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Abstract

We propose a novel approach to computing the proba-
bilities of presence of multiple and potentially occluding
objects in a scene from a single depth map. To this end,
we use a generative model that predicts the distribution of
depth images that would be produced if the probabilities of
presence were known and then to optimize them so that this
distribution explains observed evidence as closely as possi-
ble.

This allows us to exploit very effectively the available
evidence and outperform state-of-the-art methods without
requiring large amounts of data, or without using the RGB
signal that modern RGB-D sensors also provide.

1. Introduction

The advent of the original Kinect camera [12] and its
sucessors has sparked a tremendous regain of interest for
RGB-D imagers, which were formerly perceived as being
either cumbersone or expensive. They have been used with
great success for motion capture [16, 17] and are becoming
increasingly popular for people detection in robotics appli-
cations [13, 18, 14, 10]. However, the former requires the
algorithms to be trained on very large training databases,
which may not always be easy to create, to achieve the de-
sired level of performance while the latter usually do not
make provisions for the fact that people may occlude each
other. This results in failures such as those depicted by
Fig. 2.

In this paper, we propose an approach that relies on a
generative model to evaluate the probability of target ob-
jects being present in the scene while explicitly accounting
for occlusions, which prevents such failures. It is inspired
by an earlier approach to estimating these probabilities from
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Figure 1. DPOM: generative model for depth maps. (a) Objects
can be thought of as boxes, and images of objects are outlines
within their rectangular projections. (b) Background is modeled
explicitly: for each pixel there is a probability distribution, whose
parameters are estimated from a set of background images.

background subtraction results from multiple cameras with
overlapping fields of view [9]. Here, we use instead a sin-
gle depth-map and approximate probabilities of occupancy
at separate locations by choosing these probabilities so that
the lower bound on the model likelihood is maximized. In
contrast to many other approaches, ours does statistical rea-
soning jointly, i.e. knowledge about one piece of image ev-
idence helps us to reason about the rest. This allows in par-
ticular to properly infer the presence of a severely occluded
target from the presence of a small fragment. The genera-
tive process is illustrated by Fig. 1.

We will demonstrate that our approach outperforms [ 14,

, 17] for people detection purposes while using only the
depth image, whereas these other approaches also require
either the use of the RGB image and an additional classifier
or extensive training. Furthermore, because we do not re-
quire training, it took us very little additional effort to also
detect a completely different kind of objects, that is, flying
drones potentially occluding each other.
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Figure 2. Situations in which we outperform state-of-the-art methods. Our approach (top) correctly detects most of the people including
those that are severely occluded, whereas [14] (middle) and [12] (bottom) fail to do so.

2. Related Work

There is an immense body of literature on people de-
tection from regular images such as [2, &, 4] to name but
a few. However, most algorithms rely on features that are
not necessarily present in depth images and are only rarely
designed to be robust to occlusions.

As far as using depth images is concerned, an impres-
sive success was the original Kinect algorithm [16, 17] that
could not only detect people but also estimate their 3D
poses. It has since been improved and is included in the
latest Kinect for Windows SDK [12]. This constitutes an
extremely strong baseline against which we will compare
our algorithm to show that our approach to occlusion han-
dling does boost performance when people hide each other.

One of the reasons why the Kinect algorithm [16, 17]
works so well is that it relies on decision forests that have
been trained on huge datasets of synthetically generated
data, which would make it nontrivial to extend it to other
categories of objects as we do for drones in this paper.

Among the recent approaches that do not require such
extensive training databases are those proposed in [18, 14,
10], which we briefly describe below and will also use as
baselines in our result section.

In [18], the authors introduce a descriptor called the His-
togram of Oriented Depths (HOD) that extends the HOG
descriptor [2]. They train two separate SVMs, one for HOG
features for RGB data and the other on HOD features for
depth images, and combine their scores.

