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Abstract

We present an object-based co-segmentation method that
takes advantage of depth data and is able to correctly han-
dle noisy images in which the common foreground object is
missing. With RGBD images, our method utilizes the depth
channel to enhance identification of similar foreground ob-
jects via a proposed RGBD co-saliency map, as well as to
improve detection of object-like regions and provide depth-
based local features for region comparison. To accurately
deal with noisy images where the common object appears
more than or less than once, we formulate co-segmentation
in a fully-connected graph structure together with mutu-
al exclusion (mutex) constraints that prevent improper so-
lutions. Experiments show that this object-based RGBD
co-segmentation with mutex constraints outperforms relat-
ed techniques on an RGBD co-segmentation dataset, while
effectively processing noisy images. Moreover, we show that
this method also provides performance comparable to state-
of-the-art RGB co-segmentation techniques on regular RGB
images with depth maps estimated from them.

1. Introduction
The goal of co-segmentation is to extract similar fore-

ground objects from among a set of related images [30, 17,
19, 36, 31]. In contrast to single-image segmentation, co-
segmentation makes use of the information in multiple im-
ages to infer the objects to extract. Existing methods op-
erate on RGB images and utilize descriptors such as col-
or histograms, SIFT and HOG to perform co-segmentation.
However, color-based features have limitations, as they can-
not distinguish a foreground from a similarly colored back-
ground, and are sensitive to illumination differences among
images. These issues are illustrated in Fig. 1(c), where the
common foreground object is merged with a background
object of similar color in the second row, and illumination
change causes the target to be missed in the third row.

To address this problem, we propose in this paper to in-
troduce the depth cue into co-segmentation, which can help

(a) RGB image (b) Depth image (c) Result with RGB (d) Result with RGBD

Figure 1. Co-segmentation with RGB vs. RGBD images. (a) A set
of RGB images which all contain a white cap in common. (b) The
corresponding depth maps. (c) Co-segmentation results based on
RGB images, which exhibit errors due to similarly colored back-
ground objects (second row) or illumination change (third row).
(d) Co-segmentation results with RGBD images. Our use of depth
cues notably improves co-segmentation quality.

to reduce ambiguities with color descriptors. How to effec-
tively utilize depth information in co-segmentation is not s-
traightforward. In single RGBD image segmentation, depth
can be treated as an additional color channel, since the depth
over a foreground object is generally consistent yet distinc-
t from the background [25]. However, in co-segmentation
where commonalities among images are exploited, differ-
ent depth values for the same object in different images can
create matching problems.

In this paper, we present an object-based RGBD image
co-segmentation method based on RGBD co-saliency maps,
which capitalize on depth cues to enhance identification of
common foreground objects among images. Depth is also
utilized to provide additional local features for region com-
parison and to improve selection of object-like regions [14].
Objectness has been used in co-segmentation to overcome
limitations of low-level features in separating complex fore-
grounds and backgrounds [35], but such methods have been
formulated with an assumption that exactly one common
object exists in all of the images. If the common foreground
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Figure 2. Overview of our approach. From the input RGB images and their depth maps (a), we generate the object candidates (b) and
RGBD co-saliency maps (c). An co-segmentation graph (d) is built to select the best candidates as the co-segmentation result (e).

is missing in an image, an irrelevant region will be extract-
ed instead. In our work, we additionally address this issue
through a fully-connected graph formulation that enables
the option of selecting no regions or more than one region
in an image with the help of the opposite effects of the unary
and pairwise terms.

An overview of our approach is shown in Fig. 2. Given a
set of images and their depth maps, we first generate a fore-
ground candidate pool for each image using RGBD-based
multiscale combinatorial grouping [14]. For each candidate
region, an RGBD co-saliency score is computed and added
to the RGBD objectness score calculated in candidate gen-
eration to measure the likelihood that the candidate belongs
to the foreground. With the candidates and their likelihood
scores, a candidate selection graph is built, with each node
representing a candidate in an image, and pairwise edges
added to connect all pairs of candidates among all of the im-
ages. Mutual exclusion (mutex) constraints are also intro-
duced between nodes to restrict candidate selection within
the same image. The graph is formulated as a binary inte-
ger quadratic program (IQP) problem, which is optimized
by using the fixed-point iteration technique.

