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Abstract

In this paper we present a novel framework for unsu-

pervised kinematic structure learning of complex articu-

lated objects from a single-view image sequence. In con-

trast to prior motion information based methods, which es-

timate relatively simple articulations, our method can gen-

erate arbitrarily complex kinematic structures with skeletal

topology by a successive iterative merge process. The itera-

tive merge process is guided by a skeleton distance function

which is generated from a novel object boundary genera-

tion method from sparse points. Our main contributions can

be summarised as follows: (i) Unsupervised complex ar-

ticulated kinematic structure learning by combining motion

and skeleton information. (ii) Iterative fine-to-coarse merg-

ing strategy for adaptive motion segmentation and struc-

ture smoothing. (iii) Skeleton estimation from sparse feature

points. (iv) A new highly articulated object dataset contain-

ing multi-stage complexity with ground truth. Our exper-

iments show that the proposed method out-performs state-

of-the-art methods both quantitatively and qualitatively.

1. Introduction

Learning the underlying kinematic structure of articu-

lated objects is an active research topic in computer vision

and robotics. Accurate and efficient kinematic structure es-

timation is beneficial to many higher level tasks such as

object kinematic recognition [25], human action recogni-

tion [2, 17], body scheme learning for robotic manipula-

tors [24], articulated objects manipulation [9, 18], etc. In

this paper we focus on the specific case of complex articu-

lated kinematic structure learning using only 2D position of

interest points tracked over time.

Many algorithms which recover an articulated structure

from 2D tracking data have shown automatic detection of

articulated motion types (i.e. folding, rotation and transla-

tion) [35, 10] and a kinematic chain building [19, 35, 5].
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Figure 1. The proposed framework reliably learns the underlying

kinematic structure of complex articulated objects from a combi-

nation of motion and skeleton information.

However they have been applied to relatively simple artic-

ulations only. Our target is to find a kinematic structure

of arbitrary objects with articulated motion capabilities that

range from simple structures to complex structures such as

the human hand.

Furthermore, most of the existing kinematic structure

generation methods [35, 5, 23, 9] use motion information

only. Such techniques miss global refinement steps that en-

force topological or kinematic constraints, and as such can

produce highly implausible structures as output. On the

other hand, articulated structure estimation methods from

shape information [17, 36] have been presented. Normally,

the estimated structure is a skeletal structure which repre-

sents the medial axis of body and implies topological prop-

erties, but such estimation methods cannot represent kine-

matic structures.

In this paper, we present a novel framework for complex

articulated kinematic structure estimation from 2D feature

points trajectories. We combine motion and skeleton in-

formation for generating elaborate and plausible kinematic

structure (see Figure 1). We assume that an articulated ob-
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ject is composed of a set of rigid segments and the structure

represents the connections between segments. It is difficult

to estimate a proper number of segments in advance when

the articulation is complex and the input data is noisy. So

we introduce a fine-to-coarse strategy which performs iter-

ative merging and smoothing over segmented parts guided

by skeletal topology and motion similarity. For generation

of the skeleton distance function from sparse feature points,

we present a novel object boundary generation method. As

a result, our method does not require any prior knowledge of

the object, such as the number of motion segments and ob-

ject category, and the learned structure can represent com-

plex articulations using their skeletal topology. Our experi-

ments show that the proposed method outperforms state-of-

the-art methods quantitatively and qualitatively.

2. Related Work

Several approaches for the articulated structure gen-

eration of moving objects have been proposed. RGB-

D sensors-based human/hand skeleton estimation methods

have been successfully presented [21, 26]. However, the

methods are designed for specific target skeletons featuring

a computationally demanding pre-training step. The results

are typically skeletons and not kinematic structures. Also

RGB cameras are still more widely used for various appli-

cations, so it is necessary to develop a good algorithm for

2D sequences from a single view. Since our method relies

on this type of input data, we will mainly discuss related

work that uses 2D feature tracks only (not using depth in-

formation). Three main categories can be distinguished in

the literature; motion segmentation and factorisation based

approaches, probabilistic graphical model approaches and

cost function based optimisation methods.

