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Abstract

Sparsity, or cardinality, as a tool for feature selection
is extremely common in a vast number of current computer
vision applications. The k-support norm is a recently pro-
posed norm with the proven property of providing the tight-
est convex bound on cardinality over the Euclidean norm
unit ball. In this paper we present a re-derivation of this
norm, with the hope of shedding further light on this partic-
ular surrogate function. In addition, we also present a con-
nection between the rank operator, the nuclear norm and
the k-support norm. Finally, based on the results estab-
lished in this re-derivation, we propose a novel algorithm
with significantly improved computational efficiency, empir-
ically validated on a number of different problems, using
both synthetic and real world data.

1. Introduction
The use of sparsity in the field of Computer Vision can

perhaps best be motivated by two main principles, compu-
tational efficiency and model simplicity. Selecting as few
variables or features as possible will hopefully yield both a
cheap and accurate model of the problem at hand.

Sparsity is typically obtained by regularizing the good-
ness of fit with the cardinality, (denoted card(·) or || · ||0)
of the variables. However, as this typically leads to non-
convex optimization problems with high computational de-
mands, the standard approach is to replace and relax these
regularizers with convex surrogates for cardinality. The
most popular such surrogate function is unquestionably the
l1-norm. The use of which is regularly justified by saying
that the l1-norm makes up the convex envelope of the car-
dinality function. However, as it was pointed out in [1],
this is an argument that must be used with care. Correctly
stated, we have that the l1-norm is only the convex envelope
of || · ||0 on the bounded domain, {x ∈ Rd | ||x||∞ ≤ 1},
the l∞-norm unit ball.

It was argued in [1] that in certain instances it might be

reasonable to not only expect that each individual entry of
the entering variables be bounded, but to have bounds on
their Euclidean norm as well. This led to the proposal of the
k-support norm, a norm that was shown to provide the tight-
est convex relaxation of cardinality on the Euclidean-norm
unit ball. It was also shown that this norm leads to improved
learning guarantees as well as better algorithmic stability.
However, as [1] did not address computational complex-
ity issues, the proposed algorithm, employing an exhaustive
search method, has proven painfully slow for even modest
sized problems.

The authors of [10] presented an improved algorithm for
computing the solution of k-support norm regularized opti-
mization problems. They proposed the use of binary search
as a replacement for certain subproblems in the original al-
gorithm of [1]. Despite reporting significant speed-ups over
[1], this method was still exhaustive in nature and could for
larger problems and/or certain parameter choices still prove
to be quite inefficient.

In this paper we attempt to make progress towards shed-
ding further light on a number of different aspects of the
k-support norm. In our opinion, there are three main con-
tributions made here. Firstly, we present a slightly different
derivation of the k-support norm with a stronger empha-
sis on the concept of convex envelopes. By doing so we
hope to provide a different perspective to previous work and
also make the connection to the rank operator on matrices
perhaps more obvious. Secondly, we show that there is an
equivalence between cardinality, the rank operator and the
nuclear norm on domains shared between the elements of
vectors and singular values of matrices. Our final contribu-
tion is a proposed algorithm for solving optimization prob-
lems involving the k-support norm. This method is then
empirically proven to be orders of magnitude faster than the
existing state-of-the-art approaches.



2. The k-support Norm and Convex Envelopes
of Cardinality

We start by presenting some prerequisites needed to es-
tablish the main results of this paper. This includes a re-
derivation of the the k-support norm, as defined in [1]. We
do this in an attempt to further the understanding and in-
tuition behind this norm as well as to make the connection
between convex envelopes of cardinality and rank over dif-
ferent domains more clear.