To the best of our knowledge, this is the first paper to ad-
dress co-segmentation in RGBD images. We demonstrate
that depth cues can serve as a helpful complement to col-
or features in co-segmentation. Moreover, our formulation
with mutex constraints is shown to provide greater flexibil-
ity by handling any number of common foreground objects
in an image. For evaluation, we constructed a new RGB-
D co-segmentation dataset with pixel-level ground-truth.
In addition to co-segmentation of RGBD images, we also
show that our technique can improve co-segmentation re-
sults for regular RGB images by incorporating depth esti-
mated from the images using [18].

2. Related work

RGBD-based segmentation has attracted much inter-
est because of the wide availability of affordable RGBD
sensors. Supervised RGBD segmentation methods employ
depth cues as region descriptors for object classes, and learn
object class models from labeled training data [33, 14]. In
unsupervised RGBD segmentation, depth cues are used to
better preserve object boundaries and to constrain the ob-
ject surface to be smooth and consistent [25, 29]. While
these uses of depth are suitable for precise region extrac-
tion in single-image segmentation, the co-segmentation task
addressed in our work is instead driven by relationships a-
mong regions in different images. For co-segmentation, we
utilize depth information in a manner that helps to infer the
common foreground in a set of images, in part through the
formulation of RGBD co-saliency maps. From the exam-
ination of similar object regions in different images, accu-
rate segmentation results are obtained without the need for
labeled training data.

Co-segmentation was first introduced in [30], which us-
es histogram matching to simultaneously segment the com-
mon object in a pair of images. This paper has inspired
much follow-up work, including co-segmentation methods
based on maximum flow optimization to increase efficien-
cy [15], intelligent scribble guidance to facilitate processing
of larger image sets [2], discriminative clustering that han-
dles greater variation in foreground appearance [17], and
rank constraints for scale invariance [26]. In [35], an object-
based framework was introduced for co-segmentation, in
which a measure of ‘objectness’ is considered in identi-
fying foregrounds. Objectness was also utilized for co-
segmentation in [24] within a shortest path search frame-
work. Different from methods based on low-level descrip-
tors, object-based techniques make use of a mid-level rep-
resentation that aims to delineate an object’s entirety. Our



Figure 3. Some samples of the object candidates obtained
with [14]. It can be seen that candidates within an image may
have substantial overlap.

method is also based on objectness, but in contrast to pre-
vious object-based co-segmentation techniques, it utilizes
depth information to improve the detection of object regions
and to enhance identification of common foreground objects
in the images.

Object-based co-segmentation techniques typically em-
ploy object proposal methods [7, 34, 11, 16, 20] to generate
a pool of foreground candidates for each image. Among
these candidates, the co-segmentation result is determined
primarily by its commonality with candidates in other im-
ages. This is formulated in [35, 24] as a graph where a layer
of nodes represents the candidates in an image, and links
that represent pairwise commonality energy are placed be-
tween each pair of nodes in different layers. With this graph
structure, a co-segmentation solution will include exactly
one candidate per image. The work in [13] extracts com-
mon candidates from multiple videos by using an object-
based co-selection graph, which is formulated as a classical
CRF energy minimization problem. However, these meth-
ods have an important assumption that the common fore-
ground objects must appear in all the images/videos in the
set. This strong assumption greatly limits the application
field of these methods. If the common foreground object
happens to be missing in one of the images, however, these
methods will segment an irrelevant region instead. In our
work, we propose a more general graph structure where
links also exist among nodes of the same image, and an
arbitrary number of candidates within an image can poten-
tially be chosen, including no candidates at all. With such a
graph, it is possible to obtain inapt solutions such as multi-
ple overlapping candidates within the same image as shown
in Fig. 3, which would have significant pairwise common-
ality. To avoid such solutions, we make use of mutex con-
straints among candidates within the same image.