Motion segmentation and factorisation methods (pro-

posed by [28, 3]) are perhaps the most popular for ar-

ticulated reconstruction. Various methods for motion seg-

mentation have been proposed such as subspace fitting

(GPCA) [32], subspace clustering [4] and multiview-based

approaches [6]. The GPCA [32] is widely used in papers for

motion segmentation [33, 35], but it requires the number of

motion segments in advance. Also it cannot be applied to

more than a few subspaces as the number of required sam-

ples grows exponentially with the number of subspaces. Re-

cently, Jung et al. [13] proposed a novel rigid motion seg-

mentation algorithm based on the randomized voting (RV).

They showed that it can achieve the state-of-the-art motion

segmentation performance even under noisy environments

within a reasonable time. However, it also requires an exact

number of motion clusters as a prior for good performance,

which makes it difficult to be applied to complex articulated

videos.

Tresadern and Reid [30] and Yan and Pollefeys [33] de-

veloped the factorization method [28, 3] for articulated ob-

jects, showing that the rank of a matrix of feature tracks

indicates the type of joint present. It is very effective to seg-

ment dependent motions but cannot deal with high degrees

of articulations. Furthermore, Yan and Pollefeys [35] esti-

mated a kinematic chain by modelling the articulated mo-

tion as a set of intersecting motion subspaces. The loca-

tions of the joints can be obtained from the intersections of

the motion subspaces of connected parts. This algorithm is

highly dependent on the correct detection of the rank of the

trajectories, and consequently is sensitive to noise. There

are also many tuning parameters in each step. Overall, this

method is very difficult to apply to complex articulations.

Jacquet et al. [10] presented a relative transformation anal-

ysis method based on linear subspaces, but it focused on de-

tecting the type of articulated motion between two restricted

motion parts.

Ross et al. [19] proposed probabilistic graphical model

approaches to learn the articulated structure from 2D fea-

ture tracks. They could find the number of joints and their

connections adaptively, but their method is sensitive to the

prior and has difficulty recovering from a poor initial seg-

mentation. Also it has difficulty escaping from local min-

ima. Sturm et al. [24, 25] similarly used a probabilistic ap-

proach to learn kinematic joints especially for robot vision

applications; body scheme learning and object manipula-

tion. They required fiducial markers on each object part for

noise-free input data and the number of motion segmenta-

tions had to be given as a prior. A markerless sparse feature

tracking-based articulation learning was presented by Pillai

et al. [18], which also did not require prior object models.

However they required RGB-D feature data and could not

handle concurrent articulated motions.

A single cost function based optimisation approach for

simultaneous segmentation and 3D reconstruction was pro-

posed by Fayad et al. [5]. No assumptions about the skele-

ton structure of the object nor the number of motion seg-

ments are required in advance. They decomposed a set of

point tracks into overlapping rigid-bodies and the structure

joints are derived from the regions of the overlap. However,

by enforcing the overlap between segments, the resulting

segments are smoothed such that complex structures are dif-

ficult to be estimated correctly.

3. Methodology

Our goal is to generate articulated kinematic structures

via motion and skeleton information, whilst being accurate

and plausible under complicated concurrent motions. To

this end, we use only 2D trajectories for learning (assum-

ing that one target subject exists in scene). To extract each

rigid motion segment, we adopt the best performing motion

segmentation method: randomized voting [13]. To estimate

skeletal information from 2D sparse feature points, a one

class data description method (support vector data descrip-
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Figure 2. Overall flow of the proposed method.

tion [27]) is used for object silhouette generation, and for

the skeleton extraction we utilise a distance function based

contour-pruned skeletonisation1.