First let us consider the set,

C(∞)
k =

{
x ∈ Rd

∣∣ ||x||0 ≤ k, ||x||∞ ≤ 1
}
. (1)

It is a well known result that the convex hull of (1) is given
by

conv(C(∞)
k ) =

{
x ∈ Rd

∣∣ ||x||1 ≤ k, ||x||∞ ≤ 1
}
. (2)

This result can be realised as the Fenchel biconjugate of the
indicator function of C∞k ,

χC(x) =
{

0, x∈C
∞, x/∈C (3)

From its definition we first obtain the Fenchel conjugate f∗∞
as

f∗∞(y) = sup
x
yTx− χC∞k (x) =

k∑
i=1

|y|↓i , (4)

where |y|↓i denotes the i-th largest element, by magnitude,
of the vector y ∈ Rd. The biconjugate f∗∗∞ is given by

f∗∗∞ (x) = sup
y
xT y −

k∑
i=1

|y|↓i =

=

{
0, ||x||∞ ≤ 1,

1

k
||x||1 ≤ 1

∞, otherwise
= χconv(C∞k )(x),

(5)

effectively verifying (2). For the last equality in (5) see [2,
Sec.IV 1.18]. Since k ≥ 1 and here k||x||∞ ≥ ||x||1 it
follows from (5) that, on the domain ||x||∞ ≤ 1, (the unit
ball of the l∞-norm), the convex envelope of the cardinality
function || · ||0 is the l1-norm. This result is then frequently
taken as motivation to use the l1-norm as a surrogate for
cardinality. However, as pointed out in [1], this result is
sometimes used without the appropriate care, omitting the
domain ||x||∞ ≤ 1 for which this convex envelope is valid.
Over different domains the convex envelope of cardinality
may in fact be distinctly different.

It was perhaps this insight that in part led to the original
derivation of the k-support norm in [1]. In this work they

argue that the l2-norm might be a more likely and appropri-
ate bound on the entering vectors in certain instances. They
therefore instead consider the set

C(2)k =
{
x ∈ Rd

∣∣ ||x||0 ≤ k, ||x||2 ≤ 1
}
, (6)

and proceed to show that the convex envelope of this set on
the ball ||x||2 ≤ 1 is given by a norm they denote the k-
support norm. The k-support norm || · ||spk is defined as the
gauge function with its unit ball coinciding with the convex
hull of C(2)k .

An alternate way of deriving this convex envelope is by
proceeding as above and finding the Fenchel biconjugate of
χC(2)k

. We obtain

f∗(y) = sup
x
yTx− χC(2)k

(x) = sup
||x||0≤k
||x||2≤1

yTx = (7)

=

√√√√ k∑
i=1

(|y|↓i )2 = ||y||(2)k , (8)

where ||·||(p)k : Rn 7→ R is the vector k-norm, defined as the
lp-norm of the k largest component values, in magnitude, of
any vector in Rd, also known as a symmetric gauge norm.
Next,

f∗∗(x) = sup
y
xT y − ||y||(2)k = χ||x||(2)∗k ≤1(x). (9)

Here we used the property that the Fenchel conjugate of
a norm is the indicator function of the unit ball of its dual
norm. The convex envelope of the cardinality function ||·||0
over ||x||2 ≤ 1 is thus given by the dual norm of vector k-
norm || · ||(2)k . In [1] it was shown that || · ||(2)∗k (the dual
norm of || · ||(2)k ) is indeed the k-support norm as defined
therein and consequently it follows that || · ||(2)k , again, must
be the convex envelope of the cardinality function on the
unit ball ||x||2 ≤ 1.

However, we will show that the dual norm || · ||(2)k is
significantly more convenient to work with, rather than the
actual k-support norm. An explicit formula for calculating
this primal norm is in fact given in [1] but this expression is
obtained indirectly through the dual norm by solving

1

2
(||x||spk )2 = min

y
xT y − 1

2
(||y||(2)k )2 (10)

This equality follows from an identity that holds for any
norm || · ||, that 1

2 ||x||
2 = supy x

T y − 1
2 ||y||

∗2. The
above problem can be reformulated as a linearly constrained
quadratic program, (see Prop 2.1 [1]). The resulting formula
is then a consequence of the necessary and sufficient condi-
tions for optimality of this reformulation. The integer r of
that proposition is in fact directly related to the indices of



the non-zero dual variables of (10). We will return to this
relationship between existing formulations and ones given
here, in the following sections. We will also in this paper
attempt to show that carrying out the calculations entirely
in the dual space will not only result in more manageable
formulations but will also lead to insights useful in arriv-
ing at our proposed algorithm, a more efficient method for
minimizing k-support norm regularized loss functions.

