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Abstract

We propose a real-time 3D model-based method that
continuously recognizes dimensional emotions from facial
expressions in natural communications. In our method, 3D
facial models are restored from 2D images, which provide
crucial clues for the enhancement of robustness to over-
come large changes including out-of-plane head rotations,
fast head motions and partial facial occlusions. To accu-
rately recognize the emotion, a novel random forest-based
algorithm which simultaneously integrates two regressions
for 3D facial tracking and continuous emotion estimation
is constructed. Moreover, via the reconstructed 3D facial
model, temporal information and user-independent emo-
tion presentations are also taken into account through our
image fusion process. The experimental results show that
our algorithm can achieve state-of-the-art result with high-
er Pearson’s correlation coefficient of continuous emotion
recognition in real time.

1. Introduction
Continuous emotion analysis refers to acquire and pro-

cess long unsegmented naturalistic inputs and to predi-
cate affective values represented in dimensional space [15].
It has been recognized that computers which can under-
stand emotions in natural interactions have the ability to
make smarter decisions and provide better interactive ex-
periences [17, 27]. By classifying emotions as different cat-
egories, some human-centered systems like [12, 20] have
been designed to react differently for different user emotion
categories, which provide better interactive experiences for
users and show the importance and necessity of emotion es-
timation in human-computer interactions. In natural com-
munications, people talk and think continuously, and the
human emotions are also revealed naturally. Thus emotions
in natural communications should be estimated as real val-
ues of different affective dimensions for higher quality of
human-computer interactions.

Visual signals have been proved to be the most effective
and important cues for emotion recognition [1, 18, 22]. P-
resented in a spontaneous way, emotions in natural commu-
nications tend to change more slowly than acted ones, lead-
ing to more subtle sequential expressions. The significan-
t presentations in natural exchanges are usually not fully-
expressed, resulting in fuzzy difference between different
emotion states. Additionally, people express their emotions
in variable ways which introduces larger confused informa-
tion of similar emotions and brings greater challenge about
how to link a certain user’s expression with more com-
mon presentations. Besides, emotions captured from natu-
ral interactions are always with large changes, such as more
freely head rotations, fast head motions, partial facial occlu-
sions, etc. These characteristics increase the complexity of
continuous emotions and make it hard to estimate emotions
in natural communications accurately and robustly.

To meet these challenges, we propose a real-time 3D
model-based method that recognizes human emotions in di-
mensional space under natural communications. Our ap-
proach introduces 3D facial model into continuous emo-
tion recognition, which brings higher robustness to handle
changes of large head rotations, fast head motions and par-
tial facial occlusions. User-specific temporal features and
user-independent emotion presentations are also construct-
ed to describe emotions more precisely. The emotions are
estimated by a novel random forest-based framework, in
which the 3D facial tracking and continuous emotion es-
timation are taken simultaneously in a regression way.

2. Related work
Human emotions are usually represented in two ways:

categorical and dimensional. According to the Facial Ac-
tion Coding System (FACS) proposed by P. Ekman [9], e-
motions can be categorized as six classes: happiness, sad-
ness, anger, surprise, fear and disgust. Naturalistic human
emotions are complex with fuzzy boundaries in expression-
s, thus discrete categories may not reflect the subtle emo-
tion transitions and the diversity emotions. Therefore, many



works use dimensional representations to interpret human
emotions in different affective dimensions. The PAD emo-
tion space [33] is a typical one, which describes continu-
ous emotions in three dimensions of Pleasure, Arousal and
Dominance. Fontaine et al. [13] described continuous e-
motions in four dimensions as Arousal, Valence, Power and
Expectancy. Dimensional representations can analysis e-
motions on several continuous scales and describe emotion
transitions better, which accordingly is more suitable to rep-
resent emotions in natural human-computer interactions.