The overall concept of the proposed framework is illus-

trated in Figure 2. In Section 3.1 we define the notations.

In Section 3.2 we discuss how the adaptive motion segmen-

tation is performed. Following this, in Section 3.3 we dis-

cuss how we generate an object boundary and a skeleton

distance function from the sparse feature points. Finally,

in Section 3.4, we discuss a kinematic structure generation

and smoothing algorithm using the generated skeleton and

motion information.

3.1. Notations

The 2D feature points are denoted as xi where i =
1, . . . , N . N is the total number of points. The point set X
is defined as X = {x1, x2, . . . , xN}, with xi represented in

homogeneous coordinates. The trajectories are represented

as xf
i , with f = 1, ..., F as sequence index and F as the

number of frames in the input video. We are dealing with

trajectory data, so we express the sequence index by a su-

perscript. To express motion segments, we use Sk for the

disjoint set of points belonging to the kth segment where

k = 1, ..., c, and c as the total number of segments and

X = S1 ∪ S2 ∪ ... ∪ Sc, and yk denotes a centre position

of segment Sk obtained by averaging its points. We express

an object region by Ω and its boundary as δΩ. The terms

object boundary and silhouette are used interchangeably.

3.2. Motion Segmentation

It is difficult to estimate the precise number of motion

segments especially when the motions are highly articulated

and the input data is noisy. In order to cope with these com-

plicated cases, we present an iterative fine-to-coarse infer-

ence strategy adaptively estimates an upper-bound number

of initial motion segmentation. We use the randomized vot-

ing (RV) method [13] which performs best up-to-now and

is robust to noise for the motion segmentation, but requires

the number of segments c in advance.

Since RV utilises an iterative fundamental matrix esti-

mation, at least 8 points should be assigned to each seg-

1Code available at http://www.cs.smith.edu/˜nhowe/

research/code/

ment in order to start the algorithm. Hence we estimate

the initial number of segments as ĉinit = ⌊N/8⌋. Even

though every segment is assigned more than 8 points ini-

tially, there could be some segments having less than 8

points through the randomised voting procedure. Among

the resultant segments, the number of segments with less

than 8 points (c<8) is counted, and the segment number is

reset to ĉt+1 = ĉt − c<8. Then we perform the RV algo-

rithm iteratively with the decreased segment number ĉt+1

until all segments have more than 8 points (c<8 = 0). The

iterative fine-to-coarse segmentation procedure is described

in Algorithm 1.

3.3. Skeleton from Sparse Feature Points

Using a skeleton as an abstraction of an object has ma-

jor benefits; it can contain both essential shape features in a

low-dimensional form and topological structures of an ob-

ject. There have been numerous algorithms for skeleton es-

timation from a binary silhouette image of a target object.

Relying on background subtraction, differential holistic fea-

tures or human body detection techniques, the silhouette

can be extracted out of RGB images. Unfortunately, these

approaches are not suitable for producing a silhouette and a

skeleton from sparse 2D feature points.

Algorithm 1 Fine-to-coarse Motion Segmentation

Input: xi, i = 1, ..., N ⊲ Point trajectories

Output: Sk, k = 1, ..., ĉ

1: t ← 1
2: ĉt ← ⌊N/8⌋ ⊲ Initialise the number of segments

3: repeat

4: St
k ← RV motion segmentation({xi}

N
i=1, ĉ

t)
5: c<8 ← 0
6: for k = 1, ..., ĉt do

7: if |St
k| < 8 then

8: c<8 ← c<8 + 1

9: ĉt+1 ← ĉt − c<8

10: t ← t+ 1
11: until c<8 = 0



3.3.1 Object Boundary Generation

We now propose an adaptive object boundary (δΩ) gen-

eration method from sparse feature points Xf based on

support vector data description (SVDD) [27]. The SVDD

tries to find a tight description covering all target data with

minimising superfluous space. We consider the description

boundary as the object boundary (δΩ) of the points.

