
Fusion Moves for Correlation Clustering

Thorsten Beier
thorsten.beier@iwr.uni-heidelberg.de

Fred A. Hamprecht
fred.hamprecht@iwr.uni-heidelberg.de

Jörg H. Kappes
kappes@math.uni-heidelberg.de

Abstract

Correlation clustering, or multicut partitioning, is

widely used in image segmentation for partitioning an undi-

rected graph or image with positive and negative edge

weights such that the sum of cut edge weights is minimized.

Due to its NP-hardness, exact solvers do not scale and ap-

proximative solvers often give unsatisfactory results.

We investigate scalable methods for correlation cluster-

ing. To this end we define fusion moves for the correlation

clustering problem. Our algorithm iteratively fuses the cur-

rent and a proposed partitioning which monotonously im-

proves the partitioning and maintains a valid partitioning

at all times. Furthermore, it scales to larger datasets, gives

near optimal solutions, and at the same time shows a good

anytime performance.

1. Introduction

Correlation clustering [8], also known as the multicut

problem [12] is a basic primitive in computer vision [3, 4,

35, 2] and data mining [5, 31, 10, 11]. See Sec. 2 for its

formal definition of clustering the nodes of a graph.

Its merit is, firstly, that it accommodates both positive

(attractive) and negative (repulsive) edge weights. This al-

lows doing justice to evidence in the data that two nodes or

pixels do not wish or do wish to end up in the same clus-

ter or segment, respectively. Secondly, it does not require a

specification of the number of clusters beforehand.

In signed social networks, where positive and negative

edges encode friend and foe relationships, respectively, cor-

relation clustering is a natural way to detect communi-

ties [10, 11]. Correlation clustering can also be used to clus-

ter query refinements in web search [31]. Because social

and web-related networks are often huge, heuristic meth-

ods, e.g. the PIVOT-algorithm [1], are popular [11].

In computer vision applications, unsupervised im-

age segmentation algorithms often start with an over-

segmentation into superpixels (superregions), which are

then clustered into “perceptually meaningful” regions by

correlation clustering. Such an approach has been shown

to yield state-of-the-art results on the Berkeley Segmenta-

tion Database [3, 23, 35, 2].

While it has a clear mathematical formulation and nice

properties, correlation clustering suffers from NP-hardness.

Consequently, partition problems on large scale data, e.g.

huge volume images in computational neuroscience [4] or

social networks [25], are not tractable because reasonable

solutions cannot be computed in acceptable time.

Contribution. In this work we present novel approaches

that are designed for large scale correlation clustering prob-

lems. First, we define a novel energy based agglomera-

tive clustering algorithm that monotonically increases the

energy. With this at hand we show how to improve the

anytime performance of Cut, Clue & Cut [9]. Second,

we improve the anytime performance of polyhedral mul-

ticut methods [21] by more efficient separation procedures.

Third, we introduce cluster-fusion moves, which extend the

original fusion moves [24] used in supervised segmenta-

tion to the unsupervised case and give a polyhedral inter-

pretation of this algorithm. Finally, we propose two ver-

satile proposal generators, and evaluate the proposed meth-

ods on existing and new benchmark problems. Experiments

show that we can improve the computation time by one to

two magnitudes without worsening the segmentation qual-

ity significantly.

Related Work. A natural approach is to solve the integer

linear program (ILP) directly 2. To this end, efficient sep-

aration procedures have been found [20, 21] that allow to

iteratively augment the set of constraints until a valid par-

titioning is found. Alternatively, it is possible to relax the

integrality constraints of the ILP formulation [21]. Such an

outer relaxation can be iteratively tightened. However, in-

termediate solutions are fractional and therefore rounding

is required to obtain a valid partitioning. For the latter ap-

proach column generating methods exist, which work best

on planar graphs [35].

Another line of work uses move making algorithms to

optimize correlation clustering [22, 7, 9]. Starting with an

initial segmentation, auxiliary max-cut problems are (ap-

proximately) solved, such that the segmentation is strictly

1

0 1 2

3 4 5

w01 w12

w34 w45

w03 w14 w25

(a) node labels

0 1 2

3 4 5

w01 w12

w34 w45

w03 w14 w25

(b) node labels

0 1 2

3 4 5

w01 w12

w34 w45

w03 w14 w25

(c) edge labels

0 1 2

3 4 5

w01 w12

w34 w45

w03 w14 w25

(d) dangling edge

Figure 1: Representing a clustering by node labels is am-

biguous. 1a and 1b encode the same partition. Edge labels

as in 1c do not suffer from such ambiguities, but can have

dangling edges as in 1d. Node 1 and 4 are in the same con-

nected component, even tough e14 is cut. This is not a valid

partition, and must be ruled out by constraints.

improved. As shown in [9] only Cut, Glue & Cut (CGC)

can deal with large scale problems, but can also suffer from

very large auxiliary problems.

Outside computer vision, greedy methods [33, 29, 16,

14, 1] have been suggested for correlation clustering prob-

lems, see [15] for an overview. The PIVOT Algorithm [1]

iterates over all nodes in random order. If the node is not

assigned it constructs a cluster containing the node and

all its unassigned positively linked neighbors. A widely

used post-processing method is Best One Element Move

(BOEM) [16], which iteratively reassigns nodes to clusters.

For energy minimization problems fusion moves have

become increasingly popular [24, 19]. For many large scale

computer vision applications fusion moves lead to good ap-

proximations with state of the art anytime performance [19].

Due to the ambiguity of a node-labeling, classical fusion

moves [24] cannot be applied directly for correlation clus-

tering. We will show how to overcome this problem in

Sec. 4.

