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Abstract

We introduce RIANN (Ring Intersection Approximate
Nearest Neighbor search), an algorithm for matching
patches of a video to a set of reference patches in real-time.
For each query, RIANN finds potential matches by intersect-
ing rings around key points in appearance space. Its search
complexity is reversely correlated to the amount of tempo-
ral change, making it a good fit for videos, where typically
most patches change slowly with time. Experiments show
that RIANN is up to two orders of magnitude faster than
previous ANN methods, and is the only solution that oper-
ates in real-time. We further demonstrate how RIANN can
be used for real-time video processing and provide exam-
ples for a range of real-time video applications, including
colorization, denoising, and several artistic effects.

1. Introduction
The Approximate Nearest Neighbor (ANN) problem

could be defined as follows: given a set of reference points
and incoming query points, quickly report the reference
point closest to each query. Approximate solutions perform
the task fast, but do not guarantee the exact nearest neigh-
bor will be found. The common solutions are based on data
structures that enable fast search such as random projec-
tions [20, 19], or kd-trees [3, 27].

When the set of queries consists of all patches of an im-
age the result is an ANN-Field (ANNF). Barnes et al. [4] de-
veloped the PatchMatch approach for ANNF, which shows
that spatial coherency can be harnessed to obtain fast com-
putation. Algorithms that integrate traditional ANN meth-
ods with PatchMatch’ spatial coherency yield even faster
runtimes [16, 21]. It is thus not surprising that patch-
matching methods have become very popular and now lie in
the heart of many computer vision applications, e.g., texture
synthesis [12], image denoising [9], super-resolution [13],
and image editing [4, 5, 28] to name a few.

In this paper we present an efficient ANNF algorithm
for video. The problem setup we address is matching all

Figure 1. Video ANN Fields: (a) Input: Live stream of video
frames. (b) A reference set of image patches. (c) For each frame,
a dense ANN Field is produced by matching patches from the ref-
erence set. This is done in realtime.

patches of a video to a set of reference patches, in real-time,
as illustrated in Figure 1. In our formulation the reference
set is fixed for the entire video. In fact, we could use the
same reference set for different videos. Additionally, our
reference set of patches is not restricted to originate from a
single image or a video frame, as is commonly assumed for
image PatchMatching. Instead, it consists of a non-ordered
collection of patches, e.g., a dictionary [2, 15]. This setup
enables real-time computation of the ANN Fields for video.
We show empirically, that it does not harm accuracy.

Our algorithm is designed to achieve low run-time by re-
lying on two key ideas. First, we leverage the fact that the
reference set is fixed, and hence moderate pre-processing is
acceptable. At pre-processing we construct a data structure
of the reference set, that enables efficient indexing during
run-time. Second, we rely on temporal-coherency to adapt
our hashing functions to the data. The hashing we use is
not fixed a-priori as in previous works [4, 21, 18, 16], but
rather it is tuned per query patch during runtime. In regions
with high temporal change the hashing is tuned to be coarse,
which leads to higher computation times (larger bins trans-
late to checking out more candidate matches). On the con-
trary, in regions with low change, the hashing is finer and
hence the computation time is lower. We refer to this ap-
proach as “query-sensitive hashing”. Our hashing is generic
to any distance metric. We show examples for working



with 2D spatial patches, however, our algorithm is easily
extended to work with 3D spatio-temporal patches as well.

To confirm the usefulness of the proposed approach we
further discuss how it can be adopted for real-time video
processing. We show that a broad range of patch-based im-
age transformations can be approximated using our nearest
neighbor matching. Specifically we provide examples of
denoising, colorization and several styling effects.

The rest of this paper is organized as follows. We start by
reviewing relevant previous work on image and video ANN
in Section 2. We then present our hashing technique and its
integration into a video-ANN Fields solution in Section 3.
We compare the performance of our algorithm to previous
work in Section 4 and suggest several applications in Sec-
tion 5. Further discussion is provided in Section 6 and our
conclusions are laid out in Section 7.