Most existing emotion recognition algorithms use 2D
features extracted from images to predict emotions, which
can be subdivided by using appearance features and geo-
metric features [11]. For instance, Wu et al. [36] used in-
tensity after Gabor Motion Energy Filters to classify emo-
tions. Kapoor et al. [18] took the pixel difference of mouth
region to estimate emotions. Such algorithms based on ap-
pearance features and achieved good results when the facial
pose are consistent. Some works used the 2D facial geomet-
ric features. Valstar and Pantic [34] used the geometry fea-
ture of 20 2D facial points to predict emotions. Kobayashi
and Hara [19] used facial geometric model to recognize e-
motions. There are also some works like [1, 32] estimating
emotions using 2D hybrid features of appearance and geom-
etry such as Active Appearance Model (AAM). 2D features
can be directly extracted, but as Sandbach et al. [28, 29]
pointed out in their surveys, they are not stable enough for
the large changes in communications and a consistent facial
pose is necessary when 2D features are used, which showed
that 2D feature-based algorithms are not adequately robust
to recognize continuous emotions.

3D features have also been integrated in many algorithm-
s. Compared with approaches using 2D image features, 3D
feature-based approaches are more robust and powerful for
emotion recognition. Works using 3D features can be cat-
egorized as shape-based and depth-based. Shape-based al-
gorithms use parameters of 3D curve shapes, the positions
of 3D landmarks or the changes of 3D landmarks to clas-
sify emotions. For instance, Huang et al. [31, 39] used
Bézier volume to describe facial expressions and took the
changes of manifold parameters as symbols of the changes
of emotions. Their experimental results showed that the
Bézier volume based approaches worked well on classify-
ing spontaneous emotions. Some other works took facial
depth features to recognize emotions. Fanelli et al. [10]
used depth information to classify emotions into discrete
categories. The existing 3D feature-based algorithms are
adequately robust, but they are rarely used for continuous
emotions recognition. In this paper, we present an effec-
tive regressive approach that use 3D facial information to
estimate continuous emotion in dimensional space.

Continuous emotion presentations are sequential action-
s. Fused emotion presentations have been designed in order

to include dynamic temporal information, eliminate user-
dependent information and conquer the large changes of
communication environment. Yang and Bhanu [37, 38]
showed their image fusion method which used SIFT-flow
algorithm combining images from one video clip into one
image. SIFT-flow [23] is a robust algorithm for 2D images
alignment and also works well in face registration, but it
is comparatively time-consuming. With the help of the 3D
model, we propose a real-time image fusion method to rep-
resent continuous emotions and user-independent emotions
respectively.

A lot of methods have been designed to recognize con-
tinuous emotions [16]. Some typical schemes are: Support
Vector Regression (SVR) [30], Relevance Vector Machines
(RVM) [25], Conditional Random Fields (CRF) [2] and so
on. As a popular method, random forest [4] has been wide-
ly used in both classification and regression tasks. Random
forest consists of several classification and regression trees
(CART). It can deal with large amount of training sam-
ples without over-fitting [8] and has the characteristics of
robustness, high-efficiency and powerful ability of regres-
sion. Due to the structure of binary trees, it can achieve
result with little time cost. Fanelli et al. [10] proposed a
random forest based framework to estimate the posture of
a head by regression from data captured by depth camer-
a. The output showed that random forest can handle facial
regression problems in high quality. In our work, we fur-
ther exploit the regression ability of random forest, wherein
3D facial tracking and continuous emotion estimation could
take effect jointly.

3. Proposed method
We propose a random forest-based algorithm that can

recognize emotions in dimensional space under natural
communications. Different from existing algorithms like [1,
2, 32], our approach uses 3D facial model reconstructed
from 2D image, which maintains the positional relationship
of facial landmarks and provides more robust clues to over-
come changing environments. The continuous emotion p-
resentation and user-independent emotion presentation are
also taken into account via 3D head model-based image fu-
sion to describe emotions more precisely.