In [14], a complete framework for tracking people in
RGB-D data is described. Detection comprises two steps:
hierarchical-clustering of the depth maps and HOG-based
RGB detection. The clustering step involves finding top-
level clusters in a depth image and then applying heuristics

to detect people’s heads to produce more fine-grained sub-
clusters. The RGB detector, which is based on an improved
version of the HOG features [5] and trained on the INRIA
Person dataset [2], is then applied to the corresponding parts
of the RGB image. The code is available in the Point Cloud
Library [15] and we used it in our experiments.

In [10], two detectors are also used, a depth-based one
for people at close range and a color-based one for those fur-
ther afield. The depth detector relies on template-matching
followed by non-maxima suppression applied to regions of
interests which are extracted using 3D point cloud cluster-
ing. Specifically, a 2D histogram is built by projecting all
3D points that could belong to objects on the ground plane
and then finding clusters in that histogram. The RGB detec-
tor is a HOG-based detector with additional geometric con-
straints to reduce the search-space. This approach is very
similar to that of [14], the main differences being the way
RGB data is handled. Since this is not the main focus of our
work and since the code that implements [14] runs on stan-
dard hardware, whereas that of [ 1 0] requires a modern GPU
to use the complete RGB-D signal, we used the former as a
representative of this class of techniques in our experimen-
tal evaluation.

To summarize: approaches discussed above typically do
not perform occlusion reasoning explicitly, and mostly rely
on heuristics when handling depth signals, which in many
cases can provide reasonable results, but sometimes can
lead to failures that are hard to interpret and predict, such
as ones depicted in Fig. 2.

There is also a number of approaches related to ours [ 1 1,
7] in that they also apply generative modeling and varia-
tional inference to vision problems. However, to the best of
our knowledge, they focus on very different problems, such
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as learning medium-level representations of images [ 1] or
learning natural scene categories [7], whereas our goal is to
estimate location of multiple occluding objects in the envi-
ronment.

3. Approach

As discussed in the previous section, given a depth map
of a scene featuring several people who are not occlud-
ing each other, state-of-the-art methods [14, 18, 12] do a
good job of detecting them. However, these techniques do
not perform the detection of all the targets jointly. Conse-
quently, they can not re-assess properly the presence of a
certain target, given evidence and the presence of occluding
targets. More simply: a fragment of a target 7" in an empty
room is a poor evidence of the presence of 7. However, the
presence of the same fragment when it is known that an-
other target T” is present and hides the rest of T is a good
evidence of the presence of 7. Moreover, some of these
methods [14, 10] rely on heuristics that sometimes result in
failures even in simple cases. Fig. 2 depicts both situations.

A similar problem arises when attempting to detect peo-
ple on the basis of background subtraction results from mul-
tiple cameras with overlapping fields of view. It was ad-
dressed in [9] by using a generative model for background
subtraction images. Namely, people were represented as
boxes that project to rectangles in individual views. The
algorithm was then estimating people locations on the dis-
cretized ground plane, such that the image synthesized ac-
cording to the generative model matched the background
subtraction results as well as possible in all the views. We
will refer to this approach as POM. The strength of POM is
that occlusions are naturally handled by the fact that rectan-
gles corresponding to people further away from the camera
are hidden by those corresponding to people that are closer.

Here, we also advocate the use of such a generative
model to handle occlusions, but one designed to synthe-
size depth maps instead of binary images, as illustrated by
Fig. 1. We will refer to this approach as DPOM.

In our model, we consider a finite number of locations on
the ground. An object of interest, located at one of these, is
represented by a flat free-shape inside a rectangular bound-
ing box, as demonstrated in the Fig. 1(a). In practice, with
each location k£ we therefore associate two random vari-
ables. The first is a Boolean X, that denotes the presence or
absence of the object at location k. The second, a Boolean
mask Mj,, represents the 2D contour of that object and is in-
tended to improve the fit of the generative model to the data.
We model the measured depths at each pixel in the image
as conditionally independent given these variables, and dis-
tributed around the depth of the closest object, or according
to the background distribution if no object is present.

Given this model, we estimate the M, through a seg-
mentation procedure, and turn the estimation of the proba-

bilities of presence P(X|Z, M) into a Bayesian inference
problem as described formally in Section 4. Intuitively,
what it allows us to do is predict the distribution of depth
images that would be produced if the probabilities of pres-
ence were known and then to optimize them so that this
distribution is centered around the observed one.

