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Abstract

Image-based classification of histology sections plays
an important role in predicting clinical outcomes. How-
ever this task is very challenging due to the presence of
large technical variations (e.g., fixation, staining) and bi-
ological heterogeneities (e.g., cell type, cell state). In
the field of biomedical imaging, for the purposes of vi-
sualization and/or quantification, different stains are typ-
ically used for different targets of interest (e.g., cellu-
lar/subcellular events), which generates multi-spectrum
data (images) through various types of microscopes and,
as a result, provides the possibility of learning biological-
component-specific features by exploiting multispectral in-
formation. We propose a multispectral feature learning
model that automatically learns a set of convolution fil-
ter banks from separate spectra to efficiently discover the
intrinsic tissue morphometric signatures, based on convo-
lutional sparse coding (CSC). The learned feature repre-
sentations are then aggregated through the spatial pyra-
mid matching framework (SPM) and finally classified us-
ing a linear SVM. The proposed system has been evaluated
using two large-scale tumor cohorts, collected from The
Cancer Genome Atlas (TCGA). Experimental results show
that the proposed model 1) outperforms systems utilizing
sparse coding for unsupervised feature learning (e.g., PSD-
SPM [5]); 2) is competitive with systems built upon features
with biological prior knowledge (e.g., SMLSPM [4]).

∗This work was supported by NIH U24 CA1437991 carried out at
Lawrence Berkeley National Laboratory under Contract No. DE-AC02-
05CH11231.

Figure 1. 27 × 27 multispectral filters learned from the Glioblas-
toma Multiforme (GBM) dataset, where each tissue image is de-
composed into two channels corresponding to the nuclei and pro-
tein contents with the learned filters shown in top and bottom fig-
ures, respectively.

1. Introduction

Histology sections contain significant information about
the tissue architecture. Hematoxylin and eosin (H&E) are
two commonly used histological stains, which respectively
label DNA (e.g., nuclei) and protein contents, with various
color shades. Abberations in the histology architecture are
often seen as an indicator of the disease progression and
subtypes. Therefore, computed indices, for each aberrant
phenotypic signature, enable the prediction of clinical out-
comes e.g., survival, response to therapy. However, as an
essential ground on which outcome-based analysis is estab-
lished, large cohorts usually contain large technical varia-
tions and biological heterogeneities, which greatly under-
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mines the performance of existing techniques [4, 5].
To solve such problems, several researchers [4, 15,

16] have proposed to design and fine tune the human-
engineered features. These approaches are usually task-
specific, which limits their cross-domain applicability. Not
until recently has the potential of unsupervised feature
learning been exploited in tissue classification [5]. These
methods demonstrate very encouraging results compared to
manually designed features. Yet, their underlying feature
learning module is sparse coding, which suffers two major
drawbacks, viz., 1) yielding only Gabor-like low-level fea-
ture detectors (filters), and 2) having high redundance in the
feature representation.

In this paper, we propose a multispectral unsupervised
feature learning model (MCSCSPM) for tissue classifica-
tion, based on convolutional sparse coding (CSC) [14] and
spatial pyramid matching (SPM) [17]. The multispectral
features are learned in an unsupervised manner through
CSC, followed by the summarization through SPM at vari-
ous scales and locations. Eventually, the image-level tissue
representation is fed into linear SVM for efficient classifica-
tion [9]. Compared with sparse coding, CSC possesses two
merits: 1) invariance to translation; and 2) producing more
complex filters, which contribute to more succinct feature
representations. Meanwhile, the proposed approach also
benefits from: 1) the biomedical intuitions that different
color spectrums typically characterize distinct structures;
and 2) the utilization of context, provided by SPM, which
is important in diagnosis. In short, our work is the first
attempt using convolutional sparse coding for tissue clas-
sification, and achieves superior performance compared to
patch-based sparse feature learning algorithms, e.g., PSD-
SPM [5]. Moreover, MCSCSPM is capable of generating
very competitive results compared to systems built upon bi-
ological prior knowledge, i.e., SMLSPM [4]. Finally, our
study further indicates that learning features over multi-
ple spectra can potentially generate biological-component-
specific filters. For example, the filters learned from the
nuclear channel and protein/extracellular matrix channel re-
spectively capture various nuclear regions and the structural
connectivity within tissue sections.