Outline: In Sec. 2 we give a detailed problem definition

and introduce the correlation clustering objective. Next we

give a description of energy based hierarchical clustering in

Sec. 3 and our proposed correlation clustering fusion moves

in Sec. 4. We evaluate the proposed methods in Sec. 5 and

conclude in Sec. 6 and 7.

2. Notation and Problem Formulation

Let G = (V,E,w) be a weighted graph of nodes V and

edges E. The function w : E → R assigns a weight to

each edge. We will use we as a shorthand for w(e). A

positive weight expresses the desire that two adjacent nodes

should be merged, whereas a negative weight indicates that

these nodes should be separated into two distinct regions.

A segmentation of the graph G can be either given by a

node labeling l ∈ N
|V | or an edge labeling y ∈ {0, 1}|E|,

cf . Fig. 1. An edge labeling is only consistent if it does

not violate any cycle constraint [12]. We denote the set of

all consistent edge labelings by P (G) ⊂ {0, 1}|E|. The

convex hull of this set is known as the multicut polytope

0 1 2

3 4 5

w01 = −1 w12 = −2

w34 = −2 w45 = 1

w03 = 4 w14 = 2 w25 = 3 {0, 3}

1 2

4 5

w01 = −1

w12 = −2

w34 − 2

w45 = 1

w14 = 2 w25 = 3

{0, 3}

1

{2, 5}

4

w01 = −1 w12 = −2

w34 = −2 w45 = 1

w14 = 2 {0, 3} {1, 4} {2, 5}
w12+
w45 =
−1

w01+
w34 =
−3

Figure 2: Energy-based Hierarchical clustering can be used

to greedily optimize Eq. 2. In each step, the two nodes

connected via the edge with the highest weight are merged

by contracting this edge. (edge to be contracted is shown

in green). Due to edge contraction parallel edges can oc-

cur, which are merged into single ones, and their weights

are summed up. The algorithm terminates when the high-

est edge weight is smaller or equal to zero (edge shown in

blue).

MC(G) = conv(P (G)). By l(y) we denote some node

labeling for a segmentation given by y.

Given a weighted graph G = (V,E,w) we consider the

problem of segmenting G such that the costs of the edges

between distinct segments is minimized. This can be for-

mulated in the node domain by assigning each node i a label

li ∈ N

l∗ = argmin
l∈N|V |

∑

(i,j)∈E

wij · [li 6= lj], (1)

or in the edge domain, by labeling each edge e as cut ye = 1
or uncut ye = 0

y∗ = argmin
y∈P (G)

∑

(i,j)∈E

wij · yij . (2)

As shown in [21] both problems are equivalent, but formu-

lation 1 suffers from ambiguities in the representation, cf .

Fig. 1.

3. Energy Based Hierarchical Clustering

We now describe a fast heuristic for solving Eq. 2 which

will be used later as a subroutine. Agglomerative hierarchi-

cal clustering (HC) is widely used in graph / image segmen-

tation [6]. In each step, the edge with the highest weight

w is contracted (green edges in Fig. 2). Doing so, paral-

lel edges can occur. In agglomerative clustering, weights

of parallel edges are merged into single edges. For im-

age segmentation, the weighted mean of the edge weights

is used [6].

Because we, contrary to [6], directly work on energies,

we use energy based agglomeration with the following up-

date rule: Whenever there are multiple edges between a pair

of nodes, these edges are merged into a single edge and

the weights are summed up, since we minimize the sum of

the cut edges. We call HC with this update method Energy

based Hierarchical Clustering (EHC).

We stop EHC if the highest edge weight is smaller or

equal to zero (blue edge in Fig. 2). Any further edge con-

traction does not improve the energies.

Given the intrinsic greediness of hierarchical clustering,

we cannot expect EHC to yield optimal solutions in general.

However, EHC is very fast and can be used to initialize

CGC [9]. Excessive time in CGC is spent in the cut phase

to solve the first two coloring on the complete graph. As

shown in Sec. 5, allowing CGC to start from the EHC solu-

tion instead can improve performance drastically.

4. Correlation Clustering Fusion Moves

Fusion moves as defined in [24] work in the node domain

and do not work properly for objective functions as Eq. 1

since the node coloring is ambiguous and has no semantic

meaning, cf . Fig. 3. In the following, we propose a more

suitable fusion move for correlation clustering which works

on the edge domain. Given two proposal solutions y′ and

y′′, Ey̆
0 is the set of edges which are uncut in y′ and y′′.

y̆ij = max{y′ij , y
′′
ij} ∀ij ∈ E (3)

Ey̆
0 = {ij ∈ E | y̆ij = 0} (4)

The fusion move for correlation clustering is solving Eq. 2

with additional must-link constraints for all edges in Ey̆
0 .

y∗ = argmin
y∈P (G)

∑

(i,j)∈E

wij · yij . (5)

s.t. yij = 0 ∀(i, j) ∈ Ey̆
0

By construction, solving Eq. 5 cannot increase the energy

w.r.t. the proposals y′ and y′′, because y′ and y′′ are feasible

solutions for problem 5.

As Lempitsky et al. [24], we iteratively improve the best

solution by fusing it with proposal solutions. The inherent

difference is how we define the fusion.

As classical fusion, the proposed algorithm does not pro-

vide a lower bound on the objective and has no sound stop-

ping condition. For the latter we use a maximal number

of iterations and maximal number of iterations without im-

provement.