In order to formulate the covering description with min-

imum superfluous space, it is defined that the description

shape is a sphere with minimum volume [27]. As a result

it obtains a spherically shaped closed boundary (an hyper-

sphere) enclosing all the target data. Analogous to SVM,

the boundary can be made flexible by using kernel func-

tions. The sphere is characterised by a centre a and radius

R > 0. The volume of the sphere is minimised by minimis-

ing R2. The objective function to minimise R2 with slack

variable ξi ≥ 0 and penalty parameter C is defined as:

F (R, a) = R2 + C
�

i

ξi (1)

subject to the following constraints:

xi − a2 ≤ R2 + ξi, ξi ≥ 0 ∀i (2)

Analogous to SVM derivation, Equation (1) and Equation

(2) can be combined by introducing Lagrange multipliers

αi ≥ 0;

L =
�

i

αi(xi · xi)−
�

i,j

αiαj(xi · xj) (3)

s.t. 0 ≤ αi ≤ C.

Furthermore, the non-linear boundary can be found by

replacing the inner product (xi · xj) with a kernel function

K(xi, xj) = Φ(xi) ·Φ(xj) (where Φ is an implicit mapping

of the data into high dimensional feature space, and we indi-

cate a kernel parameter as σ). We use an exponential radial

basis function kernel K(xi, xj) = exp(−xi − xj/2σ
2)

which produces a tight piecewise linear solution [7].

However, unlike the two-class SVM, it is difficult to se-

lect an optimal kernel parameter σ which controls boundary

tightness since there are no outliers in the data. Figure 3

shows generated boundaries with different kernel parame-

ters. There have been several approaches to solve the kernel

parameter selection problem. However, theoretical analysis

approaches [20] give too loose bounds, and a heuristic ap-

proach [29] with genetic algorithm takes too much time. In

the artificial outlier generation methods [16, 8], generating

good outliers is an issue.

In this work, we introduce a novel optimal kernel pa-

rameter selection method using sample margins [15, 14].

The sample margin is a distance from a datum to a hyper-

plane passing through the centre of hypersphere in a kernel

Figure 3. Object boundary generation results with various kernel

parameters. A small parameter value produces over-estimated re-

sults with separated boundary regions and a large value gives an

under-estimated boundary result. The distributions of the sample

margin γ are shown in the middle respect to each kernel value. As

we can see the most proper boundary comes from the kernel value

which gives the maximum entropy.

space [14]. Sample margins reflect the distribution of im-

ages of data in the kernel space and can be calculated by

γ(xi) =
a · Φ(xi)

a
for each data point xi (0 ≤ γ(xi) ≤

1, ∀i), where a =
�

i αiΦ(xi). Each sample margin re-

flects a normalised relative position between the centre and

boundary of the hypersphere, so different kernel parameters

give different sample margin distributions as well as differ-

ent description boundary as shown in Figure 3.

In this paper we propose a new criterion for the kernel

parameter selection by calculating the entropy of the sam-

ple margin distribution. If the description is overfitted, the

sample margins are distributed toward the boundary of the

hypersphere. If the boundary is underfitted, the distribu-

tion is biased to the centre. By finding a kernel parame-

ter of the maximum entropy (i.e., evenly spread), we avoid

over/underfitting. Furthermore, according to the principle

of maximum entropy [12], if no prior knowledge is avail-

able about a distribution, then the probability distribution

with the largest entropy best represents the current state of

knowledge. So the optimal kernel parameter σ̂f of current

frame feature points Xf can be estimated by

σ̂f = argmax
σ

H(γ(Xf ))

= argmax
σ

�

i

−pilog(pi), (4)

where H is the entropy and pi is a probability distribution

with pi = Pr(γ(xf
i )).