Organization of this paper is as follows: Section 2 re-
views related works. Section 3 describes the details of our
proposed approach. Section 4 elaborates the details of our
experimental setup, followed by detailed discussion on the
experimental results. Lastly, section 5 concludes the paper.

2. Related Work
There are several excellent reviews, in the literature, for

the analysis of H&E stained sections [7, 11]. Generally
speaking, efforts in histology section analysis can be di-
vided into three different directions: 1) some researchers
[1, 2, 6, 8] advocate nuclear segmentation and organization

for tumor grading and/or the prediction of tumor recurrence;
2) some groups [12, 15] focus on patch level analysis (e.g.,
small regions), using color and texture features, for tumor
representation; 3) there is also a research branch [10] sug-
gesting detection and representation of the auto-immune re-
sponse as a prognostic tool for cancer.

Tissue classification is a challenging task due to the pres-
ence of significant technical variations and biological het-
erogeneities in the data [4, 16], which typically results in
techniques that are tumor-type specific. To overcome this
problem, recent studies have focused on either fine tuning
human engineered features [15, 16], or applying automatic
feature learning [5], for robust representation.

In recent years, convolutional sparse coding has received
increasing research interest in computer vision and ma-
chine learning communities [3, 14, 21, 24, 25], due mainly
to its capability of learning shift-invariant filters with com-
plex patterns. Kavukcuoglu et al. [14] proposed to improve
the feature extraction efficiency by jointly learning a feed-
forward encoder with the convolutional filter bank, and ap-
plied the algorithm to Convolutional Networks (ConvNets),
achieving impressive results on object recognition. Zeiler et
al. [24] developed the Deconvolutional Networks for learn-
ing top-bottom feature hierarchies to reconstruct the origi-
nal image, and further extended it by incorporating a set of
latent switch variables and max-pooling, which allows uni-
fied training of multiple layers [25]. Bristow et al. [3] came
up with an efficient method for convolutional sparse coding
in Fourier domain, using the Alternating Direction Method
of Multipliers approach. In addition to object recognition,
convolutional sparse coding has also achieved state-of-the-
art performances in pedestrian detection [21] and retinal
blood vessels segmentation [19], etc.

3. Proposed Approach
In this paper, we adopt CSC [14] as the fundamen-

tal module for learning filter banks, based on which the
proposed multispectral unsupervised feature learning sys-
tem (MCSCSPM) is constructed. As noted by several re-
searchers [3,14], sparse coding typically assumes that train-
ing image patches are independent from each other, and thus
neglects the spatial correlation among them. In practice,
however, this assumption typically leads to filters that are
simply translated versions of each other, and, as a result,
generates highly redundant feature representation. In con-
trast, CSC generates more compact features due to its in-
trinsic shift-invariant property. Moreover, CSC is capable
of generating more complex filters capturing higher-older
image statistics, compared to sparse coding that basically
learns edge primitives [14].

In the proposed multispectral feature learning frame-
work, CSC is applied to each separate spectral channel,
yielding target-specific filter banks. For instance, some bi-



ologically meaningful filters are learned from the nuclear
channel and the protein/extracellular matrix channel respec-
tively, as illustrated in Figure 1. Features extracted from
multiple spectra are summarized by SPM [17] at various
scales and locations, and ultimate tissue representations are
fed into linear SVM [9] for classification.

3.1. Convolutional Sparse Coding

Let X = {xi}Ni=1 be a training set containing N 2D im-
ages with dimension m × n. Let D = {dk}Kk=1 be the 2D
convolutional filter bank having K filters, where each dk is
an h× h convolutional kernel. Define Z = {Zi}Ni=1 be the
set of sparse feature maps such that subset Zi = {zik}Kk=1

consists of K feature maps for reconstructing image xi,
where zik has dimension (m+h−1)× (n+h−1). Convo-
lutional sparse coding aims to decompose each training im-
age xi as the sum of a series of sparse feature maps zik ∈ Zi

convolved with kernels dk from the filter bank D, by solv-
ing the following objective function:

min
D,Z

L =

N∑
i=1


∥∥∥∥∥xi −

K∑
k=1

dk ∗ zik

∥∥∥∥∥
2

F

+ α

K∑
k=1

∥∥zik∥∥1


s.t. ∥dk∥22 = 1,∀k = 1, . . . ,K (1)

where the first and the second term represent the reconstruc-
tion error and the ℓ1-norm penalty respectively; α is a reg-
ularization parameter; ∗ is the 2D discrete convolution op-
erator; and filters are restricted to have unit energy to avoid
trivial solutions. Note that here ∥z∥1 represents the entry-
wise matrix norm, i.e., ∥z∥1 =