The introduction of the shape latent variables M}, leads
to a better fit between the observed signal and the model,
which is critical given that we exploit a single camera view.
The standard POM algorithm achieves target localization
through triangulation, using two or more cameras: even if
the correct location of a target does not correspond to the
best match in a individual view — in particular along the
axis toward the camera — it is enforced through consistency
in the other views which have non-parallel camera axis. In
DPOM, since we use a single view signal, the accuracy
along the axis of view is entirely due to the precision of
the model.

4. Formulation

In this section, we formally describe our generative
model, explain how we do inference on it, and then describe
some implementation aspects.

4.1. Generative Model

We introduce first some notations, which are summa-
rized with those of other sections in Table 1.

Let Z € Z!#l denote the depth map, with £ =
{1,..., N} being the set of all pixels, and Z being a set
of all possible depth values. Let z*° € Z be a special value
of depth encoding situation when no depth is observed (de-
picted in black in Fig. 1(b)).

Let us assume we have discretized the ground plane
into possible object locations X = {1,...,K}, as de-
picted in Fig.1(a). We introduce hidden binary variables
X = {Xj,Vk € K} with X}, = 1 if location k is oc-
cupied, 0 otherwise. Furthermore, for each location &, we
have a corresponding crude rectangular representation of an
object, which we call silhouette Sy, C L. For each pixel of
a silhouette we specify a corresponding depth distribution
over z € Z:

Ori(2),Vi € Sk, @))

where the specific shape and parameterization of the distri-
bution f; depends very much on the sensor used for depth
acquisition. We will introduce a more detailed model in
Section 4.3.

The silhouette specifies a very simplistic rectangular
shape, whereas most of the objects have much more com-
plex outlines. To encounter for that, we introduce segmen-
tation masks M, C L,Vk € K. If i € My, it means that
the pixel ¢ € Sy actually belongs to the object outline at
k-th location (see Fig. 1(a)).
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K set of all locations

L set of all pixels

Z set of all possible depth values

X binary occupancy variable for a location k
Z; observed depth value variable at pixel ¢

z>° special value for when no depth is observed

My;  segmentation mask at pixel ¢ for location &
Sk object silhouette for k-th location

|Sk|  number of pixels in the k-th silhouette

(-)p  expectation w.r.t. a distribution p

o(z) sigmoid function (1 + e~%)~1

Pk approximate posterior Q(X; = 1)
probability of observing z°>°

T probability of observing an outlier

Ay loghi(z), 1 € KU {bg}

Table 1. Notations used in this paper

Finally, some pixels belong to the background, rather
than objects. In particular, when there are no objects in the
scene, we observe only background. Thus, for each pixel of
the depth map we have a corresponding background distri-
bution over z € Z:

Opg,i(2), Vi€ L . 2)

Our ultimate goal is to estimate the posterior distribution
P(X|Z,M) given the depth image Z and segmentation
masks M. To do that, we introduce a generative model
P(Z|X, M) and then apply Bayes’ rule.

First, we assume that the prior occupancies X are inde-
pendent from each other, i.e.:

P(X) = H P(Xy), 3)

kex

which intuitively means that objects occupy locations re-
gardless of the presence of other objects.

Second, we assume that the observations for individual
pixels Z;,Vi € L are conditionally independent, i.e. given
X and M.

We can now synthesize depth Z; for each pixel i € £
of the depth image. We select the model corresponding
to a silhouette which is present (X; = 1), contains the
pixel (i € Si), belongs to the object segmentation mask
(i € My), and is the closest to the camera. It is, of course,
also possible that we observe background at a specific pixel.
This happens either if no silhouettes are present that has a
model for this pixel (i ¢ My, Vk € K), or if all of the
silhouettes are further away from the camera (object is oc-
cluded by a part of the background). Note, that we assume
that all the depth distributions ¢; ;(z), V] € KU {bg} are or-
dered w.r.t. the distance to the camera. In practice, we order
them by their mean value (0; ;(z|z # 2°°)). More formally,