A further difference is how we efficiently calculate the

correlation clustering fusion move and how we generate

proposals. Both will be discussed next. The overall frame-

work is sketched in Fig. 5.

p
ro

p
o
sa

l
ed

g
e

la
b
el

in
g

y
′

y
′
′

p
ro

p
o
sa

l
n
o
d
e

la
b
el

in
g

l′
l′
′

F
u
si

o
n

M
o
v
e

P
ro

b
le

m

0 1

2 3

w01

w23

w02 w13

0 1

2 3

w01

w23

w02 w13

0 1

2 3

w01

w23

w02 w13

0 1

2 3

w01

w23

w02 w13

w01

w23

w02 w13

0 1

2 3

w01

w23

w02 w13

w01

w23

w02 w13

0 1

2 3

w01

w23

w02 w13

w01

w23

w02 w13

0 1

2 3

w01

w23

w02 w13

w01

w23

w02 w13

0 1

2 3

w01

w23

w02 w13

w01

w23

w02 w13

0 1

2 3

w01

w23

w02 w13

w01

w23

w02 w13

0 1

2 3

w01

w23

w02 w13

w01

w23

w02 w13

For all different colorings l′′, the binary fusion move subproblem is different.

All these node labelings encode the same partition

Figure 3: To fuse two edge labelings y′ and y′′ with fusion

moves as defined by Lempitsky et al. [24] y′ and y′′ need to

be transferred to the node domain. The mapping from edge

labels to node labels is ambiguous and even for this small

graph there are seven node labels which result in different

binary fusion move problems. Enumerating all labelings for

a graph of non trival size becomes intractable.

4.1. Fast Optimization of CC­Fusion Moves

In general the auxiliary fusion problem 5 is, as for clas-

sical fusion [24], NP-hard. However, many variables have

been fixed to be zero and we can reformulate 5 into a cor-

relation clustering problem on a coarsened graph, where

all nodes which are connected via must-link constraints are

merged into single nodes. We call this graph a contracted

graph.

Definition 1. (Contracted Graph) Given a weighted graph

G = (V,E,w) and a segmentation of G given by y ∈
P (G), we define the contraction of graph Gy = (Vy, Ey, w̄)
by Vy = {li(y)|i ∈ V }, Ey = {li(y)lj(y)|ij ∈ E}, and

∀ūv̄ ∈ Ey : w̄ūv̄ =
∑

ij∈E,li(y)=ū,lj(y)=v̄ wij

Any clustering ȳ of the contracted graph Gy = (Vy, Ey)
can be back projected to a clustering ỹ of the original graph

G = (V,E) by

ỹij =

{

ȳli(y)lj(y) if li(y) 6= lj(y)
0 else

∀uv ∈ E (6)

Theorem 1 (Equivalence). The back projection of the

optimal segmentation ȳ′ of the contracted graph Gy =
(Vy, Ey, w̄) is an optimal solution of problem 5.

Proof. Let y′ be the back propagation of ȳ′, which is by

definition feasible for 5. If y′ would not be an optimal solu-

tion, there must be a y′′ with
∑

e∈E wey
′
e >

∑

e∈E wey
′′
e .

Since y′e and y′′e are 0 for all e ∈ Ey̆
0 we would have

∑

ē∈Ey

w̄ēȳ
′
ē =

∑

e∈E\Ey̆

0

wey
′
e =

∑

e∈E

wey
′
e

>
∑

e∈E

wey
′′
e =

∑

e∈E\Ey̆

0

wey
′′
e =

∑

ē∈Ey

w̄ēȳ
′′
ē

where ȳ′′ is the projection from y′′ on Gy . This contradicts

that y′ is a optimal segmentation of Gy .

0 1 2

3 4 5

w01 w12

w34 w45

w03 w14 w25

{0, 3} {1, 4} {2, 5}w01+
w34

w12+
w45

(a) Graph contraction

{0, 3} {1, 4} {2, 5}w01+
w34

w12+
w45

0 1 2

3 4 5

w01 w12

w34 w45

w03 w14 w25

(b) Back projection

Figure 4: (a) Given a graph G = (V,E,w) and a con-

sistent edge labeling y ∈ P (G), shown by solid and dot-

ted lines, the contraction graph Gy = (Vy, Ey, wy) is con-

structed by contracting uncut nodes and edges in G w.r.t.

y. (b) Given an edge labeling ȳ of a contracted graph

Gy = (Vy, Ey, wy), we can back project the edge labeling

to the original graph.

Instead of problem 5 we can now solve problem 2 on

the contracted graph Gy̆ . This is, depending on the inter-

section of the current and proposed solution, magnitudes

smaller than G. The correlation clustering problem on Gy̆

can be solved by any correlation clustering solver. Since

Gy̆ is smaller, exact methods or good approximative meth-

ods like multicuts [21] or CGC [9] are very fast.

4.2. Polyhedral Interpretation

A polyhedral interpretation of fusion moves is shown in

Fig. 6. In each iteration the current and proposed segmen-

tation define an inner polyhedral approximation of the orig-

inal polytope. This interpretation holds for original fusion

moves [24] as well as for the proposed CC-Fusion.

In our case, optimizing over the inner polytope is the

same kind of problem as the original multicut polytope, but

much smaller. Furthermore, the cost do not change and an

improvement in the smaller polytope will be the same in the

original graph, as shown in Theorem 1.

The choice of the proposal defines the shape of the inner

polytope. In the given toy example, the first (red) polytope

gives a huge improvement, the second proposal defines the

blue polytope which does not lead to an improvement. The

third proposal generates the green polytope that includes the

globally optimal solution.

This procedure is fundamentally different from common

polyhedral multicut methods [20, 21], which tighten an

outer relaxation of the multicut polytope and contrary to our

method do not operate in the feasible domain.

4.3. Proposal Generators

As discussed in [24], proposals should have two proper-

ties: high quality and large diversity.

Figure 6: Each fusion move can be interpreted as an opti-

mization of an inner polytope. Each inner polytope includes

the current vertex. Starting with y0 we optimize over the red

polytope and find y1 as optimum. Finally, when optimizing

over the blue polytope we stay in y1 as optimum, when op-

timizing over the green polytope we find y2 which we will

never leave again.