2. Related Work
The general problem of Approximate Nearest Neighbor

matching received several excellent solutions that have be-
come highly popular [20, 19, 22, 3, 32]. None of these,
however, reach real-time computation of ANN Fields in
video. Image-specific methods for computing the ANN
Field between a pair of images achieve shorter run-times
by further exploiting properties of natural images [4, 5, 21,
16, 18, 27]. In particular, they rely on spatial coherency
in images to propagate good matches between neighbor-
ing patches in the image plane. While sufficiently fast for
most interactive image-editing applications, these methods
are far from running at conventional video frame rates. It
is only fair to say that these methods were not designed for
video and do not leverage statistical properties of video.

An extension from images to video was proposed by
Liu & Freeman [24] for the propose of video denoising
through non-local-means. For each patch in the video they
search for k Approximate Nearest Neighbors within the
same frame or in nearby frames. This is done by propagat-
ing candidate matches both temporally, using optical flow,
and spatially in a similar manner to PatchMatch [4]. One
can think of this problem setup as similar to ours, but with
a varying reference set. While we keep a fixed reference
set for the entire video, [24] use as different set of reference
patches for each video frame.

Another group of works that find matches between
patches in video are those that estimate the optical flow
field [35, 30, 17, 6]. Several of these achieve real-time
performance, often via GPU implementation. However, the
problem definition for optical flow is different from the one
we pose. The optical flow field aims to capture the motion
in a video sequence. As such, matches are computed only
between consecutive pairs of frames. In addition, small dis-
placements and smooth motion are usually assumed. So-
lutions for large-displacement optical-flow have also been

proposed [8, 34, 10, 31]. The methods of [8, 34, 31] inte-
grate keypoint detection and matching into the optical flow
estimation to address large displacements. Chen et al. [10]
initiate the flow estimation with ANN fields obtained by
CSH [21]. None of these methods are near real-time perfor-
mance, with the fastest algorithms running at a few seconds
per frame. Furthermore, while allowing for large displace-
ments, their goal is still computing a smooth motion field,
while ours is obtaining similarity based matches.

In Section 5 we show how our ANNF framework can
be used for video processing. The idea of using ANNF
for video processing has been proposed before, and several
works make use of it. Sun & Liu [29] suggest an approach
to video deblocking that considers both optical flow esti-
mation and ANNs found using a kd-tree. An approach that
utilizes temporal propagation for video super-resolution is
proposed in [25]. They as well rely on optical flow estima-
tion for this. The quality of the results obtained by these
methods is high but this comes at the price of very long run-
times, often in the hours.

Our work is also somewhat related to methods for high
dimensional filtering, which can be run on patches in video
for computing non-local-means. Brox et al. [7] speed-up
traditional non-local-means by clustering the patches in a
tree structure. Adams et al. [1] and Gastal et al. [14] propose
efficient solutions for high-dimensional filtering based on
Gaussian kd-trees. None of these methods provide real-time
performance when the filter is non-local-means on patches
(unless harsh dimensionality reduction is applied).

3. Ring Intersection Hashing
Current solutions to computing the ANN Field between

a pair of images utilize two mechanisms to find candidate
matches for each query patch: spatial coherency, and ap-
pearance based indexing. Some algorithms rely only on the
first, while others integrate both. To allow for a generic ref-
erence set (rather than an image) we avoid reliance on spa-
tial coherency altogether. Instead, we rely on an important
characteristic of video sequences: there is a strong temporal
coherence between consecutive video frames. We harness
this for efficient appearance-based indexing.

3.1. Temporal Coherency

Let qx,y,t denote the query patch q at position x, y in
frame t of the input video. Our first observation is that there
is strong temporal coherency between consecutive patches
qx,y,t−1, qx,y,t. In other words, most patches change slowly
with time, and hence patch qx,y,t−1 is often similar to patch
qx,y,t. Our second observation is that temporal coherency
implies coherency in appearance space: if patch qx,y,t−1
was matched to patch ri of the reference set, then patch
qx,y,t is highly likely to be matched to patches similar to ri
in appearance. This is illustrated visually in Figure 2.(a).



(a) (b)
Figure 2. Coherency in appearance: (a) When consecutive query
patches qx,y,t−1 and qx,y,t are similar, their exact NNs in the ref-
erence set ri and rj are also similar. (b) The histogram depicts the
distribution of distances between such pairs of reference patches
ri and rj . It shows that for most queries qx,y,t, the exact NN lies
in a d = 1 radius ball around the NN of the predecessor patch
qx,y,t−1.