Mutex constraints express mutual exclusion rules
where if one candidate is selected, certain other candidates
cannot also be chosen. These have been used in object-
based video segmentation to prevent selection of spatially
distant objects in consecutive frames, and more than one
object in a single frame [23]. In our work, we also uti-
lize mutex constraints, but instead they are used to avoid
selection of overlapping candidates in the co-segmentation
result. With the use of mutex constraints together with our
fully-connected graph structure, it is possible for our co-
segmentation to select no candidates in an image when the

common foreground object is missing. Moreover, it is al-
so possible to select multiple non-overlapping candidates if
there exist multiple similar instances of the common fore-
ground object in an image.

3. Proposed method
Given a set of RGBD images {I1, ..., IN}, we first gen-

erate a set of object candidates, denoted by {x1, ..., xM}.
In our work, the candidates are computed using the 2.5D
region proposals generation method in [14], which is based
on multiscale combinatorial grouping [1] with the use of
depth cues. Our goal is to discover a small subset of can-
didates that contain the same or similar foreground object
among the images. Thus we introduce a binary label vari-
able ui for each object candidate xi, which takes either the
foreground label ui = 1, or the background label ui = 0.
We formulate the task of object-based co-segmentation as a
labeling problem in a weighted graph G = 〈V, E〉, in which
V = {x1, ..., xM} is the set of ‖V‖ = M nodes represent-
ing the object candidates in all of the images. The edges
E ⊆ V × V are represented in a symmetric pairwise matrix
with all nonnegative entries. Moreover, a mutex constraint
modeled as a binary matrix M ∈ {0, 1}M×M is added to
connect the nodes in the graph. If M(i, j) = 1 then the
two nodes ui, uj cannot belong to the same label. For all
vertices ui, we set M(i, i) = 0. The goal of our RGBD
co-segmentation is to find a labeling u = [u1, ..., uM ]T that
minimizes the following objective function:

u∗ = arg min
u

1

2
αuTAu− bTu,

s.t. uTMu = 0, and ∀i ∈ V : ui ∈ {0, 1}, (1)

where A is the pairwise matrix, and b associates a positive
unary term bi to each node ui.

3.1. Unary term

The unary term b measures the likelihood that the can-
didate belongs to the foreground, and it is defined as

bi = Obj(ui) · Sal(ui). (2)

The first term is a 2.5D objectness score Obj(ui) computed
from [14], which reflects the confidence that a region con-
tains a generic object in the RGBD image. The second term
is the RGBD co-saliency score Sal(ui).

Co-saliency detection relates to visually salient stimuli
combined with consistency among multiple images [8, 12,
6, 5]. It has been shown to be helpful for discovering a
common foreground in an image set. However, existing
co-saliency detection methods [8, 12, 6] are based only on
color images, and can easily be misled by complex back-
grounds as shown in Fig. 4. On the other hand, depth-
based saliency methods [27, 22, 28] can effectively dis-
tinguish salient objects from backgrounds of similar color,
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Figure 4. Saliency map comparisons for a set of images (a) and
their corresponding depth maps (b). In (c), color-based co-saliency
detection (e.g., [12]) mixes the common foreground (white cap)
with the complex backgrounds. In (d), RGBD saliency detection
(e.g., [28]) generally distinguishes the foreground from the com-
plex background, but it lacks a way to identify common objects
in multiple images. By contrast, our RGBD co-saliency map in
(e) effectively combines depth and co-saliency cues to detect the
common foregrounds in multiple RGBD images.

but do not account for commonalities among images. In
our work, we take advantage of both approaches to com-
bine the depth and co-saliency cues from multiple RGBD
images by integrating them within the saliency map fusion
framework of [6]. The method in [6] exploits the low-rank
relationship of multiple saliency sub-maps and obtains self-
adaptive weights to generate a final co-saliency map. We
combine five kinds of sub-maps, specifically single-image
RGB saliency [37, 38] and RGB co-saliency [12] and RGB-
D saliency [28, 9]. This yields the RGBD co-saliency map,
as shown in Fig. 4, which measures the likelihood of be-
longing to the foreground while accounting for object simi-
larity among the images. From the RGBD co-saliency map-
s, we compute the RGBD co-saliency score Sal(ui) for n-
ode ui as