A proposal has a high quality if it has a low energy at

least in some regions. For high quality proposals the chance

that the inner polytope includes a better solution (vertex) is

larger than for those with low quality.

Diversity between the individual proposals increases the

chances to span diverse internal polytopes, cover with the

intersection of inner polytopes a large part of the original

polytope and find more likely the globally optimal solution

or escape from local minima.

For correlation clustering fusion we add a third property:

size. The size of the contracted graph directly depends on

the number of connected components of the intersection of

the proposal solution and the current best solution. In one

extreme case, where each node is in a separate connnected

component, the fusion move is equivalent to solving the

original problem. In the other extreme, where the proposal

has a single connected component, the current best solution

will not change. Therefore the size of the proposals should

be small enough, such that solving eq. 5 can be done fast

enough, but on the other side large enough to define a large

internal polytope and therefore a powerful move. To this

end we suggest two proposal generators.

Randomized Hierarchical Clustering (RHC): To gener-

ate fast energy aware proposals we can use energy based

hierarchical clustering (EHC) as defined in Sec. 3. EHC

follows the energy function, therefore the quality of the pro-

posals is high. To get diversity among the different pro-

posal, we add normally distributed noise N (0, σehc) to each

edge weight. To get proposals of the desired size, we use a

different stop condition for EHC, and stop only if a certain

number of connected components is reached.

Randomized Watersheds (RWS): Watersheds have be-

come quite popular for graph segmentation and have a

strong connection to energy minimization [13]. The edge

weighted watershed algorithm [28] with random seeds can

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

w(1,2) w(2,3) w(3,4)

w(5,6) w(6,7) w(7,8)

w(9,10) w(10,11) w(11,12)

w(13,14) w(14,15) w(15,16)

w(1,5)

w(5,9)

w(9,13)

w(2,6)

w(6,10)

w(10,14)

w(3,7)

w(7,11)

w(11,15)

w(4,8)

w(8,12)

w(12,16)

+
1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

w(1,2) w(2,3) w(3,4)

w(5,6) w(6,7) w(7,8)

w(9,10) w(10,11) w(11,12)

w(13,14) w(14,15) w(15,16)

w(1,5)

w(5,9)

w(9,13)

w(2,6)

w(6,10)

w(10,14)

w(3,7)

w(7,11)

w(11,15)

w(4,8)

w(8,12)

w(12,16)

=

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

w(1,2) w(2,3) w(3,4)

w(5,6) w(6,7) w(7,8)

w(9,10) w(10,11) w(11,12)

w(13,14) w(14,15) w(15,16)

w(1,5)

w(5,9)

w(9,13)

w(2,6)

w(6,10)

w(10,14)

w(3,7)

w(7,11)

w(11,15)

w(4,8)

w(8,12)

w(12,16)

{1} {2, 3, 4}

{5} {6, 7, 8}

{9, 13}
{10, 11, 12,
14, 15, 16}

w(1,2)

w(1,5)w(1,5)

w(5,6)

w(5,9)

w(9,10) + w(13,14)

w(2,6) + w(3,7) + w(4,8)

w(6,10) + w(7,11) + w(8,12)

{1} {2, 3, 4}

{5} {6, 7, 8}

{9, 13}
{10, 11, 12,
14, 15, 16}

w(1,2)

w(1,5)w(1,5)

w(5,6)

w(5,9)

w(9,10) + w(13,14)

w(2,6) + w(3,7) + w(4,8)

w(6,10) + w(7,11) + w(8,12)

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

w(1,2) w(2,3) w(3,4)

w(5,6) w(6,7) w(7,8)

w(9,10) w(10,11) w(11,12)

w(13,14) w(14,15) w(15,16)

w(1,5)

w(5,9)

w(9,13)

w(2,6)

w(6,10)

w(10,14)

w(3,7)

w(7,11)

w(11,15)

w(4,8)

w(8,12)

w(12,16)

contract run CC project

update current best(a) current best y′

(b) proposal y′′

(c) ŷ = y′
∪ y′′ (d) contracted graph Gŷ (e) CC on Gŷ (f) result on G

Figure 5: To fuse a current best segmentation y′ (5a) with a proposal segmentation y′′ (5b) we propose the following algo-

rithm: ŷ is defined as y′ + y′′ as in (5c). The contraction graph (5d) Gŷ is constructed by contracting all uncut edges in ŷ.

The actual fusion move is solving (2) for Gŷ as in 5e and projecting the result back to G as in (5f). The result of the fusion

move is guaranteed to be no worse than y′ or y′′. Therefore the current best solution can be updated from the result of the

fusion move. In summary, the correlation clustering fusion move algorithm iteratively fuses the current best solution with

different proposals.

be used to find cheap proposals. To improve quality we

do not use n seeds distributed uniformly over all nodes but

use the following. We draw n/2 negative edges, and assign

different seeds to the endpoints of each edge. Doing so, a

random subset of negative edges is forced to be cut within

each proposal. For additional diversity, noise N (0, σws) is

added to the edge weighs [34].

5. Experiments

In our experiments we compare to the following meth-

ods with publicly available implementation. For CGC [9]

we used a branch of OpenGM1 and for KL [22] the imple-

mentation in OpenGM2. For integer multicuts (MC-I) and

relaxed multicuts (MC-R) [21] we modified OpenGM2, as

described in Sec. 5.2. From the field of data-mining we

compare to the PIVOT-algorithm [1] followed by a round of

BOEM [16] denoted by PIVOT-BOEM3. This implemen-

tation uses full adjacency matrices it does not scale and can-

not be applied to all datasets. We also run classical fusion

moves [24] (Fusion) and select distinct labels for the two

candidate segmentations. According to [9], CGC is faster

and gives better energies than PlanarCC [35] and Expand

& Explore [7]. Therefore we exclude those in our experi-

ments.

