and online up-
dates the model. This method aims to align scans of static
objects. The global registration for articulated models [3]
can cope with large input deformation, but is less suitable
for aligning human body and garment.

The full body multiple Kinect scanning system [17] cap-
tures a dense sequence of partial meshes while the subject
standing still on a turntable. All the partial scans are regis-
tered together based on the error distribution approach [14].

3D Self-Protraits [12] presents the first autonomous capture
system for self-portraits modeling using a single Kinect.
The user stands as still as possible during capture and turn
roughly 45 degrees at each scan.

For registering dynamic input scans without large rota-
tion change, the global linear approarch [13] registers all the
scans using the linear deformation model which assumes
small rotation angle of input scans.

3. Building Complete 3D Models

In this section, we build complete 3D models for all the
captured poses using partial scans. First, we introduce our
data capture setup and the initial alignment using a general
template model. Then we formulate the nonrigid registra-
tion problem using the embedded model of a simple yet ef-
ficient loop constraints.

3.1. Capturing System Setup

We utilize the Kinect Fusion Explorer [9] tool in Mi-
crosoft Kinect SDK to capture partial 3D meshes and col-
ors. The subject person stands in front of the sensor approx-
imately one meter away. The Kinect sensor is tilt from 13
degree to−27 degree during each capture. It takes four sec-
onds per scan and the subject person keeps almost still at
each pose. In order to build complete models, we take mul-
tiple scans at different angles to ensure most of body can be
seen at least once.

Input meshes of Kinect Fusion are extracted from a vol-
ume of size 5123 and 768 voxels per meter. We uniformly
sample the input mesh to an average edge length of 4mm
and erode from its boundary by 2cm to cut off sensor out-
liers. The floor is removed using background subtraction.

3.2. Template Fitting

Since there is neither a semantic information from the
scanned meshes nor natural correspondences, we adopt
state-of-art articulated template fitting algorithm to align a
generic template onto each of the scanned inputs. Specifi-
cally, we utilize the algorithm developed by Gall et al. [7, 6].
Using a generic rigged template mesh model, this algorithm
estimates the global transformation as well as joint angles
of the underlying skeleton to fit the template to the input
meshes. In order to better handle the single view data, we
build point correspondences in a boundary-to-boundary and
inner-to-inner fashion, according to the 2D projection of the
meshes. Upon extraction of point correspondences, the pose
is optimized iteratively via exponential map parametriza-
tion of the joint transformations. Our fitting process always
starts with a standard T-pose. With the prior knowledge of
rough global orientation (the subject is normally scanned in
a loop fashion), the method generally provides reasonable
fitting results.
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3.3. Pairwise Nonrigid ICP

For pairwise registration of partial scans, we employ
the embedded deformation model [16, 11], which describes
plastic deformation and is effective to handle articular hu-
man motion [11]. The embedded method defines the de-
formation of each vertex v on the mesh influenced by m
nearest nodes g on a coarse guide graph. In our case,
two meshes Mi,Mj have already aligned with their graphs
Ti, Tj after our template fitting step, and also Ti, Tj have
the same face connectivity. The transformation from Ti
to Tj is defined on each node gk: a 3 × 3 affine matrix
Rk
i and a translation vector tki . Given transformations, the

node on deformed graph T̃i is simply added the transla-
tion: g̃k = gk + tki on the graph and the deformed ver-

tex is computed as ṽ =
m∑
l=1

wl(vi) [Rl(vi − gl) + gl + tl]

where wl(vi) is the influence weight inversely proportional
to the distance from vi to its control nodes ‖vi − gl‖.

It can be easily verified that if
(
Rk
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k
1

)
,
(
Rk
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k
2

)
are

two consecutive deformations of Ti, the total deformation
is
(
Rk

2R
k
1 , t

k
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k
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)
. Let Rk

2 =
(
Rk

1

)−1
and tk2 = −tk1 ,

then the mesh deformed by
(
Rk, tk

)
can be restored us-

ing
((

Rk
)−1

,−tk
)

. We assume all the {Rk} are almost
rigid and this property holds in our case.