To evaluate the strength of coherency in appearance we
performed the following experiment. For each 8 × 8 patch
in a given target video we find its exact nearest neighbor in
a reference set of patches. For this experiment the reference
set consists of all patches of a random frame of the video.
Let patches ri, rj be the exact NNs of patches qx,y,t−1 and
qx,y,t, respectively. We then compute the distance in ap-
pearance between the matches: d = ‖ri−rj‖2. This was re-
peated over pairs of consecutive patches from 20 randomly
chosen videos from the Hollywood2 [26] data-set. The dis-
tribution of distances d is presented in Figure 2.(b), after ex-
cluding patches where ri = rj (effectively excluding static
background patches). As can be seen, for ∼ 85% of the
patches d ≤ 1. This implies that coherency in appearance
is a strong cue that can be utilized for video ANN.

3.2. Adaptive Hashing

These observations imply that candidate matches for
patch qx,y,t should be searched near ri, the match of
qx,y,t−1. Furthermore, the search region should be adapted
per query. In areas of low temporal change, a local search
near ri should suffice, whereas, in areas of high temporal
change the search should consider a broader range.

So, how do we determine the search area for each query?
The answer requires one further observation. If the refer-
ence set is adequate then qx,y,t and its NN rj are very close
to each other in appearance space. This suggests that the
distance between ri and rj is close to the distance between
ri and qx,y,t, i.e., dist(ri, rj) ≈ dist(ri, qx,y,t). This is il-
lustrated and verified empirically in Figure 3, for three sizes
of reference sets. As can be seen, for set size of 900 patches
or more, this assertion holds with very high probability.

Based on the above, to find the match rj we should
search through a “fat” ring of radius ≈ dist(ri, qx,y,t),
around ri, as illustrated in Figure 4.(a). In areas with sig-
nificant change qx,y,t will be far from ri, the ring radius
will be large and will include many reference patches. On
the contrary, in areas with little change qx,y,t will be near

ri, the ring radius will be small and will include only a
few candidate reference patches. The width of the ring,
denoted by 2ε, could also be tuned to adapt the search
space. We take the width ε to be proportional to the ra-
dius ε = α · dist(ri, qx,y,t). In our implementation and all
experiments α = 0.25. Our rings are thus wider in areas of
large changes and narrower in regions of little change.

As can be seen in Figure 4.(a), the ring around ri in-
cludes the neighbors of qx,y,t, but it also includes refer-
ence patches that are very far from qx,y,t, e.g., on the other
side of the ring. To exclude these patches from the set of
candidates we employ further constraints. Note that our
observations regarding ri are true also for any other point
in the reference set. That is, if dist(rj , qx,y,t) is small,
then dist(rk, rj) ≈ dist(rk, qx,y,t) for any patch rk of the
reference set. Therefore, we further draw rings of radius
dist(rk, qx,y,t) ± ε, around points rk selected at random
from the current set of candidates. The final candidate NNs
are those that lie in the intersection of all rings, as illus-
trated in Figure 4.(b). For each query we continue to add
rings until the number of candidate NNs is below a given
threshold L. In all our experiments the threshold is fixed to
L = 20 candidates. The final match is the one closest to
qx,y,t among the candidate NNs.

3.3. Computational Complexity

As a last step of our construction, we need to make sure
that the rings and their intersections can be computed ef-
ficiently during runtime. Therefore, at the pre-processing
stage we compute for each reference patch a sorted list of
its distances from all other reference patches. The compu-
tation time of this list and the space it takes are both O(n2),
where n is the size of the reference set.

Having these sorted lists available, significantly speeds
up the computation at runtime. For each query patch qx,y,t,
we compute the distance d = dist(qx,y,t, ri), where ri
is the last known match. We add all reference points of
distance d ± ε from ri to the set of candidate NN. Thus,
the computation complexity for each ring includes one dis-
tance calculation, and two binary searches in a sorted array,
O(log n). We continue to add rings and compute the inter-
section between them, until the number of candidates ≤ L.

Figure 5 explores empirically the relation between the
number of rings and the amount of temporal change. It
shows that the larger the change, the more rings are needed,
and the higher the computation time is. As was shown in
Figure 2.(b), for most patches the change is very small, and
hence the overall computation time is small.