The object boundary δΩ can be considered as a set of all

the points of image space I lying on the same distance to

the centre a of the hypersphere as the radius R. It can be



generated with the selected optimal kernel parameter σ̂ by

δΩ = {q|∀q ∈ I, q − a2 = 1− 2
�

i

αiK(q, xi)

+
�

i,j

αiαjK(xi, xj) = R2}. (5)

In order to measure goodness of the generated boundary

by the new criterion quantitatively, we follow [16] that gen-

erate uniformly distributed outliers around target data. Us-

ing the outliers, a loss function balancing classification and

rejection performance is used as a measure of good fit. As

a result, we find similar descriptions as [16] but 3.2 ∼ 7.8
faster.

3.3.2 Skeleton Distance Function Generation

A skeleton of an object, Υ(Ω), is defined as the set of all

centre points of maximal circles contained in an object Ω,

which is a medial axis of an object [1]. It can be formulated

as the locus of points at equal distance from at least two

boundary point as [22]:

Υ(Ω) = {p ∈ Ω|∃q, r ∈ δΩ, q = r

: dist(p, q) = dist(p, r)}. (6)

The skeleton contains both shape features and topologi-

cal structures of the original objects. As a good representa-

tion of the skeleton, a distance transform [11] is defined as

a function that returns the closest distance to the boundary

for each point p. Using the obtained object boundary, the

distance function (Ψ(p)) of Ω is defined as [22]:

Ψ(p) = min
q∈δΩ

(dist(p, q)) (7)

for all points p ∈ Ω. The distance metric is usually the

Euclidean distance dist(p, q) = p − q2. Using the dis-

tance function is attractive as its computation is relatively

simple, and the skeleton can be generated as the ridges of

the distance function.

3.4. Kinematic Structure Estimation and Structure
Smoothing

In this section we present how to generate the kinematic

structure of an articulated object using the motion segments

(S) and skeleton distance function (Ψ) results. We assume

that the kinematic structure is not cyclic as [35], which cov-

ers most articulated objects. We utilise a graphical model

G = (V,E) to determine the topological connections be-

tween motion segments. All the motion segment centres

y1, ..., yĉ are treated as nodes V in a complete graph. The

proximity E(yk, yl) between segment yk and yl is defined

as follows:

E(yk, yl) = median
f∈F

{(ζ(yfk − yfl ;Ψ
f )× ẏfk − ẏfl } (8)
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Figure 4. Geodesic distance and Euclidean distance between two

points. The white dotted line is the geodesic distance ζ and the

green solid line is Euclidean distance. The black solid line is a

skeleton of the object. The geodesic distance represents the mini-

mum distance following the skeleton.

which is a combination of geodesic distance in skeleton dis-

tance transform and moving velocity difference. For the

final proximity estimation between two segments over all

frames, we take the median value in order to be robust to

outliers.

Given the distance function Ψ, a geodesic distance be-

tween two points p and q is defined as follows:

ζ(p,q;Ψf ) = min
Γ∈Pp,q

l(Γ)
�

n=1

1

Ψf (pn)
(9)

where Γ is a path connecting the two points and Pp,q is the

set of all possible paths. Thus the Equation (9) defines the

minimum distance between two points in the object region

via the skeletal topology path as shown in Figure 4.

The proposed proximity measure separates segments that

are topologically apart and move with different velocity.

Two segments with small edge weight have a large possi-

bility to be connected. We generate the graph’s minimum

spanning tree as the kinematic structure of the object.

However, the initially generated structure is highly con-

torted, because many small motion segments deviate from

the median axes. So we further perform structure smooth-

ing by an iterative merging procedure guided by the skele-

ton distance function. If a segment Sk largely deviates from

the medial axis, then the Ψ(yk) is small (i.e. Ψ(yk) < τ).
We set the threshold τ as the minimum distance function

value of the skeleton Υ; τ = minΨ(Υ). The deviated Sk is

merged to a connected neighbour segment having larger Ψ
value (ĉ = ĉ−1), and then we reconstruct the structure until

all the segment centres are located close to the skeleton (see

Figure 5).