For registering Mi to Mj , transformations
(
Rk
i , t

k
i

)
are

solved by minimizing the energy function [11]

min (wrotErot + wregEreg + wfitEfit) , (1)

where Erot =
∑
k Rot(R

k
i ), Rot(R) specifies the or-

thogonality and rigidity of the transformation. Ereg =∑
k

∑
l∈N(k)

∥∥Rk
i (gli − gki )− (gli + tli − gki − tki )

∥∥2 ensures

smoothness of the deformation.
The fitting term Efit =

∑
c αpoint‖vci − ṽci‖2 +

αplane
∣∣ñTi (vci − ṽci )

∣∣2 constrains the deformed position of
a subset of vertices, where ṽci specifies the destination of vci
and ñi is the normal on the surface of Mj accordingly. Dif-
ferent from [11], since associated Ti and Tj have the same
face, we are able to segment each mesh by corresponding
graph nodes as shown in Figure 2. The same colored region
denotes vertices influenced by same graph nodes. When
searching correspondences from Mi to Mj , we perform it-
erative closest point (ICP) algorithm to align large patches
(area> threshold) and search for the closest point after ICP.
Faraway or normal inconsistent pairs are excluded. We ob-
tain in roughly 2000 correspondences for a pair of scans.

The cost function equation 1 is minimized by Gauss-
Newton solver and see [16, 11] for details. After regis-
tration, we get all of the transformations

{(
Rk
i , t

k
i

)}
, the

deformed graph, the deformed mesh and a corresponding
point set. We set a large rigid weight wrot to maintain high

Figure 2. We search for corresponding points by aligning patches
controlled by the same graph nodes using ICP.

stiffness during a sequence of deformations. Another trade-
off is to set a relatively larger regularization weight wreg
and smaller fitting weight wfit. It results in slower con-
vergence to correct destination of the overall algorithm but
benefits the avoidance of severe failure deformation of the
graph such as self intersection and volume collapse due to
error accumulation. In our experiment, it shows that the
whole algorithm still converges within 5-10 iterations as
Figure 5.

3.4. Global Nonrigid Registration Algorithm

We have n partial scans in the capture step 3.1 and they
are aligned with graphs in 3.2. In this section,we register all
scans to each pose while achieving global geometry consis-
tency. Inspired by [14, 17], we develop an iterative opti-
mization scheme to 1) pairwise register scans and 2) adjust
them by distributing accumulative error using loop closure
constraints. Different from the method in [17], since the
deformation of a graph is simply adding the translation tki
to each node, Rk

i does not interfere with the graph directly.
Therefore, we deal with translational and rotational error
distribution separately, and translational error optimization
is simpler and more efficient.

Preprocessing Given input scans and graphs, we initially
register all the graphs to the target graph and deform all
scans accordingly as shown in Figure 3. To suppress out-
liers occurring near joints, we remove faces of long edge
length and clean disconnected small patches from the de-
formed mesh. To reduce the influence of badly deformed
vertices, we compute the affine transformation near each
vertex and compare the deviation angle of the correspond-
ing Laplacian coordinates. Each vertex is assigned to a con-
fidence weightWlap inversely proportional to the deviation.

After the rough registration, the covered region on the
target graph of each scan is known. By aligning the torso
part (chest and abdomen), we can roughly determine each
virtual camera pose in the target coordinate system. Sorting
angles from the target camera to each virtual camera, we
finally get a circle of n scans denoted as M1,M2, . . . ,Mn

and the target scan w.l.o.g., is denoted as M1 in Figure 3.
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Figure 3. Stages in our global registration. All the partial scans
are initially aligned to the target using the general template model.
Virtual cameras are estimated in the coordinate system of the target
pose to determine the loop closure. The fitted template model is
reduced to a rough graph to guide the embedded registration. Pair-
wise accumulated registraton error is distrubuted after each loop
adjustment.