∑
i,j |zij |, where zij is the

entry at location (i, j) of a feature map z ∈ Z. The con-
struction of D is realized by balancing the reconstruction
error and the ℓ1-norm penalty.

Note that the objective of Eq. (1) is not jointly convex
with respect to (w.r.t.) D and Z but is convex w.r.t. one
of the variables with the other remaining fixed [18]. Thus,
we solve Eq. (1) by alternatively optimizing the two vari-
ables, i.e., iteratively performing the two steps that first
compute Z and then update D. We use the Iterative Shrink-
age Thresholding Algorithm (ISTA) to solve for the sparse
feature maps Z. The updating policy for the convolutional
dictionary D uses the stochastic gradient descent for effi-
cient estimation of the gradient by considering one train-
ing sample at a time [14]. The optimization procedure is
sketched in Algorithm 1. Alternative methods for updating
the dictionary can be found in [3, 24, 25].

3.2. Feature Extraction

In the field of biomedical imaging, different spectra usu-
ally capture distinct targets of interest. Specifically, in our
case, color decomposition [20] produces two separate spec-
tra (channels) which characterize the nuclear chromatin and

Algorithm 1 CSC Algorithm

Input: Training set X = {xi}Ni=1, K, α
Output: Convolutional filter bank D = {dk}Kk=1

1: Initialize: D ∼ N (0, 1), Z← 0
2: repeat
3: for i = 1 to N do
4: Normalize each kernel in D to unit energy
5: Fixing D, compute sparse feature maps Zi by

solving

Zi ← arg min
zi
k∈Zi

∥xi−
K∑

k=1

dk∗zik∥2F+α
K∑

k=1

∥∥zik∥∥1
6: Fixing Z, update D as

D← D− µ∇DL(D,Z)
7: end for
8: until Convergence (maximum iterations reached or ob-

jective function ≤ threshold)

the protein/extracellular matrix, respectively (as shown in
Figure 2). Therefore, in the filter learning phase, we pro-
pose to apply convolutional sparse coding to each spec-
trum, separately, for the purpose of learning biological-
component-specific feature detectors. Without the loss of
generality, we assume that the number of filters for each
spectrum (channel) is K and there are S spectra (channels)
after decomposition; the 2D feature map ys

k is then defined
as: ys

k = ds
k ∗ x̂s, for 1 ≤ k ≤ K and 1 ≤ s ≤ S, where

x̂s is the s-th spectrum component of input image x and
ds
k ∈ Ds is the k-th convolutional kernel in filter bank Ds

learned over spectrum with index s.
Upon learning the filter bank, we extract multispec-

tral tissue histology features using the proposed frame-
work illustrated in Figure 2, where an input image is
first decomposed and divided into several spectral chan-
nels and then each decomposed component is convolved
with the channel-specific filter bank followed by three cas-
caded layers, namely, element-wise absolute value rectifi-
cation (Abs), local contrast normalization (LCN), and max-
pooling (MP) [13]. Note that for specificity, the model in
Figure 2 shows only two spectra, but it is straightforward to
generalize to hyperspectral image-based applications. The
Abs layer computes absolute value element wisely in each
feature map, ys

k, to avoid the cancelation effect in sequen-
tial operations. The LCN layer aims to enhance the stronger
feature responses and suppress weaker ones across feature
maps, {ys

k}Kk=1, in each spectrum, by performing local sub-
tractive and divisive operations1. The MP layer partitions
each feature map into non-overlapping windows and ex-
tracts the maximum response from each of the pooling win-
dow. The MP operation allows local invariance to trans-

1Limited by space, we refer readers to [13, 21] for detailed discussions
on local contrast normalization.



