Taking a Deeper Look at Pedestrians
Jan Hosang, Mohamed Omran, Rodrigo Benenson, Bernt Schiele; Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 4073-4082
Abstract
The only goal of the abstract is to the answer the question: why should I read this paper? In this paper we study the use of convolutional neural networks (convnets) for the task of pedestrian detection. Despite their recent diverse successes, convnets historically underperform compared to other pedestrian detectors. We deliberately omit explicitly modelling the problem into the network (e.g. parts or occlusion modelling) and show that we can reach competitive performance without bells and whistles. In a wide range of experiments we analyse small and big convnets, their architectural choices, parameters, and the influence of different training data, including pre-training on surrogate tasks. We present the best convnet detectors on the Caltech and KITTI dataset. On Caltech our convnets reach top performance both for the Caltech1x and Caltech10x training setup. Using additional data at training time our strongest convnet model is competitive to detectors that use instead additional data at test time.
Related Material
[pdf]
[
bibtex]
@InProceedings{Hosang_2015_CVPR,
author = {Hosang, Jan and Omran, Mohamed and Benenson, Rodrigo and Schiele, Bernt},
title = {Taking a Deeper Look at Pedestrians},
booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2015}
}