Bi-directional Loop Constraints Now we have a loop of
n scans Mi, i = 1, . . . , n, the graph T1 is aligned with M1

correctly and we use it as the embedded graph to register
M1 to M2 by using the deformation described in 3.3. Af-
ter the registration, M1, T1 are deformed as M1,2, T1,2 and
transformations are denoted as

{(
Rk

1 , t
k
1

)}
. By using the

weight and node indices of T2 but the node positions of
T1,2, we register M2 to M3 and get M2,3, T2,3. The pro-
cess continues until registering Tn back to T1 with trans-
formations

{(
Rk
n, t

k
n

)}
. We call this step as the pairwise

registration in the context of this section. For a globally cor-
rect registration, we have Tn,1 = T1, that is for each node,
tk1 +tk2 + · · ·+tkn = 0, and the deformed meshMn,1 is con-
sistent with M1. When the deformation is highly rigid, ap-
plying the multiplication of consecutive deformations, the
product of rotations along the loop will be an identity, that
is Rk

nR
k
n−1 · · ·Rk

1 = I.
Due to error accumulation, the pairwise registration will

drift and violate such constraints. Similar to [17], we dis-
tribute the accumulated rotational and translational error
and choose a weight wi = 1/Dist(Mi,i+1,Mi+1) to trans-
formations

{(
Rk
i , t

k
i

)}
, where Dist(Mi,i+1,Mi+1) is the

average fitting error ofEfit in 1, for all i = 1, . . . , n. (n+1
we refer to 1.) Since every node will be optimized in the
same way, we ignore the superscript k in the following.

The translational error is distributed by solving the fol-
lowing optimization,

min

n∑
i=1

w2
i

∥∥t̂i − ti
∥∥2, s.t.,

n∑
i=1

ti = 0, (2)

and the solution is found using Lagrange multipliers, t̂i =

ti − αi
n∑
j=1

tj , with the scalar αi as

αi =
1

w2
i

/
n∑
j=1

1

w2
j

(3)

The rotational error distribution is to minimize the total ro-
tational deviation:

min

n∑
i=1

wi∠(R̂i,Ri), s.t.,Rk
nR

k
n−1 · · ·Rk

1 = I, (4)

where the angle between two rotations is defined as
∠(A,B) = cos−1

(
tr(A−1B)−1

2

)
. Analyzed in [14], the

optimal R̂i is computed as

R̂i = E<αi>
i Ri,

Ei = (RkRk−1 · · ·R1RnRn−1 · · ·Rk+1)
−1
,

(5)

where αi is referred to equation 3, and E<αi>
i is defined to

be the rotation matrix that shares the same axis of rotation
as Ei but the angle of rotation has been scaled by αi.

Once all the optimal
{(

R̂k
i , t̂

k
i

)}
are

obtained, we use the total transformation{((
R̂k

1 . . . R̂
k
i−1R̂

k
i

)−1
,−t̂ki − t̂ki−1 − · · · − t̂k1

)}
to deform the mesh Mi with Ti−1,i back to M1. After all
the meshes Mi updated, we repeat the pairwise registration
step from M1 and T1. The graphs T1, T1,2, . . . , Tn,1 will

finally converge to a constant graph and
{(

R̂k
i , t̂

k
i

)}
converges to the globally optimal solution as plotted in
Figure 5.

In the sense that the error distribution step can pre-
vent graph drifting and pull it towards the optimal po-
sition, we can perform an interleaved bi-directional way
to avoid large accumulative errors. The basic idea
is to perform an inverted iteration using the order of
M1,Mn,Mn−1, . . . ,M3,M2,M1 after a forward direc-
tional iteration. The directional scheme is in essential the
same to the multiple cycle blending technique described
in [14] and the total time complexity to convergence is the
same because they traverse in both direction in one itera-
tion and we perform in each direction once but need two
iterations.

3.5. Postprocessing

Once all the partial scans are registered to the target pose,
the final water-tight surface is extracted by using Screened
Poisson Surface method [10] which takes the point confi-
dence into account. We assign a blending confidence for
each point W = Wnormal ∗Wsensor ∗Wlap: Wnormal is
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inversely proportional to the angle between the original in-
put normal and the z-axis; Wsensor is proportional to the
distance from a point to the mesh boundary; Wlap is in-
versely proportional to the deviation Laplacian coordinates,
and the final weight W is pruned to [ε, 1], ε > 0. The sur-
face color is transferred from the input color and diffused
using Poisson blending method [5] to achieve seamless.