Sal(ui) = S(ui) + log

(
S(ui)

S(ūi)
+ 1

)
, (3)

where S(ui) denotes the mean RGBD co-saliency map val-
ue among the pixels of object candidate ui, and ūi de-
notes the pixels outside of candidate ui but within the min-
imum bounding box enclosing the candidate. Our RGB-
D co-saliency score Sal(ui) accounts for two factors, one
being the RGBD co-saliency values of the candidate itself,
and the other being the regional contrast of the candidate
from its surroundings. Different from the objectness score
Obj(ui), which is designed to identify extracted region-
s that are object-like and compact, the RGBD co-saliency
score Sal(ui) is used to find regions of interest that exist in
common among the images.

3.2. Pairwise matrix

The pairwise matrix A measures the similarity between
two object candidates, and is defined as

A(i, j) = Dcolor(i, j) ·Dshape(i, j) ·Ddepth(i, j), (4)

where Dcolor(i, j), Dshape(i, j), and Ddepth(i, j) denote
the distances between the candidates ui and uj based on
color, shape and depth features. The RGB histogram and
HOG [10] are employed as the color and shape features.
The depth kernel descriptor [3] based on depth gradients is
used as the depth feature. The feature distances are mea-
sured using the L2-norm distance.

3.3. Mutex constraints

The mutex constraint M is used to control the selection
of overlapping candidates within the same image. It is a
necessary component for our graph structure in which al-
l candidates from all images are connected to each other.
Since significantly overlapping candidates within an image
often have a low pairwise distance, they may be selected to-
gether in the co-segmentation result if a mutex constraint is
not applied between them.

In this paper, we measure the overlap between two can-
didates as

Overlap(i, j) =
R(ui) ∩R(uj)

min (R(ui), R(uj))
, (5)

whereR(ui) denotes the area of candidate ui. Based on this
overlap measure, we define the mutex constraint matrix as

M(i, j) =

{
1, if Overlap(i, j) ≥ τ and i 6= j
0, otherwise, (6)

where τ is an overlap threshold (we set τ = 0.2 in our
experiments).

With this mutex constraint and our fully-connected graph
structure, it is possible to select any number of candidates,
including none, from an image as long as they do not over-
lap substantially. By setting the overlap threshold to τ = 0,
the solution would instead be constrained to select up to
one candidate per image, since mutex constraints would ex-
ist between each pair of candidates in the image. Our use
of mutex is different from that in [23], which constrains the
result to have exactly one candidate in each image, and thus
cannot deal with cases of missing or multiple common fore-
grounds.

We note that even though any number of candidates can
be selected from an image in our method, trivial solutions
are avoided because of the opposite effects of the unary and
pairwise terms in Eq. (1). Solutions that select all the can-
didates are avoided because of the pairwise term, which pe-
nalizes differences among the chosen candidates. The mu-
tex constraint helps as well by excluding candidates that are



highly overlapping. On the other hand, solutions that do
not select any candidates are prevented by the unary term,
which favors selecting as many candidates as possible. De-
spite this unary term, no candidate will be selected in an
image that is missing the common foreground, otherwise
the improperly chosen candidate would have high pairwise
costs for all its links to the common object in the other im-
ages.