3. Sparsity Regularized Parameter Estimation
It was proposed in [1] that the k-support norm would

be an appropriate regularizer for general learning problems.
In particular when constraints on sparsity as well as the l2-
norm are present. The general form of the problem consid-
ered in the original paper is as follows,

min
x∈D

l(x) +
γ

2
(||x||spk )2. (11)

Where k ∈ [1, d] and γ > 0 is a regularization parameter.
The function l : D 7→ [−∞, +∞] is a smooth, convex loss-
function with a Lipschitz continuous gradient and D ⊆ Rd
a convex domain.

The problem (11) can then efficiently be solved using
first-order accelerated proximal gradient methods [4]. This
class of methods require the computation of the gradient∇l
and the proximity operator of the spectral norm. For non-
smooth loss functions different proximal methods could in-
stead be considered, such as Douglas-Rachford Splitting
where l ∈ C1 is not a requirement, resulting in similar al-
gorithms. However, such methods will not be dealt within
this paper.

Definition 3.1 The proximity operator, proxf : Rd 7→ Rd
is defined as

proxf (y) = arg min
x

[
f(x) +

1

2
||x− y||22

]
(12)

where f : Rd 7→ R is convex and lower semi-continuous.

Here we will particularly address the issue of efficiently
evaluating proximity operators originating from problems
on the form (11).

3.1. The Proximity Operator of the k-support Norm

Next we will establish a number of properties of the
proximity operator of the square of the k-support norm
necessary for the derivation and analysis of our proposed
method.

With f(x) = ||x||spk the proximity operator related to
(11) will have the form

proxγ/2f2(v) = arg min
x∈Rd

[
1

2
||x− v||22 +

γ

2
(||x||spk )2

]
,

(13)

where v is obtained from the gradient of l. In [1, 10] this
operator was solved using exhaustive search and a combi-
nation of exhaustive search and binary search respectively.

From the Moreau decomposition [13, 14] we have that
for a proper, convex and lower semicontinuous function f :
Rd 7→ R the following relationship holds:

v = proxf (v) + proxf∗(v). (14)

That is, any proximity operator can be computed via the
proximity operator of its Fenchel conjugate. We can now
write,

prox(γ/2f2)∗(v) = arg min
y∈Rd

[
1

2
||y − v||22 +

1

2γ
(||y||sp∗k )2

]
(15)

Here we used the same property as in (10). We argue that
this dual proximity operator, at least for our purposes, is a
more convenient representation for the problem (13).

Proposition 3.1 For y = prox(γ/2f2)∗(v), the following
properties hold

(a) Elementwise non-expansive; |yi| ≤ |vi|, ∀i ∈
[1, ..., d].

(b) Sign-preserving; sign(vi) = sign(yi), ∀i ∈ [1, ..., d].

(c) Order-preserving; if |vi| ≥ |vj | for some i, j ∈
[1, ..., d]. then |yi| ≥ |yj |

As a consequence of proposition 3.1 we can then without
loss of generality assume that v is non-negative and sorted,
so vi ≥ vi+1 ≥ 0, i = 1, ..., d− 1. Then (15) is equivalent
to the following quadratic optimization problem,

arg min
y∈Rd

yi≥yi+1,
i=1,...,d−1

h(y) = yTEγy − 2γvT y. (16)

Here Eγ ∈ Rd×d a positive definite, diagonal matrix with

entries [Eγ ]ij =
{

1+γ, i=j, i≤k
γ, i=j, i>k
0, i6=j

.

Definition 3.2 Given a constrained convex optimization
problem, with the feasible region defined by a set of func-
tions g1(x) ≤ 0, ..., gl(x) ≤ 0. A constraint gi(x) ≤ 0 is
defined as inactive if it can be removed without influencing
the final result of the optimization. Constraints that are not
inactive are defined as active.

Let I∗ ⊆ {1, ..., d − 1} denote the set of active constraints
at the optima of (16).

Proposition 3.2 The set of active constraints I∗ at optimal-
ity of (16) is either empty or an interval containing k, i.e
I∗ = [κl, κu], κl ≤ k ≤ κu.