3.4. RIANN - Our Algorithm

We name this approach RIANN (Ring Intersection
ANN). RIANN is outlined in Algorithm 1. Viewing this
process as a hashing scheme, we say that RIANN is a query-



|dist(ri, rj)− dist(ri, qx,y,t)|
Figure 3. Predicting search radius: (Left) The distance dist(ri, qx,y,t) is a good predictor for the distance dist(ri, rj). (Right) Histograms
of |dist(ri, rj)− dist(ri, qx,y,t)| for three sizes of reference sets. This suggests that dist(ri, qx,y,t) is a strong predictor for dist(ri, rj).
The correlation becomes stronger as we use a larger reference set. To exclude static background from our analysis we include only queries
where ri 6= rj . Statistics were computed over 20 videos from the Hollywood2 database.

Figure 4. Ring Intersection Hashing: (a) To find candidate neigh-
bors for qx,y,t we draw a ring of radius d = dist(ri, qx,y,t) around
ri. Here ri is the match found for qx,y,t−1. (b) To exclude can-
didates that are far from qx,y,t, we draw another ring, this time
around rk, one of the current candidates. We continue to add rings,
and leave in the candidate set only those in the intersection.

sensitive hashing since it builds bins around the queries, as
opposed to non-sensitive hashing that creates the bins be-
forehand. Query-sensitive hashing avoids issues where a
query lies at a boundary of a bin, thus reducing the chance
of better candidates lying in neighbor bins. Temporal co-
herency of adjacent frames leads to most queries lying in
the vicinity of the current best match. Here, few intersec-
tions are often enough to provide very few candidates.

RIANN can find ANNs for each query patch, given the
ANN of its predecessor patch and a reference set. Hence,
to complete our solution for computing a dense ANN field
for video, we need to define two more components: (i)
how the reference set is constructed, and (ii) what we do to
initialize the first frame.

Building a reference model: We start by collecting a large
set of patches. To build a global reference set, that can be
used for many target videos, the patches are extracted ran-
domly from a number of natural images. Since natural im-
ages exhibit high redundancy, the collected set of patches is
likely to include many similarities. Inspired by dictionary
construction methods such as [2, 15] we seek a more com-
pact set that represents well these patches. To dilute patches

Figure 5. Search complexity determined by temporal change:
(Top) Patch-level analysis: The mean number of ring intersections
as a function of the temporal change ‖qt−1−qt‖. (Bottom) Frame-
level analysis: The red curve indicates the total number of ring
intersections performed over all queries in each frame. The blue
curve represents the overall temporal difference between consecu-
tive frames. This shows a clear correlation between the number of
rings and the temporal difference between frames.

with high resemblance we cluster the patches using a high
dimensional regression tree [15]. We then take the median
of each cluster as the cluster representative and normalize
it to be of length 1. Our final reference set consists of the
normalized representatives (query patches are normalized
at runtime). Last, we calculate the pairwise distance matrix
and sort it such that column i contains an ascending order
of distances from patch i.

In some applications one might want to use a reference
set that consists only of patches taken from the query
video itself. For example, for methods inspired by Non-
Local-Means. When this is the case, we randomly select a
single frame from the video and collect all its patches. We
then again cluster these patches using a high dimensional



regression tree [15] and take the cluster representatives
as our reference set. We refer to this as a local reference set.

Initialization: RIANN requires an initial ANN field of
matches for the first frame. We found that initializing
these matches randomly, leads to convergence after very
few frames. Hence, this was our initialization approach.

Algorithm 1 RIANN: online search
1: Input: video V , reference patch set R, sorted distance

matrix D , maximum set size L = 20, ring width pa-
rameter α = 0.25

2: Output: {ANNF (t)} - dense ANN field for each
frame t = 0, 1, 2, ...