3.4. Inference

To infer the co-segmentation solution, we formulate E-
q. (1) as an integer quadratic program (IQP). We first com-
bine the mutex constraints into the pairwise matrix to obtain
the following objective function:

u∗ = arg min
u

1

2
uTWu− bTu, (7)

s.t. ∀i ∈ V : ui ∈ {0, 1},

with
W = αA + γM. (8)

Similar to [4], we solve the IQP problem by employing the
fixed-point iteration method. Let us denote the objective

function of Eq. (7) as f(u) =
1

2
uTWu−bTu, and let y ∈

[0, 1]M denote a discrete point in the continuous domain.
We visit a sequence of points {y(t) ∈ [0, 1]M}t=1,2,... to
find candidate solutions for u∗. Each iteration consists of
two steps. First, for each point y ∈ [0, 1]M in the neighbor-
hood of y(t), we compute the first-order Taylor approxima-
tion of f(y) as

f(y) ≈ f(y(t)) + (y − y(t))T (Wy(t) − b)

= yT (Wy(t) − b) + const, (9)

where const does not depend on y. Since the approxima-
tion in Eq. (9) is convex in y, it can easily be computed with
a discrete minimizer as

ũ = arg min
y

yT (Wy(t) − b), (10)

and

ũi =

{
1, if (Wy(t) − b)i ≤ 0
0, Otherwise.

(11)

In the second step of iteration t, the algorithm checks
whether ũ can be accepted as a valid discrete solution if
the objective value f decreases. If f(ũ) < f(y(t)), we
let y(t+1) = ũ. In the case that f(ũ) ≥ f(y(t)), there is
a local minimum of f in the neighborhood of points y(t)

and ũ. We then estimate the local minimizer of f in the
continuous domain by linear interpolation:

y(t+1) = y(t) + η(ũ− y(t)), (12)

where the optimal value of η ∈ [0, 1] is computed by

η =

 1, if η∗ > 1
η∗, if 1 ≥ η∗ ≥ 0
0, if η∗ < 0

(13)

with

η∗ =
(Wy(t) − b)T (x̃− y(t))

(ũ− y(t))TW(ũ− y(t))
. (14)

The iterations stop when the following condition is sat-
isfied for all nodes ũi:

if (Wũ− b)i ≤ 0, then ũi = 1,

if (Wũ− b)i > 0, then ũi = 0.

After convergence, the last discrete solution ũ is used as
the final solution of Eq. (7). We initialize y(0) ∈ RM ran-
domly, where y(0)i ∈ {0, 1} and y(0) 6= 0. Because in our
algorithm, the objective value f decreases in each iteration,
it converges to a minimum. With a sufficiently large γ in E-
q. (7), the obtained solution satisfies the mutex constraints.

On our workstation with an Intel Xeon 3.2GHz CPU and
16GB RAM, it takes about 30s to process a 10k node graph
using unoptimized C++ code (for a set of 100 images with
100 candidates/image).

4. Experiments
In our implementation, we generate the top 100 object

candidates for each image. We set α = 0.25 and γ = 100
in Eq. (8) as the default parameters for all the experiments.

4.1. RGBD co-segmentation dataset

Since no datasets for RGBD co-segmentation are pub-
licly available, we have constructed one ourselves with
some images from the RGBD Scenes Dataset [21] and some
that were captured by ourselves. The dataset contains 16
image sets, each of 6 to 17 images taken from indoor scenes
with one common foreground object (193 images in total).
Pixel-level ground-truth is labeled for the common fore-
ground object in each image1.

We compare our algorithm with three recent methods for
RGB co-segmentation [17, 19, 24]. For all methods, we
used the original implementations provided by the authors.
Since the method in [24] is also an object-based technique,
we additionally include a variant of it (referred to as [24]
+ Depth) incorporating depth cues in the same way as in
our method (with 2.5D proposals, our RGBD co-saliency
map, and the depth kernel descriptor [3] included in the
pairwise term). For our algorithm, we show not only its
final full results (Our RGBD), but also those of a few vari-
ants: without using depth (Our RGB), without the mutex

1https://sites.google.com/site/huazhufu/home/
rgbdseg

https://sites.google.com/site/huazhufu/home/rgbdseg
https://sites.google.com/site/huazhufu/home/rgbdseg


Set (# images) [17] [19] [24] [24] + Depth Our RGB w/o M Our RGB Our RGBD w/o M Our RGBD
Ball (13) 66.0 (28.5) 92.6 (57.8) 89.5 (61.0) 95.2 (70.2) 90.7 (34.0) 90.5 (55.9) 86.2 (28.6) 93.0 (48.2)