4. Training the Personalized Model
In this section, we align the example 3D models built in

the above section to train the animatable parametric model
and fit it to the new incoming depth sequence. Different
from the SCAPE based methods [1, 19, 4], which varies at
the ability of representing personal details. Our complete
models are inherently specified to a certain user and have
no shape variations, therefore we only need to train the re-
gression vectors of joints for a personalized model.

Before training the parametric model, all of the 3D mod-
els are required to be mesh topology consistent. We pick
a neutral pose as the reference pose and deform it to all
the other 3D models. Similar to the nonrigid ICP registra-
tion in section 3.3, we register the reference model to each
complete model by taking the alignment of their associated
graphs as the initial guess. As a result of nonrigid ICP reg-
istration, corresponding points are found with normal con-
sistency. We employ the detail synthesize method to make
subtle adjustment of the warped reference model:

min
di

∑
vi

‖vi + dini − vci‖
2

+ β
∑
i,k

|di − dk|2 , (6)

in which vi and vci are corresponding points, di is the dis-
tance along its normal direction ni. The distance field is
diffused among neighboring vertices i and k. β = 0.5 in
the experiments.

After registered to all the other n− 1 example poses, the
reference model is ready for training. First, we transfer the
body part index (16 parts in total) from the generic body
template 3.2 to the reference model using nearest neighbor-
ing searching as shown in Figure 1. Then considering sam-
ple i for each body part l, a rigid rotation Ri

l is solved using
ICP. For each face k of part l, a 3× 3 nonrigid transforma-
tion matrix Qi

k is solved via the following equation:

min
Qk

∑
k

∑
j=2,3

∥∥Ri
kQ

i
kûk,j − uik,j

∥∥2+ρ
∑
k1,k2

∥∥Qi
k1 −Qi

k2

∥∥2 ,
(7)

where k1, k2 are neighboring faces, uk,j = vk,j − vk,1,
j = 2, 3 are two edges, ρ = 1e−3 is to prevent the large
deformation change.

Given all the Qi
k and joint angles computed from Ri

k,
a regression matrix A mapping joint angles to Qi

k can be
trained from samples similar to SCAPE method [1]. Note
that in our case, we have less (usually n = 8) poses than

the SCAPE training data. However, since the regression is
linear, the ability of its representation depends on the range
of joint angles instead of number of samples. In our cap-
ture stage, the subject person is required to perform differ-
ent joint configurations as much as possible. And then the
trained model ends up being able to recover the personal-
ized style of movement.

The trained model allows us to fit new incoming point
cloud in an ICP scheme, which is formulated as an opti-
mization to solve Rk of each body part given point corre-
spondences. Specially, it can be formulated as an optimiza-
tion problem to minimize the energy:

min
Rk

∑
k

∑
j=2,3

‖RkQkûk,j −∆yk,j‖2

+wp
∑
m
‖ym − ycm‖

2 (8)

where yk are the vertices on the reconstructed mesh, {ym}
and ycm are corresponding points and wp = 1 is a weight to
balancing the influence of correspondences. Since all the
Rk, Qk, yk are unknown, the optimization is nonlinear.
Using the similar technique as [1], given an initial guess
of Rk, the other two terms Qk and yk can be solved in a
linear least square accordingly. Once Qk and yk are given,
the rotation Rk can be updated again by a twist vector ω,
Rnew
k ← (I + [ω]×)Rold

k , in which [·]× denotes the cross
product matrix. The twist vector ω is then solved by mini-
mizing:

min
ωk

∑
k

∑
j=2,3

‖(I + [ω]×)RkQkûk,j −∆yk,j‖2

+wt
∑
l1,l2

‖ωl1 − ωl2‖
2
,

(9)

in which l1 and l2 denote two neighbor body parts. It is
a linear least square problem and can be solved efficiently
for 16 × 3 unknowns in total. After alternatively updating
Rk, Qk and yk until converging to a local minima, point
correspondences are updated to the newly fitted model by
searching closet points. The total ICP scheme repeats until
reaching a maximum number of iterations.