If we know I∗ = [κl, κu] then finding the minimizer y∗

of (16) is trivial and given by,

y∗i =


γvi
1+γ , i < κl

γ
∑
j∈I∗ vj∑

j∈I∗ [E
γ ]jj

, i ∈ I∗

vi, i > κu
(17)

3.2. Bounds on γ

Before we state our proposed algorithm for solving (13)
we briefly establish some further relationships between the
dual formulation of the previous section and that of [1].

There the k-support norm was interpreted as a trade-off
between the l2 and l1 norms. This interpretation can also be
realised by noting that for a given I∗ then (16) is equivalent
to

prox(γ/2f2)∗(v) = arg min
y∈Rd

[1
2
||y − v||22

+
1

2γ
||y1:κl−1||22 +

(k − κl + 1)

2γ
||yκl:d||2∞

]
. (18)

The dual problem of which is

min
x∈Rd

[1
2
||x− v||22 +

γ

2
||x1:κl−1||22

+
γ

2(k − κl + 1)
||xκl:d||21

]
(19)

and the aforementioned norm trade-off becomes apparent.
A further observation that can be made is that if either

κl = 1 or I∗ = ∅ the k-support norm reduces to the l1-
norm or the vector k-norm respectively both of which have
closed form solutions. We can in fact establish bounds on γ
for when either of these cases occur by the following propo-
sition.

Proposition 3.3 For the primal proximity operator (13) we
have the following bounds on γ.

(a) If γ ≥ vk+1

vk−vk+1
then the squared k-support regulariza-

tion term of (13) reduces to (|| · ||(2)k )2.

(b) If γ ≤ (k−1)v1∑d
i=1 vi−dvi

then the squared k-support regu-

larization term of (13) reduces to || · ||21.

4. Convex Envelopes of Rank
In this section we extend the notion of the k-support

norms to matrices and show that it is related to the convex
envelope of the rank operator over a particular domain. The
connection between cardinality and rank is well known, see
for instance [15], and is perhaps best realised from the fact
that for a diagonal matrix, constraints on its rank directly
equate to constraints on the cardinality of its diagonal ele-
ments. For general matrices this can be shown to translate

as the cardinality of its singular values. It is then a natu-
ral extension to apply convex relaxations of cardinality and
sparsifying vector norms as a surrogate for rank.

One of the more popular such surrogates is perhaps the
nuclear norm, denoted1 || · ||∗, also known as the trace norm
or Ky-Fan norm. It was in [7] proven that the convex en-
velope of the rank function on the domain of the matrix
operator norm unit ball is indeed the nuclear norm. This
result can be obtained by showing that for f(·) = rank(·) :
Rm×n 7→ N+ its Fenchel biconjugate becomes

f∗∗(X) = ||X||∗, X ∈ {X ∈ Rm×n
∣∣ ||X|| ≤ 1 }, (20)

cf. (5).
With a similar argument to that of section 2, obtaining

convex envelopes of rank on different domains can then be
attempted. On the domain of the Frobenius norm unit ball
we have the following result.

Theorem 4.1 The convex envelope of the indicator func-
tion χD(F )

k

of the set D(F )
k = {X ∈ Rm×n

∣∣ rank(X) ≤
k, ||X||F ≤ 1}, becomes

f∗∗(X) = χ||X||sp∗k . (21)

Where ||X||sp∗k denotes a spectral k-support norm. Let σ
denote the vector of min(m,n) singular values of X , then
the spectral k-support norm is given by

||X||sp∗k = ||σ||spk . (22)

An interesting intuitive verification of the above result
might be reached with the following observation. On the
domain of the matrix operator norm unit ball the convex
envelope of rank is given by the nuclear norm. Similarly,
on the domain of the matrix Frobenius norm unit ball the
convex envelope of rank is given by the spectral k-support
norm. These relationships and more are summarised in ta-
ble 1. This table further illustrates the equivalence between
cardinality and rank pointed out in [15] and their relation to
the k-support norm.

5. Efficiently Solving the Proximity Operator
for the k-support Norm

The proposed method for solving the proximity operator
associated with the k-support norm is presented and sum-
marised in this section.

Our algorithm is motivated by the results of proposition
3.2 and (17). The underlying idea is that if we can find
the set of active constraints then solving proxγ/2f2(v) is
straightforward.