The framework of our work is shown in Figure 1. Dur-
ing training period, the 3D facial model of input images
are firstly restored. Then continuous emotion presenta-
tion (CEP) and the user-independent emotion presentation
(UIEP) are constructed by image fusion. The 3D facial
shapes, CEP images together with their emotion values con-
stitute an augmented training set with which the random for-
est is constructed. In emotion estimation period, two regres-
sions are taken in the random forest simultaneously: one is
for tracking the 3D facial expression, the other is for recog-
nizing the current emotion. The CEP image of current time



Figure 1. Framework of our 3D model-based continuous emotion recognizing and tracking approach.

step and 3D facial shape of previous time step are taken as
the inputs, then the affective value and 3D facial shape of
current time step are calculated as outputs. When there are
no acceptable outputs of random forest, the recovery op-
eration is taken with the help of UIEP images to achieve
recovered 3D facial shape and emotion.

3.1. Data preparing

Continuous emotion dataset are always presented as
video clips, which contain too many images and a large part
of these images are very similar in emotion value and ap-
pearance. In order to reduce the data redundancy and im-
prove the representativeness of training data, the reduced
training images are firstly picked from all the frames. Dur-
ing the image picking step, we make sure that the select-
ed images have evenly distributed affective values, cover
the entire emotion range and retain the different head pos-
tures in natural communicates. For every affective dimen-
sion, relatively small training images, around 160, are first-
ly picked in our method. Then, facial landmarks of every
selected image are automatically detected via the algorith-
m proposed by Baltrusaitis et al. [3]. Considering the fac-
t that emotion information are mostly showed by mouth,
eyes, and eyebrows, only 42 inner landmarks are chosen in
our method, including 8 eyebrows landmarks, 12 eye corner
landmarks, 4 nasal landmarks and 18 lip landmarks. Fig-
ure 2 shows the labelled landmarks of some selected im-
ages.

3.2. Restore 3D facial model

In our method, 3D facial shapes of every labelled images
are restored with the help of FaceWarehouse [6], which is
a 3D facial dataset containing 3D facial models of 150 sub-
jects from various ethnic backgrounds and every subject has

Figure 2. Facial landmarks of some selected images.

47 FACS blendshapes with 11K vertices. It can be described
as a third order tensor:

F = Cr × wT
id × wT

exp (1)

where Cr is a 3D facial blendshape with 11K vertices, and
wT

id, wT
exp are the column vectors of identity weights and

expression weights in the tensor respectively.
According to works proposed by Cao Chen et al. [5],

constructing 3D model from 2D image can be separated into
two steps: the first step is to calculate the optimal wT

id. With
the optimal blendshapes ofwT

id, the 3D facial shape of every
picked image are constructed in the second step. These two
steps both work in an iterative way.

Different from the work of Cao Chen et al. which focus
on specific user, we want to represent the input images from
different persons in a uniform way, we consider that all the
input images should be constructed by blendshapes of the
same wT

id in FaceWarehouse. So when calculating the op-
timum wT

id, an energy formula is defined considering this
constraint as:

Eid =

N∑
i=1

42∑
b=1

∥∥P (M i(Cr × wT
id × wT

exp,i)
b − ubi )

∥∥2
(2)



where N is the number of the picked images; P means the
projection matrix; M i means the extrinsic parameter matrix
of camera which can be computed via EPnP algorithm [21];
wT

exp,i stands for the most similar expression for the ith im-
age; ubi is the bth landmark on image. The identity wT

id

which has the least energy Eid are considered the optimal
identity and the 47 blendshapes of the optimal wT

id are taken
as the fundamental blendshapes for 3D facial model recon-
struction.

Once the fundamental blendshapes are acquired, the 3D
facial model of every image can be restored via the linear
interpolation of fundamental blendshapes as [21] did and
the 3D facial models of the picked 2D images can be all
reconstructed.

3.3. Image fusion

With the help of the 3D emotion presentations, an image
fusion method is implemented. Figure 3 shows the pipeline
of our image fusion method. First of all, we label the land-
marks of input images using algorithm [3] and reconstruc-
t the 3D facial model. Then the 3D facial shape is trans-
formed to the orthogonal position of space coordinate sys-
tem and projected to the 2D facial coordinate system as the
following formula:

uOPb
i = P (MR|t ∗ V b) (3)

where P means the projection matrix of camera, MR|t rep-
resents the transform matrix for a 3D shape from its original
position to the orthogonal position of current space coordi-
nate system. V b means the bth landmark on the 3D facial
shape.

