Expanding Object Detector's Horizon: Incremental Learning Framework for Object Detection in Videos

Alina Kuznetsova, Sung Ju Hwang, Bodo Rosenhahn, Leonid Sigal; Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 28-36

Abstract


Over the last several years it has been shown that image-based object detectors are sensitive to the training data and often fail to generalize to examples that fall outside the original training sample domain (e.g., videos). A number of domain adaptation (DA) techniques have been proposed to address this problem. DA approaches are designed to adapt a fixed complexity model to the new (e.g., video) domain. We posit that unlabeled data should not only allow adaptation, but also improve (or at least maintain) performance on the original and other domains by dynamically adjusting model complexity and parameters. We call this notion domain expansion. To this end, we develop a new scalable and accurate incremental object detection algorithm, based on several extensions of large-margin embedding (LME). Our detection model consists of an embedding space and multiple class prototypes in that embedding space, that represent object classes; distance to those prototypes allows us to reason about multi-class detection. By incrementally detecting object instances in video and adding confident detections into the model, we are able to dynamically adjust the complexity of the detector over time by instantiating new prototypes to span all domains the model has seen. We test performance of our approach by expanding an object detector trained on ImageNet to detect objects in ego-centric videos of Activity Daily Living (ADL) dataset and challenging YouTube Objects (YTO) dataset.

Related Material


[pdf]
[bibtex]
@InProceedings{Kuznetsova_2015_CVPR,
author = {Kuznetsova, Alina and Ju Hwang, Sung and Rosenhahn, Bodo and Sigal, Leonid},
title = {Expanding Object Detector's Horizon: Incremental Learning Framework for Object Detection in Videos},
booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2015}
}