Abs LCN MP Conv Input CD 

Figure 2. The proposed multispectral feature extraction framework. CD means color decomposition; Abs means absolute value rectifica-
tion; LCN means local contrast normalization; MP means max-pooling. The figure is best viewed in color at 150% zoom-in.

lation [13]. Finally, the multispectral tissue features are
formed by aggregating feature responses from all spectra.

We further denote the multispectral tissue features of im-
age, x, as a 3D array, U ∈ Ra×b×KS , where the first two
dimensions indicate the horizontal and vertical locations of
a feature vector in the image plane and the third dimension
represents the length of feature vectors. The multispectral
tissue features are then fed into SPM framework for classi-
fication as detailed in the following section.

3.3. SPM

Let V = [v1, . . . ,vT ] ∈ RKS×T be the feature set of T
feature vectors having dimension KS. In the standard SPM
framework [17], the first step is to construct a codebook
B = [b1, ...,bP ] ∈ RKS×P , which includes P multispec-
tral tissue morphometric types, by solving the following op-
timization problem:

min
B,C

T∑
i=1

∥vi −Bci∥2 (2)

s.t. card(ci) = 1, ∥ci∥1 = 1, ci ≽ 0, ∀i

where C = [c1, ..., cT ] ∈ RP×T is a set of codes for re-
constructing V, cardinality constraint card(ci) enforces ci
to have only one nonzero element, ci ≽ 0 is a non-negative
constraint on all vector elements. Eq. (2) is optimized by
alternating between the two variables, i.e., minimizing one
while keeping the other fixed. After training, the query sig-
nal set V is encoded via Vector Quantization (VQ) based
on codebook B, i.e., assigning each vi to its closest multi-
spectral tissue type in B.

The second step is to construct the spatial histogram
for SPM [17]. This is done by dividing an image into in-
creasingly finer subregions and computing local histograms
of different multispectral tissue types falling into each of
the subregions. The spatial histogram, H , is then formed

by concatenating the appropriately weighted histograms of
multispectral tissue types at all resolutions, i.e.,

H0 = H0
0

Hl = (H1
l , ..., H

4l

l ), 1 ≤ l ≤ L (3)

H = (
1

2L
H0,

1

2L
H1, ...,

1

2L−l+1
Hl, ...,

1

2
HL)

where (·) is the vector concatenation operator, l ∈
{0, ..., L} is the resolution level of the image pyramid, and
Hl represents the concatenation of histograms for all im-
age subregions at pyramid level l. In tissue classification,
SPM intrinsically summarizes tissue morphometric con-
texts by computing and aggregating local histograms at var-
ious scales and locations. This is analogous to the fact that
pathologists use “contexts” to determine a disease state [4].
For the final classification, a homogeneous kernel map [22]
is employed to approximate χ2 kernel, which enables effi-
cient linear SVM [9] training and classification.

4. Experiments
In this section, we present detailed experimental de-

sign and evaluation of the proposed approach in tis-
sue histopathology classification. The two distinct tu-
mor datasets, for evaluation, are curated from The Can-
cer Genome Atlas (TCGA), namely (i) Glioblastoma Multi-
forme (GBM) and (ii) Kidney Renal Clear Cell Carcinoma
(KIRC), which are publicly available from the NIH (Na-
tional Institute of Health) repository.

4.1. Experimental Setup

We have evaluated the proposed method (MCSCSPM) in
three different variations:

1. MCSCSPM-HE: Convolutional filter banks are
learned from / applied to decomposed spectrum (chan-
nel) separately. Here, we have two spectra after de-



composition, which correspond to nuclear chromatin
(stained with hematoxylin) and protein/extracellular
matrix (stained with eosin), respectively.

2. MCSCSPM-RGB: Convolutional filter banks are
learned from / applied to R, G, and B channels sep-
arately.

3. MCSSPM-Gray: Convolutional filter banks are
learned from / applied to the grayscale image.

and compared its performance with other four classification
methods on the GBM and KIRC datasets. Implementation
details of all approaches involved are listed as follows:

1. MCSCSPM: the nonlinear kernel SPM that uses
spatial-pyramid histograms of multispectral tissue
types and homogeneous kernel map. In the multi-
spectral case, an input tissue image was decomposed
into two spectra (i.e., S = 2) corresponding to the
nuclear chromatin and the protein/extracellular matrix
respectively, based on the optical density matrix estab-
lished in [20]. In the RGB and grayscale case, each
color channel was treated as one spectrum. For each
spectrum, images were preprocessed with a 13 × 13
Gaussian filter. During training, we set K to 150 and
300 per spectrum for the GBM and KIRC datasets, re-
spectively. The filter dimension was 27 × 27 for both
datasets. The sparsity regularization parameter α was
set to 0.1 for best performance. During multispectral
feature extraction, we used the same 13× 13 Gaussian
filter for local contrast normalization and empirically
set the max-pooling stepsize to be 27.