Blue light (7) 45.7 (1.4) 89.1 (7.1) 91.9 (28.7) 91.9 (28.7) 90.1 (26.9) 92.0 (33.2) 91.3 (30.1) 89.1 (31.5)
Box (20) 65.0 (22.6) 92.0 (65.6) 91.2 (38.0) 92.4 (49.2) 90.8 (32.8) 85.4 (30.6) 91.0 (66.5) 89.4 (34.8)

Carving (14) 50.6 (19.5) 85.8 (40.3) 86.2 (35.0) 86.6 (36.1) 90.6 (29.8) 82.4 (34.3) 87.8 (22.4) 91.6 (45.6)
Computer (8) 73.0 (47.1) 90.0 (65.9) 82.5 (59.9) 84.6 (53.7) 80.5 (25.9) 82.2 (40.7) 86.7 (53.2) 87.4 (59.9)

Cyan bowl (18) 49.5 (2.8) 90.0 (26.4) 80.9 (17.1) 88.9 (24.3) 93.3 (16.3) 93.6 (32.2) 91.4 (10.8) 95.3 (31.6)
Green bowl (15) 53.5 (3.0) 88.6 (16.1) 85.2 (22.1) 90.7 (38.3) 87.2 (20.1) 90.4 (29.2) 89.4 (21.5) 86.8 (15.7)

Person (8) 83.4 (63.7) 85.6 (66.9) 72.8 (47.8) 75.3 (33.2) 87.3 (60.7) 83.5 (61.8) 89.4 (66.8) 91.6 (78.4)
Red cap (13) 51.8 (10.0) 91.1 (39.2) 86.1 (52.7) 93.7 (62.5) 95.6 (22.3) 97.0 (74.3) 92.3 (20.5) 97.6 (59.5)
Red light (9) 48.3 (1.9) 67.8 (2.1) 87.1 (9.2) 88.8 (15.8) 94.8 (30.8) 93.7 (22.6) 89.7 (41.7) 94.1 (43.4)

Shoes (6) 61.3 (21.5) 96.1 (68.0) 97.3 (83.5) 98.3 (86.5) 94.3 (86.5) 93.5 (46.5) 97.6 (85.5) 98.3 (86.5)
Soda can (7) 50.8 (2.5) 95.2 (8.5) 78.5 (29.4) 85.3 (19.4) 95.6 (66.3) 89.9 (20.1) 97.0 (56.8) 99.3 (77.6)

Vase (17) 49.0 (5.5) 52.6 (2.6) 78.2 (12.6) 86.1 (20.1) 96.0 (24.9) 92.4 (30.6) 93.8 (29.5) 96.9 (53.6)
White bowl (12) 45.8 (0.03) 88.0 (19.6) 78.3 (5.4) 80.6 (4.9) 86.6 (15.1) 85.7 (17.4) 92.0 (11.5) 92.7 (26.9)
White cap (15) 47.3 (1.0) 76.1 (19.2) 92.1 (49.1) 93.0 (50.7) 94.4 (27.7) 94.0 (37.2) 90.1 (22.1) 94.4 (34.9)

Yellow light (11) 50.9 (1.4) 89.6 (11.1) 89.4 (30.5) 90.0 (29.9) 98.6 (29.3) 94.6 (16.9) 97.6 (29.8) 96.2 (39.0)
Average 55.8 (14.5) 85.7 (32.3) 86.1 (38.9) 88.9 (39.0) 89.1 (32.33) 90.9 (38.7) 90.2 (37.2) 93.3 (47.9)

Table 1. Accuracy and IOU (in parentheses) on our RGBD co-segmentation dataset. The first column shows the set name with the number
of images. The top result for each set is highlighted in boldface.

constraints (Our RGBD w/o M), and without depth and mu-
tex constraints (Our RGB w/o M). In the versions without
mutex constraints, we simply set γ = 0 in Eq. (8). Two
common performance metrics of image segmentation are
used: accuracy, which is defined as the ratio of correctly
labeled pixels in both the foreground and background, and
intersection over union (IOU), which is the standard metric
of PASCAL challenges.