Vie L:
* =

arg min O1:(z|z # 2%°)), @
1:{X;=1,ie My,leK}U{bg}

Zi o~ 9[*,1'(2’)- (5)
4.2. Inference

Even under the assumptions of our generative model,
computing P(X|Z, M) directly is still computationally
untractable, due to the dimensionality of X, M and Z. To
solve this, we first assume that M is given, by computing it
as described in Section 4.4, and then derive a variational ap-
proximation for P(X|Z, M). Let us introduce the follow-
ing approximate posterior distribution over hidden variables
X:

QX) =] exx), 6)
kex
where each Q(X}) is a Bernoulli distribution.

We then minimize the KL-divergence between Q(X)
and P(X|Z, M), which has been shown [19] to be equiv-
alent to getting an updated approximate posterior Q*(Xx)
for each X:

Q*(Xk?) O(eXpaOgP(ZaMaX»Q(X\Xk) ) (7

where (-) o(x\ x,,) denotes an expectation w.r.t. all the vari-
ables except for Xy,.

Knowing that X}, is a Bernoulli variable, we can get the
following update rule for p = Q(X = 1):

pr =0( (logP(Z, X, M|Xy =0))qx/x,)— ®)
<10gP(Z7 Xv M|Xk = 1)>Q(X/Xk)) )
where o(z) = (1 + e~®)~! is a sigmoid function.
We want to substitute our generative model

P(Z|X,M) into (8). Let’s first introduce some no-
tations. Let Ay ; = logfk;(2), and Ape; = log e i(2).
Let us denote the prior of occupancy ¢ = P(X; = 1),
assuming it is identical Vk € IC. If we assume, without loss
of generality, that silhouettes are sorted w.r.t. the distance to
the sensor, then the probability of all silhouettes S; : | < k
being absent at a pixel ¢ € £ will be:

= [[ (1-p), ©)

1<k, i€ M,

which can be considered as a transparency at a certain pixel.
If we now substitute our model into (7), and evaluate
expectation w.r.t. the current estimate of Q(X) we will get
the following update for py, Vk € K:
pr = o(log 15—
ZiEMk Tk—l,iAk,i_
ie M, ﬁ(zl>k,i€Mz Ti-1iP1 i + TI’ClJAbg,i)) .
(10)
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4.3. Numerical Model

Up until now, we have not specified exactly our pixel
depth distributions 6;(z) and 6y, ;(2). The shape of those
distributions can vary depending on the type of the sensor,
but here we describe one that worked well for both versions
of Kinect.

We assume that the distribution has two components: a
Dirac and a robust Gaussian. The former is necessary, since
in some cases sensor is incapable of producing a reasonable
estimate of the depth, and reports a special value, 2°°. The
robust Gaussian component is simply a mixture of a Gaus-
sian (V) and a uniform distribution ({), which takes care of
possible outliers. Thus, each 0; ; has four parameters: 7;°, a
probability of observing 2°°, 7}, a probability of observing
an outlier, and i, 0121., which are the mean and the variance
of the Gaussian component.

Finally, Vi € K U {bg}:

0ii(z]z # 2°) = mU(z) + (1 — 75N (2, o) -
an
Particularly, the mean for object pixel distributions
0ri(2),Yk € K is a value one would observe if object
was a flat surface facing the camera. The variance is fixed
for an object type, e.g. for people we use a fixed value
o}, = 100,Vk € K. For background pixel distributions,
we estimate all the parameters from a set of background
frames.

4.4. Computing M

As already mentioned, in theory we also could have ob-
tained an approximation to posterior P(M|Z), but it would
be rather expensive computationally. Thus, given the ob-
served depth map z € ZI%1, we apply the following simple
procedure to obtain a point estimate for My, Vk € K:

My, = {i: 7°U(z) > (1 — 7N (2| pi, 02), 2z # 2},

12)
which in words means that we consider a pixel ¢ to be a part
of the object if depth value is observed and not considered
an outlier under the model (11).