3: Initialize: ANNF (0)(x, y) v Uniform[1, |R|]
4: for t=1,2,...
5: for each query patch qx,y,t ∈ V t:
6: qx,y,t ← qx,y,t

‖qx,y,t‖
7: ri = ANNF (t−1)(x, y)
8: di = dist(qx,y,t, ri) ; ε = αdi
9: Initial candidate set:

10: Sx,y,t = {rj , s.t. : di − ε ≤ dist(ri, rj) ≤
di + ε}

11: while |Sx,y,t| ≥ L
12: Choose a random anchor point rk ∈ Sx,y,t
13: dk = dist(qx,y,t, rk) ; ε = αdk
14: Update candidate set:
15: Sx,y,t = Sx,y,t ∩ {rj , s.t. : dk − ε ≤

dist(rk, rj) ≤ dk + ε}
16: end while
17: Find best match for qx,y,t in Sx,y,t:
18: ANNF (t)(x, y) ←

argmins∈Sx,y,t
{dist(qx,y,t, s)}

4. Empirical evaluation
Experiments were performed on a set of 20 videos from

the Hollywood2 dataset [26]. Each video consists of 200
frames and is tested under three common video resolutions:
VGA (480x640), SVGA (600x800), and XGA(768x1024).
For each video we compute the ANN field for all frames.
We then reconstruct the video by replacing each patch with
its match and averaging overlapping patches. To asses the
reconstruction quality we compute the average normalized
reconstruction error E = ‖fGT−fR‖2

‖fGT ‖2 , where fGT is the
original frame and fR is the reconstructed frame by each
method. Our time analysis relates to online performance,
excluding pre-processing time for all methods. Patches are
of size 8× 8.

To asses RIANN we compare its performance against
previous work. We do not compare to optical-flow meth-
ods, since as discussed in Section 2, they solve a different

problem where matches are computed between pairs of con-
secutive frames. One could possibly think of ways for in-
tegrating optical flow along the video in order to solve the
matching to a single fixed reference set. However, this could
require the development of a whole new algorithm.

We do compare to three existing methods for image
ANNF: PatchMatch [4], CSH [21], and TreeCANN [18].
These methods require a single image as a reference, there-
fore, we take for each video a single random frame as refer-
ence. For RIANN, we experiment with both a local model
built from the same selected frame, and with a global refer-
ence model built from patches taken from multiple videos.
The same global reference model was used for all 20 tar-
get videos. We do not compare to the video-ANNF of [24]
since they report executing 4 iterations of PatchMatch-like
spatial propagation in addition to optical flow computation.
Their solution is thus slower than PatchMatch, which is the
slowest of the methods we compare to.

Figure 6 displays the results. As can be seen, RIANN is
the only patch-matching method that works in realtime. It
offers the widest tradeoff between speed and accuracy, mak-
ing it a good option for a wide range of applications. RI-
ANN’s fastest configurations are up to hundreds of frames
per second, making it attractive to be used as a preliminary
stage in various realtime systems. In addition, RIANN of-
fers configurations that outperform previous state of the art
algorithms [4, 21, 18] in both accuracy and speed.

In the experiments presented in Figure 6 the ANNF for
each frame was computed independently of all other frames.
A possible avenue for improving the results of image-based
methods is to initialize the matches for each frame using
the matches of the previous frame. We have tried this with
PatchMatch and found that the speed barely changed, while
accuracy was slightly improved. For CSH and even more so
for TreeCANN doing this is not straightforward at all, e.g.,
for TreeCANN one would need a new search policy that
scans the tree from the leaves (the solution of the previous
frame) rather than the root. We leave this for future work.

Changing the size of the reference set affects our time-
accuracy tradeoff. A large reference set helps approximate
the queries with greater precision on the account of a slower
search. A small reference set leads to a quicker search at
the account of lower accuracy. It can be seen that when we
use a local reference-set, i.e., when the patches are taken
from a single frame, RIANN’s accuracy is lower than that
of the other methods. This is probably since we cluster the
patches while they use the raw set. However, this is resolved
when using a global reference set constructed from patches
of several different videos. In that case RIANN’s accuracy
matches that of previous methods.