Figure 3. Image fusion pipeline.

With the original landmarks and the projected landmarks
uOPb
i , the homographic transform matrix from the original

screen space to the facial coordinate space is acquired. The
facial part of original image is unified into the 2D facial co-
ordinate system. After transforming all the facial parts of o-
riginal images to the unified facial coordinate system, these
images are superposed and result in one fusion presentation.

For different goals, the image fusion method is used to
generate user-specific continuous emotion presentation and
user-independent emotion presentations in our work. Con-
tinuous emotion presentation (CEP) merges several contin-
uous adjacent frames from a video clip, which is used to
contain the dynamic feature and temporal context of emo-
tions. User-independent emotion presentation (UIEP) fus-
es different images selected from different videos with the
same emotion value into one image presentation, which is
used to retain the prominent features of same emotion state
and eliminate the differences among different persons.

3.4. Training

Training set construction. Random forest is made up of
several classification and regression trees (CARTs). As Sec-
tion 3.1 stated, a relatively small number of emotion sam-
ples have been picked, which is not enough to guarantee the
robustness and precision of CART. So we firstly expand the
emotion samples in order to make them large enough for
training.

Suppose {CEPi ,Mi ,Si ,Ai} is the emotion sample of
the ith training image, where CEPi is the fused contin-
uous emotion presentation of the ith image; Si is the re-
constructed 3D emotion shape; Ai is the labelled affec-
tive value; and Mi is the identity matrix. We firstly trans-
late 3D emotion shape Si along three coordinate axes re-
spectively and get M − 1 additional 3D emotion shapes,
which expands the number of training samples to N ×M
as {CEPij ,Mij ,Sij ,Ai}, where Mij is the transformation
matrix that maps Sij back to Si. The corresponding ho-
mography matrix MHOMO of Mij is then computed out.
With MHOMO , CEPi can be transformed to CEPij , which
is used as the continuous emotion presentation of Sij .

Then several most similar emotion samples of each
transformed emotion sample {CEPij ,Mij ,Sij ,Ai} were
found. Suppose {CEPij ,M

l
ij ,Sl ,Al} represents another e-

motion sample, the differences between two emotion sam-
ples is evaluated as follows:

El =

42∑
b=1

∥∥Sb
ij − Sb

l

∥∥2 + wa ‖Ai −Al‖ (4)

Sl = M l
ijSij (5)

where superscript b means the bth landmark on the 3D fa-
cial shape Sij and Sl; Ai and Al are the affective val-
ues of corresponding shape respectively; M l

ij is the trans-
form matrix between 3D shapes; and wa is an empir-
ical weight to balance the influences of shape diversity
and emotion diversity, here is 350. The most-like emo-
tion samples can be found through minimizing above en-
ergy El. Then the emotion samples can be extended to
{CEP l

ij ,M
l
ij ,S

l
ij ,Al}. Finally, transform Sl

ij along three



coordinate axes respectively and randomly pick K shapes
from its transformed shapes, we will get the augmented
emotion shapes {CEP lk

ij ,M
lk
ij ,S

lk
ij ,Al}. After augmenta-

tion, the number of training emotion samples is extended
from N to N ×M × L×K. Here, we set N = 160,M =
9, L = 3 and K = 7.