4.5. Implementation Details

In reality, we have noticed that the update (10) is not
very robust. Namely, the predicted p; are very peaky, and
sometimes for a relatively small amount of evidence, the
confidence of occupancy is very high. Since the depth maps
are relatively noisy, it can lead to a large number of false
positives. To avoid that, we use soft thresholding based on
the amount of pixel evidence:

% Zi ,Tki
pko(aelgikl +6)'pk, (13)

where, o and (3 are sigmoid parameters. They were set to
disable those estimates that have very little evidence w.r.t.

the size of our crude rectangular silhouette (we are using
a = —100, 8 = 8).

5. Experimental Evaluation

In this section, we first report our people detection results
and compare them against those of the baseline methods
introduced in Section 2. We then show that our approach
can be easily adapted to a very different detection problem,
namely detecting flying drones that may occlude each other.

5.1. Datasets

There are many well-known and publicly available RGB
datasets for testing pedestrian detection algorithms, such as
those of [2, 6]. For RGB-D data, there are far fewer.

The Kinect Tracking Precision dataset (KTP) presented
in [14] contains several sequences of at most 5 people walk-
ing in a small lab environment. They were recorded by a
depth camera mounted on a robot platform and we use here
the only one that was filmed while the camera was static.
Authors provide ground truth locations of the individuals
both on the image plane, and on the ground plane. Unfortu-
nately, the quality of the ground truth for the ground plane
is limited, due to the poor quality registration of the depth
sensor location to the environment. In order to fix this, we
made an effort and manually specified points correspond-
ing to individuals on the depth maps, then projected them
on the ground plane, and took an average to get a single
point representing person location. This introduces a small
bias as we only observe the outer surface of the person but
any motion capture system would have similar issues.

In [18, 13], the authors report their results in a dataset
containing about 4500 RGB-D images recorded in a
university hall from a three statically mounted Kinects
(UNIHALL). Unfortunately, there is no ground plane
ground truth available, thus we only report results for im-
age plane. To compare to their results, we follow evaluation
procedure described in [1&], that is, without penalizing ap-
proaches for not detecting occluded or hidden people. We
also report our performance for the full dataset separately.

There are no publicly available datasets for multiple
people tracking using the latest Kinect SDK [12] and we
therefore created two of them ourselves. The first one
(EPFL-LAB) contains around 1000 RGB-D frames with
around 3000 annotated people instances. There are at most
4 people who are mostly facing the camera, presumably the
scenario for which the Kinect software was fine-tuned. The
second one (EPFL-CORRIDOR) was recorded in a more
realistic environment, a corridor in a university building. It
contains over 3000 frames with up to 8 individuals. Sam-
ple frames together with our detection results are shown in
Fig. 6.

The ground truth for the ground plane locations was ob-
tained similarly to what has been described for KTP dataset,
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Figure 3. MODA (top) and precision-recall (bottom) for image plane ground truth. For each algorithm, the label indicates what type of
information it uses: D - depth only, RGB - color only, RGB-D - both depth and color.

0. 0. 0.
e—a DPOM (D)
N e . B—a KINECT2 (RGB-D)

o / 0 ) aol o = PCL-MUNARO (RGB-D)

0.7, 0.7 0.7 —o—e—o""
< e < <
g g g
2 g / g "

0. 0. 0. //

. 0 / o—e DPOM (D) o

e—e DPOM (D) =—a KINECT2 (RGB-D)
= PCL-MUNARO (RGB-D) 4= PCL-MUNARO (RGB-D)
° 350 300 350 400 450 500 550 600 650 700 o 250 300 350 400 450 500 550 600 o 250 300 350 400 450 500 550 600
EUCLIDEAN THRESHOLD, mm EUCLIDEAN THRESHOLD, mm EUCLIDEAN THRESHOLD, mm
1 1. 1.
—
o. o. o. \
— \:\

3o 3o 40
3 3 2
g 3 g
E E g \‘

0. 0. 0.4

. o,l[— DPOM (D) o,l[— DPOM (D)