2. PSDSPM [5]: the nonlinear kernel SPM that uses
spatial-pyramid histograms of sparse tissue morpho-
metric types and homogeneous kernel map. The im-
age patch size was set to 20× 20, the number of basis
function was set to 1024 and the sparsity regularization
parameter was set to 0.3 for best performance.

3. ScSPM [23]: the linear SPM that uses linear kernel
on spatial-pyramid pooling of SIFT sparse codes. The
dense SIFT features was extracted on 16× 16 patches
sampled from each image on a grid with stepsize 8 pix-
els. The sparsity regularization parameter λ was set to
0.15, to achieve the best performance;

4. KSPM [17]: the nonlinear kernel SPM that uses
spatial-pyramid histograms of SIFT features and ho-
mogeneous kernel map. The dense SIFT features was
extracted on 16×16 patches sampled from each image
on a grid with stepsize 8 pixels;

5. SMLSPM [4]: the linear SPM that uses linear kernel
on spatial-pyramid pooling of cellular morphometric
sparse codes.

Figure 3. GBM Examples. First column: Tumor; Second column:
Transition to necrosis; Third column: Necrosis. Note that the phe-
notypic heterogeneity is highly diverse in each column.

On the implementation of SPM for MCSCSPM, PSDSPM,
KSPM and SMLSPM, we use the standard K-means cluster-
ing for constructing the dictionary and set the level of pyra-
mid to be 3. Following the conventional evaluation proce-
dure, we repeat all experiments 10 times with random splits
of training and test set to obtain reliable results. The final re-
sults are reported as the mean and standard deviation of the
classification rates on the following two distinct datasets,
which include vastly different tumor types:

1. GBM Dataset. It contains 3 classes: Tumor, Necrosis,
and Transition to Necrosis, which were curated from
whole slide images (WSI) scanned with a 20X ob-
jective (0.502 micron/pixel). Examples can be found
in Figure 3. The number of images per category are
628, 428 and 324, respectively. Most images are
1000 × 1000 pixels. In this experiment, we train on
40, 80 and 160 images per category and tested on the
rest, with three different dictionary sizes: 256, 512 and
1024. Detailed comparisons are shown in Table 1.

2. KIRC Dataset. It contains 3 classes: Tumor, Normal,
and Stromal, which were curated from whole slide im-
ages (WSI) scanned with a 40X objective (0.252 mi-
cron/pixel). Examples can be found in Figure 4. The
number of images per category are 568, 796 and 784,
respectively. Most images are 1000 × 1000 pixels. In
this experiment, we train on 70, 140 and 280 images
per category and tested on the rest, with three different
dictionary sizes: 256, 512 and 1024. Detailed compar-
isons are shown in Table 2.

4.2. Discussion

1. Multispectral (HE) vs. RGB v.s. Gray. For GBM
dataset, K was fixed to be 150 per spectrum (chan-
nel), which led to a total number of 300, 450 and
150 filters for MCSCSPM-HE, MCSCSPM-RGB and
MCSCSPM-Gray, respectively. For the KIRC dataset,



Method DictionarySize=256 DictionarySize=512 DictionarySize=1024
160 training MCSCSPM-HE 92.71 ± 0.91 93.01 ± 1.10 92.65 ± 0.75

MCSCSPM-RGB 92.58 ± 0.94 92.50 ± 0.86 92.47 ± 0.73
MCSCSPM-Gray 86.33 ± 1.12 86.74 ± 0.91 86.69 ± 0.81
PSDSPM [5] 91.02 ± 1.89 91.41 ± 0.95 91.20 ± 1.29
SMLSPM [4] 92.35 ± 0.83 92.57 ± 0.91 92.91 ± 0.84
ScSPM [23] 79.58 ± 0.61 81.29 ± 0.86 82.36 ± 1.10
KSPM [17] 85.00 ± 0.79 86.47 ± 0.55 86.81 ± 0.45