With the augmented emotion samples, training patch-
es are then constructed in order to train the random for-
est. As for emotion sample {CEP lk

ij ,M
lk
ij ,S

lk
ij ,Al}, sev-

eral training patches reflecting the displacement of 3D e-
motion shape, difference in affective value, and appearance
of image are generated. The displacements of each facial
landmarks on emotion shape Slk

ij from original shape Si

are recorded as Diss(S lk
ij ,Si). The difference between af-

fective values is presented as Disa(Al ,Ai). To represen-
t appearance of 2D image, we randomly choose Q points
from facial area in CEP lk

ij and concatenate the intensi-
ty values as an intensity vector Int(CEP lk

ij ), where Q is
fixed to 400 in our test. Thus, a patch vector is set up
as P = {Int(CEP lk

ij ),Diss(S lk
ij ,Si),Disa(Al ,Ai)}. Fig-

ure 4 indicates the example of generating training patches
for one emotion sample. We randomly pick Z intensity vec-
tors in each CEP and get Z patches {Pz | 1 ≤ z ≤ Z} in
every emotion sample, where Z is set to 100. Finally, a
training set includingN ×M ×L×K×Z training patches
are constructed.

Figure 4. Training patches construction.

Random forest construction. With the generated patch-
es, random forest with several CARTs is constructed. When
training every CART, only 70 percent of the patches are
used to avoid over-fitting.

In every non-leaf node, a binary test is conducted to split
training patches, which is defined as follows:

|F1|−1
∑

q1∈F1

Intq1 − |F2|−1
∑

q2∈F2

Intq2 > τ (6)

whereF1 andF2 means two fragments from current training
patch, Int represents the intensity vector and τ is a random
threshold. In our test, the length of F1 and F2 is set to 60
and the range of binary test threshold is from [−30, 30].

For each non-leaf node, we generate 2000 binary tests
{tx} by randomly choosing the parameters of F1, F2 and τ .
The quality of every binary test is evaluated by regression
uncertainty UR, which consists two parts: the shape regres-
sion uncertainty URs

and the affect regression uncertainty
URa . These two regression uncertainties are defined as:

URs
(P | tx) = H(P )s − wLH(PL)s − wRH(PR)s (7)

URa
(P | tx) = H(P )a − wLH(PL)a − wRH(PR)a (8)

where H(P ) means the differential entropy of patch set
and wL, wR are the ratio of patches sent into left and right
child node respectively. It is assumed that the distribution
of training set is normal distribution. So the regression un-
certainties can be computed in following formulas:

URs(P | tx) = log(|Σs|)−
∑

i={L,R}

wi log(|Σs|) (9)

URa
(P | tx) = log(|Σa|)−

∑
i={L,R}

wi log(|Σa|) (10)

where Σs and Σa are the covariance matrices of the dis-
placements of shape landmarks and affects. Then total un-
certainty UR can be presented as:

UR(P | tx) = URs
(P | tx) + λURa

(P | tx) (11)

where λ is an empirical weight which equals to 1. By max-
imizing UR, we can minimize the determinants of these co-
variance matrices and find the best binary test of current
node, which is described as topt .

Once topt is found, we save the parameters of the op-
timal binary test as a part of random regression forest and
split the training patches of current node into its left child
and right child. We take a node as a leaf if it reaches the
deepest level Lmax or the number of patches it contains
is less than the minimum threshold Pmin . Here Lmax is
set to 15 and Pmin is 20. A leaf node stops splitting and
saves the information about patches it holds including the
mean and covariance of shape displacements {Aves , |Σ s |}
together with the average and covariance of affect displace-
ments {Avea , |Σ a |}.

3.5. Online emotion estimation

Preparation works. Before online emotion estimation,
some preparation works should be done. During emotion
recognition, the situation with the lost will appear. In that
case, the 3D facial model and affective value need to be
restored. So we prepare the shape recovery set and emo-
tion recovery set in advance. To prepare shape recovery set,
some frames are picked at a fixed time interval from input
video. The 3D facial shapes of these picked images are re-
constructed as a shape recovery set Rshape . For emotion re-
cover set, images with similar affective values are generated



and stored into several groups. User-independent emotion
presentations (UIEPs) of these groups are then calculated.
Facial landmarks of every UIEP are automatically detect-
ed and the LBP features of each landmark region (a set of
10×10 points around the landmark) are saved as LBP emo-
tion presentation. The LBP emotion presentations and their
corresponding emotion values of all UIEPs are collected as
emotion recovery set Remotion .