— DPOM (D) — " PCL-MUNARO (RGB-D) 2T = PCL-MUNARG (RGB-D)
—  PCL-MUNARO (RGB-D) ® ® KINECT2 (RGB-D) m @ KINECT2 (RGB-D)
° 0.0 0.2 0.4 0.8 1.0 o 0.0 0.2 0.6 08 1.0 o 0.0 0.2 0.4 0.8 1.0
PRECISION PRECISION PRECISION
(a) KTP (b) EPFL-LAB (c) EPFL-CORRIDOR

Figure 4. MODA (top) and precision-recall (bottom) for ground plane ground truth. For each algorithm, the label indicates what type of
information it uses: D - depth only, RGB - color only, RGB-D - both depth and color.

that is, for each person instance, we specified the points on
the depth maps, projected them on the ground plane, and
computed the average to get a location. In order to get indi-
viduals’ bounding boxes in the image plane, for every target
we compute the average of the projections of the marked
pixels onto the image plane, and add a bounding box cen-
tered on it and sized according to their average depth.

Some approaches, including ours, require knowing both
extrinsic and intrinsic camera parameters. The intrinsics
were fixed for the specific Kinect we used. To compute the
extrinsics, we manually specified the region of the depth
map corresponding to the ground plane and then estimated
the transformation from camera space to that plane.

5.2. Baselines
We use the following baselines for comparison purposes:

e KINECT?2 - the results obtained from the human pose
estimation of the latest Kinect for Windows SDK [12].
It is not publicly known what specific algorithm is
used. However in [16], the authors report that their
algorithm is at the core of the human pose estima-
tion for the older version of the Kinect software. For
undisclosed reasons, the framework supports tracking
up to 6 people, with the working depth range lim-
ited to 4.5 meters. To ensure fairness, we kept this
restrictions in mind when using the EPFL-LAB and
EPFL-CORRIDOR datasets. We do not penalize algo-
rithms for not detecting more than 6 people or people
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who are further than 4.5 meters away.

e UNIHALL - RGB-D detector [18] based on HOG and
HOD features. The code is not available and we there-
fore report only a single point on the precision-recall
curve.

e PCL-MUNARO - RGB-D detector [14]. It uses mod-
ified HOG features [5] on regions extracted by depth
segmentation. We used the implementation from the
PCL library [15].

e ACF - RGB detector from [3], based on AdaBoost and
aggregate channel features [4] to give a sense of what
a state-of-the-art detector that does not use depth can
do on these sequences.

5.3. Overall Performance

In Fig. 3, we report overall performance comparisons
on the four datasets introduced in Section 5.1. For each
one, we report results in two different ways. We plot both
Multiple Objects Detection Accuracy (MODA) [1], as a
function of bounding box overlap in the image plane, and
also precision-recall curves. We made this choice to com-
pare ourselves to authors who report image plane-only re-
sults. Here, precision-recall curves are shown for an overlap
threshold of 0.4 as in [18], and additional curves are pro-
vided in the supplementary material. The MODA curves
are computed for fixed detector confidence threshold, the
best-performing one for each approach, except in the case
of KINECT2 for which we have no way to set any thresh-
old. Results for other detection thresholds are also available
as supplementary material.

DPOM clearly outperforms all other approaches. This is
true even though, as the KINECT2, we use only the depth
information whereas the other algorithms also use the RGB
information. Only for UNTHALL dataset, at overlap thresh-
old above 0.55, does DPOM become slightly worse. This
can be ascribed to the fact that we use a fixed-sized object
model, and for this particular dataset and ground truth this
size happens to be too small. This is not very crucial though,
since at those values of overlap threshold, absolute perfor-
mance of all the evaluated methods is rather low.

Note that KINECT2 performs much worse on the
EPFL-CORRIDOR sequence that in EPFL-LAB one. It is
very hard to know why exactly, because the specific algo-
rithm being used is a trade-secret. Our best guess is that in
EPFL-CORRIDOR, the camera is slightly tilted and people
do not appear to as being strictly vertical. If this interpreta-
tion were correct, it would illustrate the dangers of training
an algorithm under specific assumptions that may prevent
generalization. Another possible explanation is that some
sequences start with people already present in the field of
view, thus making it hard to use any kind of background

subtraction. Whatever the case, the EPFL-LAB sequence
presents neither of these difficulties and DPOM still per-
forms better.