We compare all of the above to the following methods

suggested in the present paper: Energy Based Hierarchi-

1github.com/opengm/opengm/tree/cgc-cvpr2014
2github.com/opengm/opengm
3http://www.ling.ohio-state.edu/˜melsner/

resources/correlation-readme.html

cal Clustering (EHC), as described in Sec. 3. CGC warm

started with the solution from EHC (EHC-CGC). The pro-

posed correlation cluster fusion algorithm with EHC-based

and watershed-based proposals and MC-I and CGC as sub-

problem solvers (CC-Fusion-HC-MC, -HC-CGC, -WS-

MC, and -WS-CGC) respectively. We set the number of

connected components in the proposals to 10% of the num-

ber of nodes of and use random edge noise with σ = 1.5.

As stopping condition we choose 104 iterations and 100 it-

erations with no improvement.

All experiments were run on Intel Core i5-4570 CPUs

with 3.20 GHz, equipped with 32 GB of RAM. In our eval-

uation we make no use of multiple threads. The methods

were stopped once they exceed 30 minutes at the next pos-

sible interrupt point.

5.1. Datasets

Social Networks. One important application for large

scale correlation clustering are social networks. We con-

sider two of those networks from the Stanford Large Net-

work Dataset Collection4. Both networks are given by

weighted directed graphs with edge weights −1 and +1.

The first network is called Epinions. This is a who-trust-

whom online social network of a general consumer re-

view site. Each directed edge a → b indicates that user

a trusts or does not trust user b by a positive or negative

edge-weight, respectively. The network contains 131828
nodes and 841372 edges from which 85.3% are positively

weighted. The second network is called Slashdot. Slashdot

4http://snap.stanford.edu/data/index.html

github.com/opengm/opengm/tree/cgc-cvpr2014
github.com/opengm/opengm
http://www.ling.ohio-state.edu/~melsner/resources/correlation-readme.html
http://www.ling.ohio-state.edu/~melsner/resources/correlation-readme.html
http://snap.stanford.edu/data/index.html

is a technology-related news website known for its specific

user community. In 2002 Slashdot introduced the Slashdot

Zoo feature which allows users to tag each other as friend

or foe. The network was obtained in November 2008 and

contains 77350 nodes and 516575 edges of which 76.73%
are positively weighted.

We consider the problem to cluster these graphs such

that positively weighted edges (E+
→) link inside and neg-

atively weighted edges (E−
→) between clusters. In other

words friends and people who trust each other should be in

the same segment and foes and non-trusting people in differ-

ent clusters. To compensate the large impact of nodes with

high degree we can normalize the edge weights such that

each person has the same impact on the overall network, by

enforcing.

∑

i→j∈E→

|wi→j | = 1 ∀i ∈ V, degout(i) ≥ 1 (7)

We define the following energy function

J(y) =
∑

i→j∈E
+
→

yij · wi→j +
∑

i→j∈E
−
→

(yij − 1) · wi→j

=
∑

ij∈E

yij · (wi→j + wj→i)
︸ ︷︷ ︸

wij

+const (8)

which is zero if the given partitioning does not violate any

relation and larger otherwise. We name these two datasets

social nets and normalized social nets.

Network Modularity Clustering. As another exam-

ple for network clustering we use the modularity-clustering

models from [17] which are small but fully connected.

2D and 3D Image Segmentation To segment images

or volumes into a previously unknown number of clusters,

correlation clustering has been used [3, 4].

Starting from a super-pixel/-voxel segmentation, corre-

lation clustering finds the clustering with the lowest en-

ergy. The energy is based on a likelihood of merging ad-

jacent super-voxels. Each edge has a probability to keep

adjacent segments separate (p(yij = 1)) or to merge them

(p(yij = 0)). The energy function is

J(y) =
∑

ij∈E

yij · log

(
p(yij = 0)

p(yij = 1)

)

+ log
1− β

β
︸ ︷︷ ︸

wij

(9)

where β is used as a prior [3].

We use the publicly available benchmark instances

from [18, 17]. For 2D images from the Berkeley Segmen-

tation Database [26], we took the segmentation problems

called image-seg [3, 18]. For 3D volume segmentation we

use the models knott-3d-150, -300 and -450 from [4, 17] as

well as the large instance from the 3d-seg model [3, 18].

These instances have underlying cube sizes of 1503, 3003,

10
1

10
2

10
3

−80,000

−60,000

−40,000

−20,000

0

runtime

MCR-old MCR-new MCI-old MCI-new

Figure 7: Comparison of the Multicut implementation of

OpenGM and our modified implementation, which im-

proves the runtime. However, for large scale problems it

still does not scale.

4503, and 9003, respectively. We also requested larger in-

stances from the authors of [4] who kindly provided us the

dataset knott-3d-550 with cube size 5503.

5.2. Improvements for the Multicut Algorithm

When using the publicly available implementation in

OpenGM2, we have noticed that their implementation has

some limitations on large problems. This results in a very

slow separation and we make the following modifications.

Firstly, we used index-min-heap [32] within the shortest

path search by the Dykstra algorithm, which speeds up MC-

R. Secondly, we follow [4] and search for shortest paths and

add those only if they are non-chordal,instead of searching

for the shortest non-chordal path during the separation pro-

cedure. In [4] this was used for MC-I only. For MC-R this

search procedure is not sufficient and needs to be followed

by a search for shortest non-chordal paths. Fig. 7 shows

the improvements with our modifications compared to the

implementation in OpenGM for the knott-3d-450 dataset.