Another preparation work is to generate the 3D emo-
tion shape and the emotion value of first frame. We use
the method proposed in Section 3.1 to restore the 3D shape
of first frame. When computing the emotion value of the
first frame, we calculate its LBP emotion presentation and
find out its emotion value through comparing the similarity
of the LBP emotion presentation of first frame and the LBP
emotion presentation of UIEPs in Remotion .

Emotion estimation. Taking CEPt at the curren-
t time step, the 3D emotion shape and the affective value
{St−1, At−1} at the previous time step as input, the 3D e-
motion shape and affective value {St, At} of current time
step t can be estimated in a regression way.

Given the input emotion shape St−1 and affective val-
ue At−1 at the previous time step, several most-like 3D
emotion shapes with their accordingly affective labels
{Sw, Aw} in the training dataset are picked out. Then the
affine matrix Mw from St−1 to Sw and the correspond-
ing homography matrix of Mw is then generated, through
which CEPt is transformed to CEPw

t as the continuous e-
motion presentation of Sw.

From Sw, we randomly choose 400 points
from facial area and generate a patch set
Pw = {Int(CEPw

t ),Diss(S w ,St−1 ),Disa(Aw ,At−1 )}.
Each test patch will be put into random forest and leaf node
of every CART is achieved with the covariances of shape
displacement |Σs| together with the covariance of emotion
displacement |Σa|. Thresholds θs = 10 and θa = −1.5
are set for picking acceptable leaves. If log(|Σs|) is
more than θs or log(|Σa|)Ashraf09 is more than θa,
we discard the leaf. Finally a set of acceptable leaves is
generated. Then the regression value of shape and affect
are calculated through averaging shape displacements and
emotion displacements separately. Add them to Sw and
Aw separately, the new shape Sw∗ and affective value Aw∗

are achieved.
With all the similar 3D shapes chosen above, we can fi-

nally get a set of estimated value of 3D shape and emotion
{Sw∗, Aw∗}. The median of these results {Sw′

, Aw′} is
picked out as the final estimation of current 3D shape and
emotion. Transform Sw′

using the inverse matrix M−1w , the
3D shape St will be achieved. The emotion value of current
time step At is equal to Aw′

.
As the variation trend of continuous emotions is usually

placid [11], we calculate the mean of current emotion value

Algorithm 1 Emotion estimation
1: {Sw, Aw} ← a set of most-like 3D shapes and emotion values from

training set {CEP lk
ij ,M

lk
ij ,S

lk
ij ,Al}

2: for each simple in {Sw, Aw} do
3: Mw ← affine transformation matrix from St−1 to Sw

4: Pw ← {Int(CEPw
t ), Diss(Sw, St−1), Disa(Aw, At−1)}

5: for n = 1 to N do
6: Leafn ← leaf node of the nth CART reached by Pw

7: if Leafn → |Σ s | > θs or Leafn → |Σa | > θa then
8: discard Leafn
9: end if

10: end for
11: {Leafn} ← the acceptable leaves
12: Regs ← (ΣN

n=1 aven
s )/N

13: Rega ← (ΣN
n=1 aven

a )/N
14: Sw∗ ← Sw + Regs

15: Aw∗ ← Aw + Rega

16: end for
17: {Sw∗, Aw∗} ← alternative results from random forests
18: {Sw′

, Aw′} ← median result of {Sw∗, Aw∗}
19: St ←M−1

w Sw′

20: At ← Aw′

21: return(St, At)

with its previous 500 emotion values and take the result as
the final emotion value of current time step.

Recovery. There are two situations that we need to re-
cover the 3D facial shape and emotion value. One is the
situation that no acceptable leaf is achieved. In this case,
recoveries of both shape and emotion should be taken.