4. Experiments

Dataset The proposed method has been evaluated with

well-known sequences such as ‘arm’ [31], ‘toy’ and

‘dance’ [35] 2, but the conventional data sequences are rel-

2Note that the same dataset as [35, 5] of ‘toy’ and ‘dance’ are not

available, so we extracted the feature points and their trajectories from the
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Figure 5. Structure smoothing by iterative segments merging.

atively simple. So we introduce new challenging sequences

which are composed of complex articulated motions 3. We

have tried to avoid severely occluding motions because the

2D feature point trackers cannot keep tracking under oc-

clusion. However, the new sequences still contain diverse

complex motions such as articulations, concurrency, rotat-

ing, affine and scaling. We summarised the dataset prop-

erties in Table 1. Because there are many motions within a

frame, we extracted feature points densely not to miss subtle

movements. We have manually labelled each motion seg-

ments for ground truth.

4.1. Self Comparison

We have performed various experiments to validate the

proposed framework. Our method is based on randomised

voting, so the results are not exactly the same across differ-

ent trials. All the experimental statistics are obtained from

one hundred trials.

In order to evaluate the performance quantitatively, we

design the error measurement as:

error =
1

ĉ · F

ĉ,F
�

k=1
f=1

�

min
g=1...cGT

yfk − yf
g

�

×

�

1 +
|ĉ− cGT |

cGT

�

, (10)

where cGT and yg indicate the number of ground truth seg-

ments and their centres respectively. With this measure,

we can consider structural complexity differences as well

as spatial deviation of each segment.

Firstly, we validate whether the proposed fine-to-coarse

iterative merging process can find the correct number of

segments. As shown in Figure 6, as the iteration pro-

ceeds the resultant segments number converges closely to

the ground truth value. Furthermore, we have also mea-

sured the error changes over frames. Through these experi-

ments, we can test the kinematic accuracy of the estimated

segments. As we can see in Figure 7, our method finds more

accurate kinematic points than the other method [5].

presented result videos. That is why the points locations and results are

different from [35, 5].
3We utilised two robots; iCub (http://www.icub.org) and Bax-

ter (http://www.rethinkrobotics.com/baxter/)
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Figure 7. The error level comparisons across frames.

4.2. Comparisons with State-of-the-art

We have compared the proposed method with state-of-

the-art methods. We implemented the RANSAC based

method [34], and the factorisation based method [35] which

is one of the most compared. The third method we have

compared to is the cost function based optimisation ap-

proach [5], which is the best performing method up-to-now.

All the methods were implemented as described in their re-

spective papers using the noted toolboxes.

In order to get reasonable results of [34, 35], we manu-

ally tuned some parameters for each data sequence such as

the number of motion segments and rank detection param-

eter. [5] finds the structure nodes by averaging the intersec-

tion points of two rigid segments and connects them. How-

ever, more detailed description about end nodes (having no

overlaps) and the connection procedure is not mentioned.

So we manually select the end nodes and apply the mini-

mum spanning tree method for connection. For comparison,

we also show the structures without manual intervention for

the end joints in Figure 9.

We would like to emphasise that we did not particularly

tune any parameters of the algorithm for any specific se-

quence from roughly defined initial values. All the compar-

isons are obtained through the fully adaptive approach of

Table 1. Properties of the dataset. The newly introduced datasets

are more challenging because they are composed of concurrent

and highly articulated motions.

Dataset
# of

seg.

# of

points

# of

frames

motion

concur.

arm 2 77 30 no

toy 3 93 69 no

dance 6 236 60 yes

robot arm 8 144 737 yes

iCub body 7 573 250 yes

iCub hand 8 154 280 yes

Baxter 11 484 454 yes

human hand 20 450 634 yes
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Figure 6. The number of motion segments converges close to the ground truth through the proposed iterative merging process.

the algorithm under fixed parameters (no manual interven-

tion is required).