This procedure is one magnitude faster, but might cause a

few extra outer iterations.

5.3. Parameter Choice for CC­Fusion

Beside the choice of the proposal generator and fusion

method, CC-Fusion has some more parameters, which need

to be set. The most crucial one is the number of segments

in the proposal. For HC we also have to set the noise which

is used to generate diversity. Fig. 8 shows an evaluation of

the impact of this parameters for a single instance of knott-

3d-450 averaged over several random seeds. The runtime

depends on the number of clusters in the proposal (Fig. 8

left), which controls the size of the auxiliary move prob-

lems. The level of noise has no major impact on the run-

time. The energy of the final solution improves with finer

proposals since this increases the search space of the moves.

The level of noise has to be large enough to generate diverse

proposals, but not too large as this would lead to proposals

with low quality. As shown in Fig. 8 right the useful pa-

rameter set is quite large. This allows us to use the same

parameters for all experiments. However we would like to

note that in practice we can improve the performance by

adjusting these parameters for the specific problem setting.

0

0.2

0.4

0.6

0
1

2
3

4

0

500

1000

1500

2000

2500

size
noise

ti
m

e

0

0.2

0.4

0.6

0

1

2

3

4

−5.4

−5.38

−5.36

−5.34

−5.32

−5.3

x 10
4

size
noise

v
a

lu
e

Figure 8: Empirical evaluation of the impact of noise used

for proposal generation and the size of the proposals. Pro-

posals with many segments cause longer runtime. Noise

seemed not to be a critical parameter but should be selected

large enough.

5.4. Evaluation

For the evaluation of the different methods on the

datasets introduced in Sec. 5.1, we show zoomed anytime

plots in Fig. 9 and variation of information (VOI) [27] and

rand index (RI) [30] of the final solutions in Tab. 1. Any-

time plots with no zooming and a detailed evaluation are

given in the supplementary material. For social-nets CC-

Fusion methods provide the best results for the first min-

utes . Only CGC and HC-CGC are able to find better solu-

tions after more than 1000 seconds. MC-I and MC-R can-

not be applied to such large problems. We believe that with

better proposal generators, which are more suited for such

network problems, we can improve CCFusion. One can-

didate for such a generator would be a scalable implemen-

tation of the PIVOT algorithm. For modularity-clustering

CC-Fusion performs on par with competitive methods, even

though CC-Fusion and the used parameters have not been

designed and chosen for this type of problem. In particular,

it does a better job than MC-I. For image-seg CC-Fusion

is faster than other methods and competitive in terms of

energy, VOI, and RI. Because the models are designed to

have a high boundary recall (oversegmentation), classical

fusion, which returns undersegmentations, has best VOI but

worse RI and energy. Proposals generated by EHC are a

bit better than WS-based ones. For the knott-datasets CC-

Fusion-HC-MC and CC-Fusion-WS-MC have a better per-

formance with increasing problem size compared to com-

petitive methods, cf . Fig. 9(b-e). Also in terms of VOI

and RI they are only slightly worse than the globally op-

Table 1: Evaluation by Variation of Information (VOI) and

Rand Index (RI) for datasets with available ground truth.

VOI image-seg knott-3d-150 knott-3d-300 knott-3d-450 3d-seg

PIVOT-BOEM 4.9633 2.9936 4.4986 – –
HC 2.5967 1.5477 2.3513 2.9155 2.8395
HC-CGC 2.5164 0.9052 1.7636 2.2256 1.7603
CGC 2.5247 0.9267 1.8822 2.3104 6.8908
KL 2.6432 2.0648 4.1318 4.9270 7.1057
FUSION 2.1406 2.8787 4.0744 4.6616 6.5366
MC-R 2.5471 0.9178 1.6369 2.8710 6.5058
MC-I 2.5367 0.9063 1.6352 2.0037 4.3319
CC-Fusion-HC-MC 2.5319 0.9629 1.6516 2.0801 1.3347

CC-Fusion-HC-CGC 2.4961 0.9679 1.7673 2.3809 2.1347
CC-Fusion-WS-MC 2.5340 0.9629 1.6742 2.0739 1.3334

CC-Fusion-WS-CGC 2.5192 1.0585 2.1344 2.7487 3.3514

RI image-seg knott-3d-150 knott-3d-300 knott-3d-450 3d-seg

PIVOT-BOEM 0.7438 0.7851 0.8792 – –
HC 0.7560 0.8139 0.8084 0.7610 0.9651
HC-CGC 0.7724 0.9226 0.8713 0.8433 0.9861
CGC 0.7590 0.9206 0.8666 0.8341 0.6024
KL 0.6400 0.8085 0.6858 0.6409 0.5849
FUSION 0.5480 0.2849 0.1420 0.0998 0.0345
MC-R 0.7822 0.9232 0.8849 0.6713 0.0432
MC-I 0.7821 0.9236 0.8849 0.8670 0.5461
CC-Fusion-HC-MC 0.7801 0.9042 0.8824 0.8573 0.9906

CC-Fusion-HC-CGC 0.7780 0.9031 0.8763 0.8470 0.9775
CC-Fusion-WS-MC 0.7825 0.9042 0.8802 0.8582 0.8895
CC-Fusion-WS-CGC 0.7750 0.8951 0.8596 0.8394 0.9906

timal solution found by MC-I. The initialization of CGC by

HC, denoted by HC-CGC, also improves the performance

compared to native CGC. For the largest 3D volume seg-

3d, HC-CGC gives the first useful solution, cf . Fig. 9(f).

However, after a few minutes CC-Fusion-HC-MC and CC-

Fusion-WS-MC give much better results and are also over-

all best in terms of energy, VOI, and RI. Pure EHC, Fu-

sion and PIVOT-BOEM do not give useful results on any

dataset.