5. Results
We validated our system by scanning the mannequin

for performance evaluation and accuracy comparison. We
scanned male and female subjects at several challenging
poses to build 3D model training samples. We captured sev-
eral video sequences to validate the fitting using our trained
model.

Mannequin Validation As an accuracy test of our system
pipeline, we acquired a 3D model of an articular mannequin
and compared our results to a model captured using a high-
performance structured light scanner with a 0.5mm spatial
resolution.
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In this test, we manually turned the mannequin around
by approximately 45 degrees at each time. The mannequin
was not totally rigid, and its arms and legs were slightly
moved when turned around. In this case, we directly per-
form the pairwise registration step with loop closure adjust-
ment. We compare it with the groundtruth to achieve an
average alignment error of 2.45mm. We also compare the
result with the previous paper [12] and the comparable re-
sult is shown in Figure 4.

Figure 4. The reconstructed mannequin of an almost static pose.
Error map compared to the groundtruth is plotted.

In another mannequin set, we test the performance of our
system by capturing large pose changes. The mannequin’s
arms and legs were articulately moved to several poses. The
qualitative evaluation results are shown in Figure 6. In Fig-
ure 5, we show the algorithm performance to register all
scans to the target pose 3.4. According to the results, the
optimization procedure converges in 5 − 10 iterations for
both rotational and transnational error distributions. The fi-
nal average variation in rotation is less than 0.5 degree and
the variation in translation is less than 0.1mm, which we
set as a terminating condition for real person modeling.

Real Person Examples We validate our system to recon-
struct both female and male persons in regular clothes. It
takes several minutes to capture static scans and then water-
tight example poses are reconstructed as shown in Figure 7.
We pick the neutral pose as the reference and train paramet-
ric model. The final avatar is at the resolution of 100k faces.
Figure 8 shows the fitting error.

Driving and Fitting to Video Sequence After training
the parametric model, we test our drivable avatar using the
full body video sequence at a distance about 2m to the
Kinect sensor. Our parametric model is initially driven to
the pose estimated by skeleton and then iteratively fitted to
the input point cloud. Figure 9 shows several frames of our
final fitting result. See the supplementary video for both
result sequences.

Figure 6. The reconstructed mannequin of some articulated arm
movement.

Figure 8. The fitting error from the reference model to input Kinect
Fusion scan and input depth sequence.

Limitations Our registration method has limited power
to handle highly nonrigid deformations such as loose gar-
ments. The unsmooth texture colors are mainly affected by
shadow of wrinkles. Our avatar model does not model the
human expression either.

6. Conclusion
We present in this paper an automatic system to create

dynamic human models from a single low-quality depth
camera. Our system first captures the human subject under
different static poses using multi-frame fusing techniques.
From the collection of partial but high-quality scans, a com-
plete 3D model is reconstructed using non-rigid point reg-
istration and merging algorithms. The model is not only
personalized to the subject, but also rigged to support ani-
mation. With that personalized avatar, our system is ready
to synthesize high-quality dynamic models using the low-
quality depth input directly from the sensors.

With home application in mind, our system requires
minimum hardware requirement and is in particular user-
friendly: the static poses are only scanned once. We have
extended a few state-of-the-art point processing and model-
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Figure 5. The deviation of mannequin data. The left is the rotation angle changes in degrees and the right is the translation in milimeters.

Figure 7. The reconstructed watertight models after our global registration. The bottom row shows the input partial scans and the upper
row shows the reconstructed models at each pose.

ing algorithms to intelligently merge partial scans with large
variations of poses to form a complete rigged model. Using
only a single commodity depth camera, our approach gener-
ates dynamic avatar models with significantly more details
than existing state-of-the-art human modeling approaches.
Therefore it can have broad applications in simulation and
training, gaming, and 3D printing, in which human model-
ing is a crucial part.
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