In Table 2 and Figure 8 we show the average of the

joint error. Our approach achieves comparable low aver-

age error for simple articulations, and our method largely

outperforms the other state-of-the-art methods throughout

the complex articulated motion sequences. Additionally, in

Figure 9 we present some qualitative results.

The RANSAC based method [34] and the factorisation

based method [35] are very sensitive to noise and parameter

setting, and noise effect increases with complex motions.

In [5], the cost function balances overall model complexity

and local motion errors, performing well when the structure

is simple. However, if the motion complexity increases,

it finds a moderate structure than an actual detailed struc-

ture. Moreover, the cost function enforces overlaps between

related motion segments such that the output becomes far

from what a human would normally estimate. Our fine-to-

coarse procedure finds detailed structures, and the skeleton

information reduces noise effect. So the learned structures

are more elaborate and plausible.

Furthermore, our method runs 1.8 times faster than [5]

on average (It takes 93.0±6.5 versus 180.2 seconds for the

‘iCub hand’ sequence). Note that here both our method

and [5] are implemented in Matlab, unoptimised single

threaded, without any CPU/GPU parallelism.
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Figure 8. Quantitative error comparison graph.

5. Conclusion and Future Works

In this paper we have introduced a novel articulated kine-

matic structure estimation framework which can represent

complex structures plausibly. We have demonstrated that

the challenges can be efficiently met via the adoption of a

state-of-the-art motion segmentation into iterative merging

process guided by skeleton information. We employ a fine-

to-coarse agglomerative merge scheme, i.e. we start with

over-segmented motion segments. An object silhouette gen-

eration using sparse feature points is proposed and skeleton

distance function is generated with the silhouette. In turn,

during the structure learning, we made use of the motion

segments and the skeleton distance function to build a con-

nection tree by considering motion similarity and topology.

Our method is evaluated using both public datasets and our

Table 2. Estimated joints accuracy comparison with state-of-the-

arts methods. All the values are from one hundred trials except

[5] as it gives a consistent results from optimisation method. The

above number is a mean value and the number in parenthesis are

standard deviation.

Dataset
RANSAC

method [34]

Factorisation

method [35]

Cost function

method [5]
Proposed

arm
561.2

(176.4)

105.8

(0.0)
21.5

15.7

(16.2)

toy
2357.0

(0.0)

68.2

(0.0)
20.0

22.6

(9.4)

dance
3041.1

(320.9)

105.8

(3.5)
24.3

39.3

(8.2)

iCub

body

6357.4

(1482.6)

65.0

(1.8)
34.1

30.4

(5.9)

iCub

hand

975.6

(0.0)

29.2

(1.3)
41.8

26.2

(7.9)

robot

arm

1305.4

(120.1)

49.5

(3.5)
105.3

48.5

(19.9)

Baxter
6606.9

(1108.7)

127.9

(4.3)
73.4

53.2

(14.4)

human

hand

3127.2

(226.2)

75.5

(3.7)
94.1

21.9

(3.5)
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Figure 9. The cost function based method [5] requires manual selection of the end nodes. The learned structures by the proposed method

are more elaborate and plausible.

new challenging complex articulated motion dataset. Pre-

vious work needed manual interventions (e.g., number of

segments, end joint positions), while we could find motion

parts and skeletons adaptively without tuning parameters.

As a result, apart from accurate motion joint detection re-

sults we can obtain a highly plausible representative struc-

tures facilitating further tasks such as object manipulation,

object recognition, or robot body scheme understanding to

name a few. The proposed method has a limitation in han-

dling occlusions because the 2D feature points fail tracking

when occlusion occurs. As a future work, we plan to use

RGB-D camera for feature tracking, object separation and

3D silhouette generation. Also the proposed silhouette gen-

eration method can be used as a prior of object segmenta-

tion.
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