6. Future Work

In future work we would like to investigate much larger

problem instances and interactive correlation clustering, by

enforcing updates only in local regions by appropriate pro-

posals. Overall, a more specific selection of proposals,

maybe conditioned on the current solution, should lead to

better proposals and to faster progress of CC-Fusion. Fur-

thermore, we can extend our approach to higher-order cor-

relation clustering [23, 21] by using higher order subprob-

lems.

7. Conclusion

We have presented a fast and scalable approximate solver

for correlation clustering, named Correlation Clustering Fu-

sion (CC-Fusion). It is orthogonal to previous research, i.e.

it can be combined with any correlation clustering solver.

The best solution is iteratively improved by a fusion with

proposal solutions. The fusion move itself is formulated as

correlation clustering on a smaller graph with fewer edges

and nodes and can therefore be solved much faster than the

original problem. Our evaluation shows that several CC-

Fusion algorithms outperform state-of-the-art solvers w.r.t.

anytime performance with increasing problem size.

10
0

10
1

10
2

10
3

4,500

5,000

5,500

6,000

runtime

(a) image-seg

10
0

10
1

10
2

−4,000

−3,000

−2,000

−1,000

runtime

(b) knott-3d-150

10
0

10
1

10
2

10
3

−20,000

−10,000

0

runtime

(c) knott-3d-300

10
0

10
1

10
2

10
3

−75,000

−70,000

runtime

(d) knott-3d-450

10
0

10
1

10
2

10
3

−1.3 · 105

−1.2 · 105

runtime

(e) knott-3d-550

10
0

10
1

10
2

10
3

8 · 105

1 · 106

1.2 · 106

runtime

(f) seg-3d

10
0

10
1

10
2

10
3

80,000

1 · 105

runtime

(g) social nets

10
0

10
1

10
2

10
3

4,000

6,000

8,000

runtime

(h) normalized social nets

10
0

10
1

10
2

10
3

−0.4

−0.2

0

runtime

(i) modularity clustering

PIVOT-BOEM HC HC-CGC CGC KL Fusion

MC-R MC-I CC-Fusion-HC-MC CC-Fusion-HC-CGC CC-Fusion-WS-MC CC-Fusion-WS-CGC

Figure 9: Among all proposed solvers, Fusion-HC-MC has the best overall anytime performance. With increasing problem

size (9b-9e and 9f) the runtimes of MC-I, MC-R and CGC increase drastically, while the proposed solvers still scale well.

For these instances, the EHC started version of CGC outperforms GCG in terms of runtime and energy.

Overall, energy hierarchical clustering based proposals work better than watershed based proposals. They converge to similar

energies but the clustering based approach is faster on all tested instances. On all instances except for modularity clustering,

it is better to solve the fusion move to optimality (Fusion-HC-MC) than using approximations (FUSION-HC-GCG). The

warm EHC started version of GCG (EHC-CGC) performs better than GCG itself, but both are outperformed by the proposed

algorithms w.r.t. anytime performance.

For the modularity clustering instances in fig. 9i we see an interesting behavior. On these complete graphs, Kernighan Lin

(KL) has the best performance. The proposed methods perform reasonably, but KL is faster and leads to better energies.

References

[1] N. Ailon, M. Charikar, and A. Newman. Aggregating in-

consistent information: Ranking and clustering. J. ACM,

55(5):23:1–23:27, Nov. 2008. 1, 2, 5

[2] A. Alush and J. Goldberger. Break and conquer: Efficient

correlation clustering for image segmentation. In 2nd Inter-

national Workshop on Similarity-Based Pattern Analysis and

Recognition, 2013. 1

[3] B. Andres, J. H. Kappes, T. Beier, U. Köthe, and F. A. Ham-

precht. Probabilistic image segmentation with closedness

constraints. In ICCV, pages 2611–2618. IEEE, 2011. 1, 6

[4] B. Andres, T. Kroeger, K. L. Briggman, W. Denk, N. Koro-

god, G. Knott, U. Koethe, and F. A. Hamprecht. Globally

optimal closed-surface segmentation for connectomics. In

ECCV, pages 778–791. Springer, 2012. 1, 6

[5] A. Arasu, C. Re, and D. Suciu. Large-scale deduplication

with constraints using dedupalog. In Proceedings of the 25th

International Conference on Data Engineering, ICDE 2009.

IEEE Computer Society, March 2009. 1

[6] P. Arbelaez. Boundary extraction in natural images using ul-

trametric contour maps. In Proceedings of the 2006 Confer-

ence on Computer Vision and Pattern Recognition Workshop,

CVPRW ’06, pages 182–, Washington, DC, USA, 2006.

IEEE Computer Society. 2

[7] S. Bagon and M. Galun. Large scale correlation clustering

optimization. CoRR, abs/1112.2903, 2011. 1, 5

[8] N. Bansal, A. Blum, and S. Chawla. Correlation clustering.

In MACHINE LEARNING, pages 238–247, 2002. 1

[9] T. Beier, T. Kroeger, J. H. Kappes, U. Koethe, and F. A. Ham-

precht. Cut, Glue & Cut: A Fast, Approximate Solver for

Multicut Partitioning. In IEEE Conference on Computer Vi-

sion and Pattern Recognition 2014, 2014. 1, 2, 3, 4, 5

[10] Y. Chen, S. Sanghavi, and H. Xu. Clustering sparse graphs.