Table 1 lists the accuracy and IOU scores of each method
on our RGBD co-segmentation dataset. Some of the visu-
al results are shown in Fig. 5. In [17], the discriminative
clustering method is used to partition the images into fore-
grounds and backgrounds. On our dataset, we found that it
often misses small objects, as shown in Fig. 5 (c), which
leads to lower performance. The method in [19] uses a
diffusion-based optimization framework that works well for
object scale variations. However, its pixel-based segmen-
tation was found to produce many meaningless fragments,
as shown in Fig. 5 (d). The object-based method in [24]
employs shortest path search to find the best candidates in
multiple images. We found that it can produce results better
than [17] and generally comparable in quality to [19]. Our
method without depth obtains scores similar to [24] but is
also able to handle noisy images where the common object
appears more or less than once. With the depth cues, the
RGBD co-segmentation methods, namely [24] + Depth and
our RGBD method, are better than RGB methods in most
of the cases. The depth cue helps to distinguish similarly-
colored foregrounds and backgrounds (‘Carving’ set) and
better deal with object size/viewpoint changes (‘Soda can’
set) and illumination variation (‘Green bowl’ set). For [24],
its directed graph connects only adjacent nodes, and this
lack of global constraints can lead to a local solution. For
example, in the ‘Red cap’ set, the complex background mis-
leads the co-segmentation of [24] + Depth. By contrast, our

Methods [17] [32] [35] [31] [36] Our RGB Our RGBD

Alaska bear 74.8 86.4 90.0 90.0 90.4 92.8 93.5
Baseball 73.0 90.5 90.9 90.9 94.2 93.1 96.5
Stonehenge 1 56.6 87.3 63.3 91.3 92.5 86.7 93.0
Stonehenge 2 86.0 88.4 88.8 84.2 87.2 75.7 83.5
Soccer 76.4 82.6 87.5 86.7 89.4 93.0 92.1
Ferrari 85.0 84.3 89.9 92.7 95.6 83.5 91.7
Taj Mahal 73.7 88.7 91.1 81.7 92.6 84.9 88.7
Elephant 70.1 75.0 43.1 86.2 86.7 90.1 90.4
Panda 84.0 60.0 92.7 92.2 88.6 80.4 81.2
Kite 87.0 89.8 90.3 94.9 93.9 93.7 96.6
Kite panda 73.2 78.3 90.2 90.9 93.1 77.1 83.8
Gymnastics 90.9 87.1 91.7 97.7 90.4 95.8 95.4
Skating 82.1 76.8 77.5 79.9 78.7 81.7 81.7
Balloon 85.2 89.0 90.1 92.7 90.4 92.5 96.5
Statue 90.6 91.6 93.8 91.1 96.8 86.0 92.7
Bear 74.0 80.4 95.3 86.2 88.1 85.3 94.8
Average 78.9 83.5 85.4 89.6 90.5 86.8 90.7

Table 2. Accuracy scores on the iCoseg dataset.

method based on a fully-connected graph is more robust to
complex backgrounds and object occlusion. Without mu-
tex constraints, our method will output multiple candidates
for one image, and we take the union of these candidates
as the segmentation result. This generally leads to worse
performance, as shown in Table 1.

4.2. Application to RGB images with estimated
depth maps

We have also applied our RGBD co-segmentation
method to RGB images with depth maps that have been
estimated through non-parametric depth sampling [18]. In
this experiment, we evaluate our method on the iCoseg co-
segmentation dataset [2], which is the largest publicly avail-
able co-segmentation benchmark. We used the original im-
plementation of [18] with default parameters to estimate
the depth map for each image in the iCoseg dataset. For
this dataset, since the estimated depth maps by [18] are
coarse and sometimes inaccurate, we employ the 2D pro-
posal method in [11] to generate the candidates. Our al-
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Figure 5. Some co-segmentation results on our RGBD co-segmentation dataset. From left to right: input images, depth maps, results
of [17], [19], [24], [24] + depth, our RGB, and our RGBD co-segmentation. (Best viewed in color.)

gorithm is compared to the state-of-the-art co-segmentation
methods [17, 35, 32, 31, 36]. Since the code for [35, 32, 36]
has not been made available, we directly report the accuracy
scores provided in these papers. Table 2 lists the accuracy
scores on the iCoseg dataset, with the same number of im-
ages used in all of the methods.