During shape recovery, we find out the 3D shape which
is nearest to the current time step from shape recover set
Rshape and take it as the new input shape. With the new
input shape and the current CEPt , the LBP emotion pre-
sentation LBPt of CEPt is calculated. Taking the affective
value of last frame Et−1 as constraint, the energy Ea is de-
fined as:

Ea = ‖LBPt − LBPi‖2 + β ‖At−1 −Ai‖2 (12)

where LBPi is one of the LBP emotion presentation of e-
motion recovery dataset Remotion ; and β is an empirical
weight, which is set to 45. Through minimizing energy Ea,
several UIEPs that most similar to current frame presenta-
tion are found. The mean of their affective values are then
taken as the recovered affective value.

Another situation is that a large variation of affective
value is detected between adjacent frames. As continuous
emotions change subtly, if the difference between the ad-
jacent emotion values are larger than an empirical thresh-
old θdiffA, we suppose that the estimated affective value is
wrong and take the emotion recovery as above. In our test,
θdiffA is set to 0.2. The pseudo-code of online emotion es-
timation is showed in Algorithm 1.



4. Experiment

To evaluate the feasibility of the proposed method, we
developed a prototype system and evaluated our method
from three aspects: 1) the precision of 3D facial tracking; 2)
the correlation coefficient of the emotion recognition; and
3) the computational performance of our method.

Our continuous emotion recognizing and tracking sys-
tem is implemented on a PC with dual Intel Xeon CPUs
(3.2GHz) and 4GB RAM.

4.1. Dataset

The Audio/Visual Emotion Challenge (AVEC 2012)
Database [30] is a public continuous emotion dataset, which
recorded audio-video sequences with the SEMAINE cor-
pus [24]. In the database, emotions of every frame are an-
notated by humans in dimensions like Arousal, Valence and
so on. The length of every video is about 3 to 5 minutes,
each image in the video has the resolution of 780*580 and
the frame rate is 50 fps.

We test our method using AVEC 2012 and evaluate the
ability of emotion recognition by the Pearson’s correlation
coefficient. Since arousal and valence are more frequently
used in emotion representation, we test our method on the
these two dimensions and compare our result with the base-
line of AVEC 2012 and several reported best results which
also test on the same dataset.

4.2. Experiment results

The continuous emotion is estimated largely based on
the positions of facial landmarks, we firstly compare the fa-
cial tracking precision of our algorithm with several typical
works. In Table 1, we measure the RMSE (in pixels) for
the landmarks on images of different algorithms compared
with the ground truth positions. The results of facial track-
ing methods including multilinear models [35], 2D regres-
sion [7] and the state-of-the-art result of landmark track-
ing using 3D regression method [5] are referenced. From
the table we can find our algorithm is more robust and pre-
cise to track the landmarks than the 2D tracking method and
can achieve similar levels to the best result of 3D tracking,
which means that our algorithm is precise enough in facial
tracking for emotion estimation.

Figure 5 shows some results of our method in 3D fa-
cial tracking. The red dots represent the ground-truth of
landmarks and the green ones are the tracking result of our
method. From the outputs we can find that our 3D head
model based method can retain good performance under the
changing interaction environment like out-of-plane head ro-
tations, fast head motions and partial facial occlusions.

Table 2 shows emotion estimation results of our method
compared with several typical algorithms. Line 1 shows
the result of the baseline of AVEC 2012 competition [30]

Figure 5. Results of 3D facial tracking. Red dots: the ground-truth;
Green dots: the tracking result.

RMSE <3 pixels <4.5 pixels <6 pixels
Multilinear Model [35] 20.8% 24.2% 41.7%

2D Regression [7] 50.8% 64.2% 72.5%
3D Regression [5] 73.3% 80.8% 100%

Our Method 70% 83.93% 94.91%

Table 1. Percentages of frames with RMSE in facial tracking.

Correlation coefficient Arousal Valence Mean
SVR [30] 0.151 0.207 0.179

Multiscale Dynamic Cues [26] 0.509 0.314 0.4165
CFER [32] 0.30 0.41 0.355
CCRF [2] 0.341 0.343 0.342

Our Method 0.564 0.454 0.509

Table 2. Pearson’s correlation coefficient of typical emotion re-
gression methods tested on AVEC 2012 dataset.