1Not to be confused with the dual norm || · ||∗.



Concept: cardinality
Elements: vectors, x ∈ Rd

Domain: ||x||∞ ≤ 1 ||x||2 ≤ 1
Convex

Surrogate: ||x||1 ||x||spk

Concept: rank
Elements: matrices, X ∈ Rm×n

Domain: ||X|| = ||σ||∞ ≤ 1 ||X||F = ||σ||2 ≤ 1

Convex
Surrogate: ||X||∗ = ||σ||1 ||X||sp∗k = ||σ||spk

Table 1. Summary of the convex surrogates and different domains
discussed in this paper.

Let I = [κl, κu] be a subinterval of {1, .., d} containing
k. The set I is called valid if

vκl < hlγ(κ
l, κu) =

(1 + γ)
∑κu

j=κl vj∑κu

j=κl [E
γ ]jj

(23)

vκu > huγ(κ
l, κu) =

γ
∑κu

j=κl vj∑κu

j=κl [E
γ ]jj

. (24)

This follows directly from applying (17) to definition 3.2.

Proposition 5.1 Let I be a valid subset.

(a) If vκl−1 < hlγ(κ
l − 1, κu) then I ∪ {κl − 1} is also

valid.

(b) If vκu+1 > huγ(κ
l, κu + 1) then I ∪ {κu + 1} is also

valid.

If a valid set I can not be expanded in accordance with
proposition 5.1 we call the subset maximal.

Proposition 5.2 If I is valid and maximal then I∗ = I.

The above results suggest a manner of solving (13),
by finding a sequence of valid, strictly inclusive subsets
{It}nt=0, where I0 ⊂ I1 ⊂ ... ⊂ In. If It is valid,
we are guaranteed by proposition 5.1 to find a strictly in-
cluding subset It+1. Assuming I∗ is non-empty, then with
I0 = {k} (the smallest valid subset) such an approach guar-
anteed to terminate in a finite number of steps and hence by
proposition 5.2 it will converge to the optimal subset I∗.

Unfortunately, increasing the intervals one element at a
time will not be sufficiently efficient. However, with the fol-
lowing proposition the computational requirements of our
method can be significantly reduced.

Proposition 5.3 The expressions huγ(κ
l, κu) − vκl =

(1+γ)
∑κu

j=κl
vj∑κu

j=κl
[Eγ ]jj

− vκl and huγ(κ
l, κu)− vκu =

γ
∑κu

j=κl
vj∑κu

j=κl
[Eγ ]jj

.

are both monotonic in κl and κu respectively.

The above proposition permits the use of any dichotomic
divide and conquer search algorithm methods for finding
the sought after interval. Instead of updating the sequence
of intervals It incrementally as above we can instead use
for instance binary search algorithm [5] for updating κl and
κu. It can easily be shown that this modification will not
affect the convergence properties established earlier. The
proposed algorithm is summarized in alg. 1.

Algorithm 1 The proposed algorithm for Solving the prox-
imity operator for the k-support norm.

1: Input: v, γ
2: Output: x = prox(γ/2f2)(v) (solution of (13))
3: v′ ← sort(|v|)
4: if v′k ≥

1+γ
γ v′k+1 then

5: I∗ ← ∅ and goto 14
6: end if
7: Initialize: I0 ← [k, k], t← 0
8: repeat
9: κlt+1←BinarySearch(κl, 1, κlt, h

l
γ(κ

l, κut )− vκl)
10: κut+1←BinarySearch(κu, κut , d, vκu − huγ(κlt+1, κ

u))

11: It+1 ←
[
κlt+1, κ

u
t+1

]
12: t← t+ 1
13: until convergence
14: Solve for y′ given I∗ = It according to (17)
15: Reorder and impose signs on y′ in accordance to v and

3 to obtain y.
16: x← v − y

Remark: Here BinarySearch(i, u, l, f(i)) denotes a binary
search over i in the interval [u, l] for the smallest i such that
f(i) ≤ 0.

Solving prox(γ/2f2)(v) can hence be done inO(d log d)

time using algorithm 1. The sorting of v ∈ Rd takes
O(d log d). At most k and d − k binary searches are con-
ducted on κl and κu, each with a complexity of O(log k)
and O(log(d− k)), respectively.

