EpicFlow: Edge-Preserving Interpolation of Correspondences for Optical Flow
Jerome Revaud, Philippe Weinzaepfel, Zaid Harchaoui, Cordelia Schmid; Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 1164-1172
Abstract
We propose a novel approach for optical flow estimation, targeted at large displacements with significant occlusions. It consists of two steps: i) dense matching by edge-preserving interpolation from a sparse set of matches; ii) variational energy minimization initialized with the dense matches. The sparse-to-dense interpolation relies on an appropriate choice of the distance, namely an edge-aware geodesic distance. This distance is tailored to handle occlusions and motion boundaries - two common and difficult issues for optical flow computation. We also propose an approximation scheme for the geodesic distance to allow fast computation without loss of performance. Subsequent to the dense interpolation step, standard one-level variational energy minimization is carried out on the dense matches to obtain the final flow estimation. The proposed approach, called Edge-Preserving Interpolation of Correspondences (EpicFlow) is fast and robust to large displacements. It significantly outperforms the state of the art on MPI-Sintel and performs on par on Kitti and Middlebury.
Related Material
[pdf]
[video]
[
bibtex]
@InProceedings{Revaud_2015_CVPR,
author = {Revaud, Jerome and Weinzaepfel, Philippe and Harchaoui, Zaid and Schmid, Cordelia},
title = {EpicFlow: Edge-Preserving Interpolation of Correspondences for Optical Flow},
booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2015}
}