A disadvantage of RIANN is a bad scaling of memory
footprint (O(n2)), resulting from the storage of the n × n
matrix D of distances between all reference patches (n is
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Figure 6. Runtime vs. accuracy tradeoffs. (a-c) A comparison of runtime and accuracy shows RIANN is significantly faster than previous
approaches. In fact, RIANN is the only realtime solution. The curves for PatchMatch and CSH represent results for varying numbers of
iterations. For TreeCANN we vary the grid sparsity, and for RIANN the reference set size. The labels next to the tickmarks correspond to
the iterations (PatchMatch,CSH), grid-size (TreeCANN), and set-size (RIANN), correspondingly. Pre-processing time was excluded for all
methods. For RIANN-global a single pre-processed reference set was used for all the test videos. For CSH, TreeCANN and RIANN-local
a single frame was pre-processed for each video. PatchMatch has no pre-processing. (d) The curves present the pre-processing time (blue)
and memory footprint (red) of RIANN, for reference sets of corresponding sizes.

the reference set size). The pre-processing time ranges from
∼ 10[sec] for small models up to ∼ 2[min] for the max-
imum size tested, see Figure 6.(d). Hence, using a single
global model is advantageous.

5. RIANN for Real-Time Video Processing

The proposed ANN framework could be useful for sev-
eral applications. For example, in video conferencing, one
could transmit only the grayscale channel and recolor the
frames, in realtime, at the recipient end. Alternatively, in
man-machine interfaces such as Kinect, one could apply re-
altime denoising or sharpening to the video. In both scenar-
ios, a short pre-processing stage is acceptable, while real-
time performance at runtime is compulsory.

A broad range of effects and transformations can be ap-
proximated by video ANN, e.g., cartooning, oil-painting,
denoising or colorization. This requires applying the ef-
fect/transformation to each patch in the reference set at pre-
processing time. Then, at runtime each query patch is re-
placed with the transformed version of its match in the refer-
ence set. Such an approximate, yet realtime, solution could
be highly useful for real-world setups, when the complex-
ity of existing methods is high. This is currently the case

for several applications. For example, denoising a VGA
frame via BM3D [11] runs at ∼5[sec], colorization [23]
takes ∼15[sec], and some of the styling effects in Adober

Photoshopr are far from running at realtime.
For the approximation to be valid, the applied transfor-

mation T should be Lipschitz continuous at patch level:
dist(T (q), T (r)) ≤ α · dist(q, r), where α is the Lipschitz
constant, q is a query patch and r is its ANN. α-Lipschitz
continuous process guarantees that when replacing a query
patch q with its ANN r, then T (r) lies in an α · dist(q, r)-
radius Ball around T (q). A smaller α implies that T is ap-
proximated more accurately.

Lipschitz continuity of image transformations depends
on the patch size. Working with bigger patches, increases
the probability of a transformation T to be α-Lipschitz con-
tinuous. For larger patches typically the matches are less
accurate and the approximation error is larger. Therefore, to
maintain low errors one needs a larger reference set as the
patch size increases. To see this consider the extreme case
where the patch size is 1×1. In this case, using a very small
set of 255 patches (one for each gray level), a perfect recon-
struction of any gray-level video is possible. However, most
transformations are far from being Lipschitz continuous at
this scale, hence they cannot be properly approximated via
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Figure 7. Colorization: (Top) Example frames from input grayscale videos. (Bottom) The corresponding colored versions, computed
automatically, at 30FPS, using RIANN. The colorization is quite sensible, with occasional errors in homogenous regions. (Right) The
charts compare run-time (per frame) and Sum of Squared Differences (per pixel) averaged over our test set. RIANN is both faster and more
accurate than Welsh et al. [33]

patch-matching. Working with bigger patches increases the
probability for Lipschitz continuity, but at the same time
demands a larger reference set.

Many video scenarios are characterized by high redun-
dancy, e.g., video chatting, surveillance, indoor scenes, etc.
In these scenarios a small reference set suffices to get satis-
factory approximation quality. Our test set includes generic
videos from the Hollywood2 dataset. Nevertheless, RIANN
provided satisfactory results for these videos, for a variety
of applications (frame resolution was 288× 352, patch size
8× 8). Some example results of edited videos are provided
in the supplementary. We next explain how some of these
effects were realized and compare to prior art.
Realtime Video Colorization: To color a grayscale video
we construct a reference set of grayscale patches for which
we have available also the color version. We use RIANN to
produce the ANN Fields in realtime. Each query grayscale
patch is converted to color by taking the two chromatic
channels of the colored version of its ANN. Since patches
of different colors could correspond to the same grayscale
patch, the usage of a global reference set could result in
inappropriate colors. Therefore, we use a local reference
set constructed from one random frame of the target video.
We generate color versions for its patches by coloring the
frame offline manually (or using a semi-automatic coloring
method such as [23]). The rest of the video is then colored
automatically by RIANN.