In Fig. 4, we report MODA and precision-recall values
computed in the ground plane instead of the image plane for
the three methods for which it can be done. In ground-plane
settings, we consider detection a match to the ground truth
if it is within a certain Euclidean distance to it. The values
of MODA are shown as a function of Euclidean thresholds,
for a single best detection threshold for each algorithm.
Precision-recall curves are plotted for a fixed Euclidean dis-
tance threshold of 500mm. The performance ordering stays
essentially the same.

'
- '

~. ~a

’*o..‘ ~ %

MODA

b o000 0o
Frvs e st rea, °

N 04l

Ty i

"‘0\“; N
|

00T a DPOM (D) W o2l 7 DPOM(D) Y
2 ¢ & ACF (RGB) A = = ACF (RGB) '
-0 ¥ ¥ PCL-MUNARO (RGB-D) = = PCL-MUNARO (RGB-D) “

o.
020 025 030 035 040 045 050 055 060 00 0.2 0.6 0.8 10
OVERLAP THRESHOLD PRECISION

Figure 5. MODA (left) and precision-recall (right) for image plane
ground truth for UNIHALL dataset. Approaches were penalized
for not detecting occluded or hidden people.

Recall that the evaluation procedure we have used so far
is that of [18] in which not detecting occluded or hidden
people is not penalized. To demonstrate that this choice
does not have a major impact on our conclusions, we plot in
Fig. 5 equivalent precision-recall curves when they are pe-
nalized. As expected, the performance numbers are worse
than those shown in Fig. 3 for all methods. However, the
ranking is preserved and the performance drop is smaller
for DPOM. This highlights once more its ability to deal with
occlusions.

5.4. Drones

To demonstrate the versatility of our approach, we have
also applied it to a completely different type of objects, that
is, drones. Note that, for people, we estimated their loca-
tions on the discretized ground plane. For drones, we in-
stead use a discretized 3D space, and our algorithm thus
estimates occupancy probabilities for each discrete 3D lo-
cation in that space.

We filmed two drones flying in a room, sometimes oc-
cluding each other and sometimes being hidden by furni-
ture. As in our people sequences, we obtained ground truth
by manually specifying points on the drones, and then com-
puting the bounding cube. To determine whether a detection
is a match, we use overlap in bounding cubes.

Since there are no canonical baseline approaches, we
only report our own MODA values in Fig. 7. For overlap
thresholds below 0.4, we obtain reasonable performance.
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Figure 6. Sample detections for selected frames of our test datasets. From top to bottom, we show KTP, UNIHALL, EPFL-LAB, and
EPFL-CORRIDOR.
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Figure 7. Detection results for drones. (a) Sample detections. (b)
MODA score. (c) Detection with background occlusions. (d) De-
tection with occlusions.

(©)

For larger thresholds, the drop in performance is attributable
to the fact that we discretize the 3D space, which means a
relatively large localization error compared to the small size

—os T T
020 025 030 035 040 045 050 055 0.60

of the drones.

6. Discussion and Future Work

We have introduced a probabilistic approach to estimat-
ing occupancy maps given depth images. We have shown
that it outperforms state-of-the-art approaches both on pub-
licly available datasets and our own challenging sequences.
Moreover, the approach is generic enough to be easily
adapted to a completely different object type, which we
demonstrated by using it for detecting drones.

However, a weak point of our approach is speed: our
current implementation is not real-time, and takes several
seconds to process a single depth frame on a 2.3GHz Intel
CPU. This problem can be addressed using GPUs, since the
bottleneck of our algorithm is iterating through the pixels.
Another limitation, which is a consequence of using a rough
generative model, is the lack of discriminative power. Our
approach requires no training data but cannot distinguish
between different object types as long as they fit our model
well enough. Therefore, our next step will be to provide
means for either combining our occupancy maps with the
output of a discriminative classifier or making object mod-
els more sophisticated, possibly by learning them from the
data.