Our method without depth obtains a slight improvemen-
t over the other object-based co-segmentation method [35]
and also outperforms the methods in [17, 32]. With the es-
timated depth maps, our RGBD co-segmentation exhibits
significant improvement in most of the cases. Fig. 6 dis-
plays some results of our RGB and RGBD co-segmentation
on the iCoseg dataset. The estimated depth maps, though

coarse and sometimes inaccurate, can nevertheless help to
distinguish the common objects from the backgrounds in
some cases, e.g., the ‘Bear’ and ‘Taj Mahal’ sets, where the
depth maps show clear boundaries between object and back-
ground. Some estimated depth maps are highly inaccurate
but still provide relative depth information between the ob-
ject and background that is useful for separating them, e.g.,
the ‘Stonehenge’ and ‘Elephant’ sets. Moreover, this ex-
periment also demonstrates the proper handling of the mul-
tiple instances of the common foreground, e.g., the ‘Soc-
cer’ set. However, our method with estimated depth map-
s does not significantly outperform the state-of-the-art co-
segmentation method [36], which is based on consisten-



Figure 6. Our RGBD co-segmentation results on the iCoseg dataset. Top to bottom: one of the input images, its estimated depth map, and
the results of our RGB and our RGBD co-segmentation. (Best viewed in color.)
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Figure 7. The average accuracy scores for different values of pair-
wise weight α on our RGBD co-segmentation dataset.

t functional maps for transporting properties between the
RGB images. One possible explanation is that our method
employs object proposals as the basic element of process-
ing, which may fail to find the entire region when the object
is composed of multiple highly diverse components, e.g.,
the image sets of ‘Panda’ and ‘Kite panda’ in the last two
columns of Fig. 6.

4.3. Discussion

Parameter evaluation: Our method contains two pa-
rameters: pairwise weight α and mutex weight γ in E-
q. (8). The mutex weight γ determines whether the solution
from Eq. (7) will satisfy the mutex constraints. Thus, γ is
set to a sufficiently large value and has little effect on co-
segmentation results. We take the accuracy as an example
to analyze the sensitivity of α, as shown in Fig. 7, where
we fix γ = 100 and change the pairwise weight α. It can be
seen that the performance is fairly stable for different values
of the pairwise weight, when α is larger than 0.2. Note that
when α = 0, only the unary term is active, which results

Accuracy IOU

[17] 55.7± 0.6 13.0± 0.6

[19] 81.5± 0.6 22.1± 1.8

[24] 85.3± 1.1 31.7± 0.9

[24] + Depth 88.7± 0.4 30.7± 0.6

Our RGB 87.1± 0.8 31.7± 1.0

Our RGBD 92.3 ± 0.6 38.8 ± 2.8

Table 3. Average accuracy and IOU on the RGBD co-segmentation
dataset with noisy images.

in selecting all the candidates except those excluded by the
mutex constraint.

Images sets with noisy images: We also conducted an
experiment specifically for image sets which include noisy
images that are missing the common foreground object.
Here, we employ our RGBD co-segmentation dataset but
add two random unrelated images to each image set. We
compare our method with other methods [17, 19, 24]. We
repeat the experiment five times with different random out-
lier images. Table 3 shows the average performance scores,
which indicate that our method more effectively handles
cases of noisy images.

5. Conclusion

We have proposed an object-based co-segmentation
method for RGBD images that makes effective use of depth
information. With a fully-connected graph structure and
mutex constraints, our method is able to properly deal with
image sets that contain noisy images with more than or less
than one common foreground object.

Acknowledgements: This work is supported by the Sin-
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