Example results are displayed in Figure 7, and in the sup-
plementary. It can be seen that our results are plausible most
of the time, with a few glitches, mostly in homogeneous re-
gions. We further compare our results with those of Welsh
et al. [33], which also provides fully automatic colorization.
Videos of our test set were converted to gray-scale and then
re-colored by both RIANN and [33]. We compare the aver-
age L2 distance (SSD) per pixel between the original video
and the colored one as well as the run-time. The results
reported in Figure 7 show that RIANN is 3 orders of mag-

nitude faster and still more accurate than [33].
Realtime Video Denoising: To test denoising we add
Gaussian noise at a ratio of σnoise

σsignal
= 7% . We then ex-

tract one frame at random, and denoise it using BM3D [11].
This is used to construct the local reference set. The rest of
the frames are denoised online by replacing each patch with
the denoised version of its ANN. Example results and quan-
titative comparisons to BM3D [11] (accurate) and Gaussian
Filter (fast) are provided in Figure 8. For both BM3D and
the Gaussian filter we tuned the parameters to get minimal
error. The results show that our goal was achieved, and
while maintaining realtime performance we harm the ac-
curacy only a little.
Realtime Styling Effects: To show applicability to a wide
range of image transformations, we apply a set of Adober

Photoshopr effects to one frame of the video. The patches
of this frame are used to construct the reference set. We then
use RIANN to find ANNs and replace each patch with the
transformed version of its match. We tested several effects
and present in Figure 9 sample results for “Accent Edges”,
“Glowing Edges”, “Photocopy” and “Fresco”.

6. Discussion on Spatial Coherency in Video
Spatial coherency is typically used for ANN Fields in

images by propagating matches across neighboring patches
in the image plane [4]. At first we thought that spatial co-
herency would also be useful for video ANN. However,
our attempts to incorporate spatial coherency suggested oth-
erwise. Therefore, we performed the following experi-
ment. Our goal was to compare the accuracy of matches
found when relying on spatial coherency, to the accuracy of
matches based on appearance only. To compute the latter,
we found for each patch in a given target video, its exact
NN in a given reference set. To compute the former, we ap-
plied PatchMatch [4] (set for 3 iterations) to the same target
video, since PatchMatch relies heavily on spatial coherency.
As a reference set we took all the patches of a single random
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Figure 8. Denoising: The images are of two example noisy frames and their denoised versions obtained by Gaussian filter, BM3D, and
RIANN. The charts compare run-time (per frame) and Sum of Squared Differences (per pixel) averaged over our test set. RIANN is almost
as fast as Gaussian filtering while being only slightly less accurate than BM3D.
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Figure 9. Styling effects: (Top) A reference image and several styling effects applied to it in PhotoShop. (Bottom) An example target frame
and the approximated styling effects obtained by RIANN at 30 FPS.

frame of the video.
Results are presented in Figure 10. As can be seen,

PatchMatch error jumps significantly when the target and
reference frames are from different shots. This occurs
since there is low spatial coherency across visually differ-
ent frames. On the contrary, the error of appearance-based
matching increases only slightly across shot changes. This
supports our approach, that relies solely on temporal co-
herency to propagate neighbors in appearance space.

7. Conclusion

We introduced RIANN, an algorithm for computing
ANN Fields in video in realtime. It can work with any
distance function between patches, and can find several
closest matches rather than just one. These characteris-
tics could make it relevant to a wider range of applica-
tions, such as tracking or object detection. RIANN is based
on a novel hashing approach: query-sensitive hashing with
query-centered bins. This approach guarantees that queries
are compared against their most relevant candidates. It
could be interesting to see how these ideas translate to other
hashing problem.

Figure 10. Limitations of spatial propagation in video: The curves
correspond to the reconstruction error when replacing each patch
of a video with its match in a reference frame. PatchMatch [4] uses
spatial propagation, while exact NN is based solely on appearance.
An abrupt increase of PatchMatch error with respect to the exact
NN is evident in shots A,C. There, PatchMatch will require more
than 3 iterations to achieve a low reconstruction error as in shot B.
This happens because spatial propagation is less effective as the
dissimilarity between reference and target frames increases.
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