80 training MCSCSPM-HE 91.41 ± 1.07 91.19 ± 0.91 91.13 ± 0.93
MCSCSPM-RGB 90.88 ± 1.06 91.28 ± 0.82 90.85 ± 0.67
MCSCSPM-Gray 84.67 ± 1.63 84.53 ± 1.58 84.56 ± 1.62
PSDSPM [5] 88.63 ± 0.91 88.91 ± 1.18 88.64 ± 1.08
SMLSPM [4] 90.82 ± 1.28 90.29 ± 0.68 91.08 ± 0.69
ScSPM [23] 77.65 ± 1.43 78.31 ± 1.13 81.00 ± 0.98
KSPM [17] 83.81 ± 1.22 84.32 ± 0.67 84.49 ± 0.34

40 training MCSCSPM-HE 89.16 ± 1.04 89.21 ± 0.75 88.84 ± 0.83
MCSCSPM-RGB 89.24 ± 1.03 89.46 ± 1.14 89.53 ± 1.20
MCSCSPM-Gray 81.37 ± 1.55 81.31 ± 1.19 80.80 ± 1.71
PSDSPM [5] 84.06 ± 1.16 83.72 ± 1.46 83.40 ± 1.14
SMLSPM [4] 88.05 ± 1.38 87.88 ± 1.04 88.54 ± 1.42
ScSPM [23] 73.60 ± 1.68 75.58 ± 1.29 76.24 ± 3.05
KSPM [17] 80.54 ± 1.21 80.56 ± 1.24 80.46 ± 0.56

Table 1. Performance of different methods on the GBM dataset.

Method DictionarySize=256 DictionarySize=512 DictionarySize=1024
280 training MCSCSPM-HE 97.39 ± 0.36 97.51 ± 0.41 97.48 ± 0.40

MCSCSPM-RGB 97.11 ± 0.44 97.49 ± 0.46 97.44 ± 0.43
MCSCSPM-Gray 88.76 ± 0.59 90.50 ± 0.70 91.28 ± 0.72
PSDSPM [5] 97.19 ± 0.49 97.27 ± 0.44 97.08 ± 0.45
SMLSPM [4] 98.15 ± 0.46 98.50 ± 0.42 98.21 ± 0.44
ScSPM [23] 94.52 ± 0.44 96.37 ± 0.45 96.81 ± 0.50
KSPM [17] 93.55 ± 0.31 93.76 ± 0.27 93.90 ± 0.19

140 training MCSCSPM-HE 96.73 ± 0.84 96.89 ± 0.48 96.84 ± 0.67
MCSCSPM-RGB 96.14 ± 1.17 96.46 ± 1.06 96.64 ± 0.76
MCSCSPM-Gray 86.79 ± 0.98 88.26 ± 0.59 88.50 ± 0.80
PSDSPM [5] 96.80 ± 0.75 96.52 ± 0.76 96.55 ± 0.84
SMLSPM [4] 97.40 ± 0.50 97.98 ± 0.35 97.35 ± 0.48
ScSPM [23] 93.46 ± 0.55 95.68 ± 0.36 96.76 ± 0.63
KSPM [17] 92.50 ± 1.12 93.06 ± 0.82 93.26 ± 0.68

70 training MCSCSPM-HE 95.32 ± 0.67 95.62 ± 0.29 95.40 ± 0.44
MCSCSPM-RGB 94.45 ± 0.84 94.64 ± 0.72 94.45 ± 0.77
MCSCSPM-Gray 84.04 ± 1.10 85.13 ± 0.79 84.66 ± 1.14
PSDSPM [5] 95.12 ± 0.54 95.13 ± 0.51 95.09 ± 0.40
SMLSPM [4] 96.20 ± 0.85 96.37 ± 0.85 96.19 ± 0.62
ScSPM [23] 91.93 ± 1.00 93.67 ± 0.72 94.86 ± 0.86
KSPM [17] 90.78 ± 0.98 91.34 ± 1.13 91.59 ± 0.97

Table 2. Performance of different methods on the KIRC dataset.