Figure 6. Comparison of our emotion estimation result and the
ground-truth. Left: Arousal dimension, Right: Valence dimension.

which used SVR as the regressor; line 2 [26] shows the re-
sult of Multiscale Dynamic Cues method; the third line is
the result of Continuous Facial Expression Representation
(CFER) [32] and the fourth line is the result of Continuous
Conditional Random Fields (CCRF) [3]. From the compar-
ison we can see that our algorithm outperforms the other
four methods in continuous emotion estimations.

In Figure 6 two subplots of our emotion estimation of a
video compared with the ground-truth are showed. The red
solid line is the result of our method and the blue dotted



Figure 7. Distribution of correlation coefficients of arousal dimen-
sion (left) and valence dimension (right).

line is the ground-truth. The left one is the result in arousal
dimension and the right one is in valence dimension. From
the figure we can see that our algorithm can recognize the
emotion value precisely.

Histograms in Figure 7 show the number of videos with
different correlation coefficients of arousal dimension and
valence dimension respectively. From these two histogram-
s, we can see that the result of our system is accord with
normal distribution approximately, which means the algo-
rithm we proposed is robust and stable. Under most cir-
cumstances, our algorithm can achieve the correlation co-
efficient that between 0.5 and 0.6 in arousal dimension and
0.4 to 0.5 in valence dimension, which equals to the mean
results in Table 2.

Time performance of our system depends mainly on the
number of CARTs. Table 3 shows the efficiency of our
system with different number of CARTs and the Pearson’s
correlation coefficient under these circumstances. It can be
seen that with the increasing of CART numbers, the effi-
ciency of system is falling down and the correlation of e-
motion estimation is growing better. When the number of
CART is larger than 6, the estimation accuracy is almost
stable to around 0.51. Since working in real time is nec-
essary for an interaction system, we use 6 CARTs in prac-
tice as a trade-off between efficiency and accuracy. Then
our method can handle emotion recognition at the speed of
around 20 fps, which is usable for most interaction systems.

Number of
CARTs

Frames handled
in one second

Pearson’s correlation
coefficient

3 25 0.413
5 23 0.472
6 21 0.511
8 18 0.512

10 17 0.507
12 15 0.514

Table 3. Time performance using different CARTs.

5. Conclusions
In this paper, we propose a 3D model based continu-

ous emotion recognition approach. We introduce 3D fa-
cial expression model into our work and restore the 3D
facial model from 2D images. With the reconstructed 3D
facial shape, an image fusion method is proposed to gen-
erate a user’s continuous emotion expressions (CEP) and
user-independent emotion expressions (UIEP). With the 3D
facial models and fused images, a random forest which inte-
grates two regressions for both 3D landmarks tracking and
emotion estimating simultaneously is constructed.

Our algorithm has been tested on the video part of AVEC
2012 dataset. The experimental results showed that our
real-time approach is powerful to achieve preferable result
in continuous emotion estimation. Furthermore, the high
efficiency of our system make it possible to provide intelli-
gent responds timely in human-computer interactions.

Although our algorithm is based on 3D facial model, on-
ly 2D images or 2D video stream are used as inputs, which
gets rid of the bondage of equipments. Due to the usability
of our system, it is promising to deploy our system on mo-
bile devices such as smartphones, tablet personal computers
and so on.

The image features extracted in our work are intensity
of images, which are the simplest features of an image. In
future work, we will try to use more robust features such as
ones extracted from restored 3D facial model, which may
lead to a better performance.

In this paper, we just test our method on the AVEC 2012
dataset. It is because that the AVEC 2012 is typical, popular
and widely accepted by researchers of continuous emotion
recognition. There are still some other great datasets that
can be used to test our method. In the feature, we will test
our algorithm on more datasets.

Furthermore, researchers have pointed out that emotion
dimensions are correlated with each other [14]. In the future
work, we will focus on exploiting and modelling the rela-
tionships between different emotion dimensions for a better
emotion analysis.
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