2836



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

(14]

(15]

[16]

K. Bernardin and R. Stiefelhagen.  Evaluating Multi-
ple Object Tracking Performance: the Clear Mot Metrics.
EURASIP Journal on Image and Video Processing, 2008,
2008. 7

N. Dalal and B. Triggs. Histograms of Oriented Gradients
for Human Detection. In Conference on Computer Vision
and Pattern Recognition, 2005. 2, 5

P. Dollar. Piotr’s Computer Vision Matlab Toolbox
(PMT). http://vision.ucsd.edu/~pdollar/
toolbox/doc/.7

P. Dollar, R. Appel, and W. Kienzle. Crosstalk Cascades for
Frame-Rate Pedestrian Detection. In European Conference
on Computer Vision, 2012. 2,7

P. Dollar, Z. Tu, P. Perona, and S. Belongie. Integral Channel
Features. In British Machine Vision Conference, 2009. 2, 7
P. Dollar, C. Wojek, B. Schiele, and P. Perona. Pedestrian
Detection: A Benchmark. In Conference on Computer Vision
and Pattern Recognition, June 2009. 5

L. Fei-Fei and P. Perona. A Bayesian Hierarchical Model
for Learning Natural Scene Categories. In Conference on
Computer Vision and Pattern Recognition, 2005. 2, 3

P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ra-
manan. Object Detection with Discriminatively Trained Part
Based Models. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 32(9), 2010. 2

E. Fleuret, J. Berclaz, R. Lengagne, and P. Fua. Multi-
Camera People Tracking with a Probabilistic Occupancy
Map. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 30(2):267-282, February 2008. 1, 3

0. Jafari, D. Mitzel, and B. Leibe. Real-Time RGB-D Based
People Detection and Tracking for Mobile Robots and Head-
Worn Cameras. In International Conference on Robotics and
Automation, pages 5636-5643,2014. 1,2, 3

N. Jojic and B. J. Frey. Learning flexible sprites in video
layers. In Computer Vision and Pattern Recognition, 2001.
CVPR 2001. Proceedings of the 2001 IEEE Computer Soci-
ety Conference on, volume 1, pages 1-199. IEEE, 2001. 2,
3

Kinect for Windows SDK 2.0, 2014. http://www.
microsoft.com/en-us/kinectforwindows/. 1,
2,3,5,6

M. Luber, L. Spinello, and K. Arras. People Tracking in
Rgb-D Data with On-Line Boosted Target Models. In In-
ternational Conference on Intelligent Robots and Systems,
pages 3844-3849,2011. 1,5

M. Munaro and E. Menegatti. Fast RGB-D People Track-
ing for Service Robots. Autonomous Robots, 37(3):227-242,
2014. 1,2,3,5,7

R. B. Rusu and S. Cousins. 3D is here: Point Cloud Library
(PCL). In IEEE International Conference on Robotics and
Automation (ICRA), Shanghai, China, May 9-13 2011. 2,7
J. Shotton, A. Fitzgibbon, M. Cook, and A. Blake. Real-
Time Human Pose Recognition in Parts from a Single Depth
Image. In Conference on Computer Vision and Pattern
Recognition, 2011. 1,2, 6

(17]

(18]

(19]

2837

J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finoc-
chio, A. Blake, M. Cook, and R. Moore. Real-Time Human
Pose Recognition in Parts from Single Depth Images. Com-
munications of the ACM, 56(1):116-124,2013. 1, 2

L. Spinello and K. Arras. People Detection in RGB-D Data.
In International Conference on Intelligent Robots and Sys-
tems, pages 3838-3843,2011. 1,2,3,5,7

J. M. Winn and C. M. Bishop. Variational message passing.
In Journal of Machine Learning Research, pages 661-694,
2005. 4


http://vision.ucsd.edu/~pdollar/toolbox/doc/
http://vision.ucsd.edu/~pdollar/toolbox/doc/
http://www.microsoft.com/en-us/kinectforwindows/
http://www.microsoft.com/en-us/kinectforwindows/