6. Experimental Validation

Below we present the numerical results that illustrate
the computational performance of the proposed method and
formulations. We compared our algorithm with the current
state of the art for solving k-support regularized problems.
These two methods were both evaluated on a set of synthetic
and real world problems. As this work focussed solely on
computational efficiency we limit our reporting to compu-
tational metrics only. For results on evaluating the perfor-
mance of the k-support norm as an efficient regularizer we
instead refer the readers to the works of [1, 10]. We also
present some preliminary results on the spectral k-support
norm regularization.



6.1. Synthetic Problems

We first compared computational performance of our
method (algorithm 1) and that of Lai, et. al. ([10]) on solv-
ing the proximity operator (13). These two algorithms were
evaluated on a large number of synthetically generated data.

The vector v ∈ Rd was drawn from a uniform distribu-
tion, v = U([0, 1])d, the dimension was set to d = 105, the
sparsity to k = 0.1d and the regularization term to γ = 10,
unless otherwise stated. The results can be seen in figure 1.

As the two methods considered both assume that the in-
put is sorted according to magnitude, this is an overhead that
is present and constant in both methods. We therefore report
our computational comparison both including and exclud-
ing the time required by the sorting operator. The results
are still quite overwhelming in favor of algorithm 1 over
that of Lai et. al. Excluding sorting, our approach is up
to 500 times faster. When taking overhead of sorting into
account, this resulting speed-up drops, as expected, but our
algorithm is still orders of magnitude more efficient than
[10].

6.2. Real-World Problems

Here we show a computational comparison between the
same two algorithms as above but on two real-world appli-
cations and data sets. The reported computational require-
ment is now the total time taken to solve each problem in
question, not only solving the proximity operators. As the
computational overhead is identical for both methods the
speed improvements observed in the previous section will
now be slightly smaller yet, in our opinion, still convincing.

6.3. Subspace Clustering

The first problem considered is that of subspace seg-
mentation, see [6]. Given X ∈ Rm×n, containing n m-
dimensional data samples we have a problem on the follow-
ing form,

min
W∈Rn×n

1

2
||X −XW ||22 +

γ

2
||vec(W )||spk . (25)

Closely following the protocol described in [10] we con-
ducted two experiments, one on Face clustering using the
Extended Yale B database [8] and the other on motion seg-
mentation using the Hopkins 155 datasets [16]. The run-
time comparisons are shown in tables 2 and 3. It can there
be seen that our proposed algorithm is on these datasets as
much as 33 times faster than that of Lai et. al.

6.4. Sparse Coding

In this section we considered sparse coding for image
classification, with problems on the following form,

min
W∈Rd×n

1

2
||X −DW ||22 +

γ

2
||vec(W )||spk . (26)

Figure 2. Image noise removal using the spectral k-support norm
and the nuclear norm. Left: Original image. Middle: Noisy im-
age. Right: Recovered image using the spectral k-support norm.

HereX ∈ Rm×n is a matrix of n individualm-dimensional
image descriptors. The dictionary matrix D ∈ Rm×d con-
sists of d basis vectors, each of dimensionm. The vectoriza-
tion operator, denoted vec : Rm×n 7→ Rmn, maps matrices
onto vectors by stacking the columns of the given matrix on
top of one another.

Again following the protocol of [10] we evaluated the
run-times of the two methods on 2 separate datasets, the
UIUC-Sport dataset [12] and the Scene15 dataset [11]. The
results can be seen in tables 4 and 5.

6.5. Spectral k-support Norm

As a final experiment we present some results obtained
using the spectral k-support norm for image noise removal.
Partially corrupted images can be approximately recovered
by viewing the image as a low-rank matrix and applying
matrix completion approaches to restore the corrupted pix-
els. This assumption of low-rank does not in general hold
for natural images, however its top singular values will con-
tain a majority of the information contained in it.

We evaluated the performance of the spectral k-support
norm and nuclear norms as surrogates for rank on 3 differ-
ent images. We followed the methodology of [9] closely
and randomly corrupted half the pixels of each image. The
images were then recovered according to the above proce-
dure. The results are shown in fig 2.