In NIPS, pages 2213–2221, 2012. 1

[11] F. Chierichetti, N. N. Dalvi, and R. Kumar. Correlation clus-

tering in mapreduce. In The 20th ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and Data Min-

ing, KDD ’14, New York, NY, USA - August 24 - 27, 2014,

pages 641–650, 2014. 1

[12] S. Chopra and M. Rao. The partition problem. Mathematical

Programming, 59(1-3):87–115, 1993. 1, 2

[13] C. Couprie, L. Grady, L. Najman, and H. Talbot. Power wa-

tershed: A unifying graph-based optimization framework.

IEEE Trans. Pattern Anal. Mach. Intell., 33(7):1384–1399,

July 2011. 4

[14] M. Elsner and E. Charniak. You talking to me? A corpus

and algorithm for conversation disentanglement. In Proceed-

ings of ACL-08: HLT, pages 834–842, Columbus, Ohio, June

2008. Association for Computational Linguistics. 2

[15] M. Elsner and W. Schudy. Bounding and comparing methods

for correlation clustering beyond ilp. In Proceedings of the

Workshop on Integer Linear Programming for Natural Lan-

gauge Processing, ILP ’09, pages 19–27, Stroudsburg, PA,

USA, 2009. Association for Computational Linguistics. 2

[16] A. Gionis, H. Mannila, and P. Tsaparas. Clustering aggrega-

tion. ACM Trans. Knowl. Discov. Data, 1(1), Mar. 2007. 2,

5

[17] J. H. Kappes, B. Andres, F. A. Hamprecht, C. Schnörr,

S. Nowozin, D. Batra, S. Kim, B. X. Kausler, T. Kröger,

J. Lellmann, N. Komodakis, B. Savchynskyy, and C. Rother.

A comparative study of modern inference techniques for

structured discrete energy minimization problems. Interna-

tional Journal of Computer Vision, pages 1–30, 2015. 6

[18] J. H. Kappes, B. Andres, F. A. Hamprecht, C. Schnörr,

S. Nowozin, D. Batra, S. Kim, B. X. Kausler, J. Lellmann,

N. Komodakis, et al. A comparative study of modern infer-

ence techniques for discrete energy minimization problems.

In CVPR, 2013. 6

[19] J. H. Kappes, T. Beier, and C. Schnörr. MAP-inference on

large scale higher-order discrete graphical models by fusion

moves. In International Workshop on Graphical Models in

Computer Vision, 2014. 2

[20] J. H. Kappes, M. Speth, B. Andres, G. Reinelt, and

C. Schnörr. Globally optimal image partitioning by multi-

cuts. In EMMCVPR, pages 31–44. Springer, 2011. 1, 4

[21] J. H. Kappes, M. Speth, G. Reinelt, and C. Schnörr. Higher-

order segmentation via multicuts. CoRR, abs/1305.6387,

2013. 1, 2, 4, 5, 7

[22] B. W. Kernighan and S. Lin. An efficient heuristic procedure

for partitioning graphs. Bell Sys. Tech. J., 49(2):291–308,

1970. 1, 5

[23] S. Kim, S. Nowozin, P. Kohli, and C. D. Yoo. Higher-order

correlation clustering for image segmentation. In NIPS,

pages 1530–1538, 2011. 1, 7

[24] V. Lempitsky, C. Rother, S. Roth, and A. Blake. Fu-

sion moves for Markov random field optimization. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

32(8):1392–1405, aug 2010. 1, 2, 3, 4, 5

[25] J. Leskovec, D. Huttenlocher, and J. Kleinberg. Signed net-

works in social media. In Proceedings of the SIGCHI Con-

ference on Human Factors in Computing Systems, CHI ’10,

pages 1361–1370, New York, NY, USA, 2010. ACM. 1

[26] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database

of human segmented natural images and its application to

evaluating segmentation algorithms and measuring ecologi-

cal statistics. In Proc. 8th Int’l Conf. Computer Vision, vol-

ume 2, pages 416–423, July 2001. 6

[27] M. Meila. Comparing clusterings by the variation of infor-

mation. In B. Schölkopf and M. K. Warmuth, editors, Learn-

ing Theory and Kernel Machines, volume 2777 of Lecture

Notes in Computer Science, pages 173–187. Springer Berlin

/ Heidelberg, 2003. 7

[28] F. Meyer. Watersheds on edge or node weighted graphs “par

l’exemple”. CoRR, abs/1303.1829, 2013. 4

[29] V. Ng and C. Cardie. Improving machine learning ap-

proaches to coreference resolution. In Proceedings of the

40th Annual Meeting on Association for Computational Lin-

guistics, ACL ’02, pages 104–111, Stroudsburg, PA, USA,

2002. Association for Computational Linguistics. 2

[30] W. M. Rand. Objective criteria for the evaluation of clus-

tering methods. J. of the American Statistical Association,

66(336):846–850, 1971. 7

[31] E. Sadikov, J. Madhavan, L. Wang, and A. Halevy. Cluster-

ing query refinements by user intent. In Proceedings of the

19th International Conference on World Wide Web, WWW

’10, pages 841–850, New York, NY, USA, 2010. ACM. 1

[32] R. Sedgewick and K. Wayne. Algorithms, 4th Edition.

Addison-Wesley, 2011. 6

[33] W. M. Soon, H. T. Ng, and D. C. Y. Lim. A machine learning

approach to coreference resolution of noun phrases. Comput.

Linguist., 27(4):521–544, Dec. 2001. 2

[34] C. N. Straehle, U. Kthe, G. Knott, K. L. Briggman, W. Denk,

and F. A. Hamprecht. Seeded watershed cut uncertainty es-

timators for guided interactive segmentation. In CVPR’12,

pages 765–772, 2012. 5

[35] J. Yarkony, A. Ihler, and C. C. Fowlkes. Fast planar correla-

tion clustering for image segmentation. In ECCV. Springer,

2012. 1, 5