K was fixed to be 300 per spectrum (channel), which
led to a total number of 600, 900 and 300 filters for
MCSCSPM-HE, MCSCSPM-RGB and MCSCSPM-

Gray, respectively. Table 1 and Table 2 show that,
even with smaller number of filters, MCSCSPM-HE
outperforms MCSCSPM-RGB in most cases. This is



Figure 4. KIRC Examples. First column: Tumor; Second column:
Normal; Third column: Stromal. Note that the phenotypic hetero-
geneity is highly diverse in each column.

due to the fact that, after color decomposition, the re-
sulting two spectra are biological-component-specific,
such that specialized filters can be obtained from each
spectrum characterizing nuclear architecture and tis-
sue structural connectivities, respectively, as demon-
strated in Figure 1. Although the stain information
(biological component information) leaks across chan-
nels for H&E stained tissue sections in its original
RGB presentation, target-specific property can still be
preserved to some extent (e.g., most of the nuclear in-
formation resides in blue (B) channel); and this ex-
plains why MCSCSPM-RGB still has reasonable per-
formance. However, when such a property is com-
pletely lost in grayscale, MCSCSPM-Gray sees a dra-
matic performance drop.

2. Convolutional v.s. patch-based sparse modeling. As
listed in Table 1 and Table 2, the proposed approach,
MCSCSPM-HE/MCSCSPM-RGB outperforms patch-
based sparse feature learning models, e.g., PSD-
SPM [5], with fewer filters than PSDSPM. These facts
indicate that, in tissue classification, convolutional
sparse coding is more effective than traditional sparse
coding in terms of using more succinct representations
and producing better results, which has already been
confirmed in other applications [14].

3. Unsupervised feature learning v.s. hand-engineered
features. As shown in Table 1 and Table 2, the
proposed approach significantly outperforms systems
that are built on hand-engineered features for general
image classification purpose (e.g., KSPM, ScSPM).
Even compared to the recently proposed system, SML-
SPM [4], which is built upon features with biological
prior knowledge, the proposed approach, MCSCSPM,
robustly achieves very competitive performance over
the two different tumor types, where MCSCSPM-HE
performs better on the GBM dataset, while worse on
the KIRC dataset. This confirms that the proposed ap-

proach, MCSCSPM, is a useful tool for analyzing large
cohorts with substantial technical variations and bio-
logical heterogeneities.

5. Conclusion

In this paper, we propose a multispectral convolutional
sparse coding framework for classification of histology sec-
tions with diverse phenotypic signatures. Our approach is
benefited by exploiting multiple spectra, which potentially
contain target-specific information for learning highly di-
versified feature detectors. We show that by decompos-
ing images into nuclei and protein/extra-cellular content,
biological-component-specific filters can be learned, which
capture the nuclear architecture of distinct shapes and the
structural connectivity within tissue sections, respectively.
The multispectral features are then summarized within dis-
tinct tissue contexts at various scales and locations through
SPM for classification. Experimental results show that the
proposed approach outperforms patch-based sparse feature
learning models (e.g., PSDSPM) and human-engineered
features (e.g., SIFT); while generates very competitive per-
formance compared to the dedicated system incorporating
biological prior knowledge (i.e., SMLSPM).

Future work will mainly focus on stacking the model into
hierarchies with the aim to learn phenotypic concepts. In
addition, it is also desirable to incorporate the learning of
color decomposition matrix into the overall learning objec-
tive, which will potentially enable its extensibility to differ-
ent applications. Lastly, we also plan to conduct investiga-
tion of our approach in other vision tasks, such as object
recognition and segmentation.

Disclaimer

This document was prepared as an account of work spon-
sored by the United States Government. While this doc-
ument is believed to contain correct information, neither
the United States Government nor any agency thereof, nor
the Regents of the University of California, nor any of their
employees, makes any warranty, express or implied, or as-
sumes any legal responsibility for the accuracy, complete-
ness, or usefulness of any information, apparatus, product,
or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by its trade
name, trademark, manufacturer, or otherwise, does not nec-
essarily constitute or imply its endorsement, recommenda-
tion, or favoring by the United States Government or any
agency thereof, or the Regents of the University of Califor-
nia. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof or the Regents of the
University of California.
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