Here we used k = 20 and tuned the regularization pa-
rameters individually for each norm for the best results. The
recovery error is listed in table 6. The actual minimization
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Figure 1. Row 1: Computational performance (excl. sorting). Row 2: Ratio of speedup (excl. sorting). Row 3: Computational perfor-
mance (incl. sorting). Row 4: Ratio of speedup (incl. sorting). Row 5: Number of binary searches conducted. In this set of experiments
our method typically only required 7− 8 binary searches. Each result is the average of 100 runs.



k 0.005n2 0.01n2 0.05n2 0.1n2 0.2n2 0.3n2 0.4n2 0.5n2

Lai et al. (5) 19.90 21.53 41.55 68.53 131.95 201.59 274.47 357.10
Ours (5) 10.61 10.78 11.02 10.89 11.09 11.43 11.43 11.38

Lai et al. (10) 82.45 89.38 144.30 220.08 393.34 586.28 803.24 1044.99
Ours (10) 52.18 52.98 54.22 54.97 56.08 56.27 57.48 58.10

Table 2. Running time comparison on face clustering task using the images of the first 5 and 10 classes of the Extended Yale B
dataset. The parameter γ is chosen from the set {10−4, 10−3, 10−2, 10−1, 100, 101, 102}, and the parameter k is selected from
{0.005n2, 0.01n2, 0.05n2, 0.1n2, 0.2n2, 0.3n2, 0.4n2, 0.5n2}, where n is the number of images. The table shows the computation time
(in sec) under different k, after being averaged over γ.

γ 10−5 10−4 10−3 10−2 10−1 10−0 101 102

Lai et al. 186.24 186.60 189.91 216.52 296.34 369.27 400.32 422.75
Ours 13.38 13.38 13.40 13.36 13.30 12.87 12.77 12.58

Table 3. Running time comparison on motion segmentation task using the Hopkins 155 datasets. We fix k = 0.5n2 (n is the number of
trajectories in each sequence), and vary the values of γ. For each method and value of γ we report the average running time computation
over 155 sequences.

Parameters k 10 20 30 40 50 100
γ = 1 Lai et al. 168.43 176.91 184.89 196.31 208.47 259.22
γ = 1 Ours 192.53 195.75 198.38 199.36 200.17 204.50
γ = 10 Lai et al. 179.80 194.49 209.49 220.04 234.89 306.15
γ = 10 Ours 186.19 192.64 194.08 197.25 198.85 202.67

Table 4. Running time comparison on sparse coding task using UIUC-Sport dataset. The average run-times of the first 10 images are
shown.

Parameters k 10 20 30 40 50 100
γ = 1 Lai et al. 155.36 164.83 175.77 186.31 197.72 250.53
γ = 1 Ours 181.70 184.01 184.91 187.14 188.45 193.04
γ = 10 Lai et al. 164.59 178.91 191.84 206.10 218.67 290.40
γ = 10 Ours 167.77 172.98 177.66 176.63 180.33 193.95

Table 5. Running time comparison on sparse coding task using Scene15 dataset. We report the average running times of the first 10 images.

of the problem at hand was obtained by direct application
of algorithm 1 to the singular value thresholding method of
[3].

Image \ Regularizer || · ||sp∗k || · ||∗
Boat 1.43 1.48

Cameraman 1.21 1.21
Lenna 1.89 1.97

Table 6. Comparison of achieved average reconstruction error for
the three test images using the nuclear norm and spectral k-support
norm.

Although this is in a very limited experimental setting
the results do seem to indicate that the k-support norm ap-
pear to give slightly more accurate reconstructions. Though
promising, these preliminary results would need to be veri-
fied in a more extensive experimental evaluation.

7. Conclusions
In this paper we have presented an alternative derivation

of the k-support norm that will hopefully help to increase
the general understanding of convex envelopes of cardinal-
ity. We have also established a connection between the k-
support norm and the rank operator on matrices over certain
domains. All in agreement with existing and established
theory. Finally, perhaps our main contribution was the pro-
posal of a novel algorithm for solving optimization prob-
lems regularized by the k-support norm. The behaviour and
performance of this method was thoroughly analysed and
empirically validated with very convincing results.
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