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Abstract

Our aim is to show how state-of-the-art computer vision
techniques can be used to advance prehensile analysis (i.e.,
understanding the functionality of human hands). Prehen-
sile analysis is a broad field of multi-disciplinary interest,
where researchers painstakingly manually analyze hours of
hand-object interaction videos to understand the mechan-
ics of hand manipulation. In this work, we present promis-
ing empirical results indicating that wearable cameras and
unsupervised clustering techniques can be used to automat-
ically discover common modes of human hand use. In par-
ticular, we use a first-person point-of-view camera to record
common manipulation tasks and leverage its strengths for
reliably observing human hand use. To learn a diverse set
of hand-object interactions, we propose a fast online clus-
tering algorithm based on the Determinantal Point Process
(DPP). Furthermore, we develop a hierarchical extension
to the DPP clustering algorithm and show that it can be
used to discover appearance-based grasp taxonomies. Us-
ing a purely data-driven approach, our proposed algorithm
is able to obtain hand grasp taxonomies that roughly corre-
spond to the classic Cutkosky grasp taxonomy. We validate
our approach on over 10 hours of first-person point-of-view
videos in both choreographed and real-life scenarios.

1. Motivation
Why hands? Human hands provide a rich source of in-
formation about physical manipulation. However, extract-
ing information about the mechanisms of the hand requires
persistent and diligent observation; thus, automating the vi-
sual inspection of hand interactions will facilitate large scale
analysis and has the potential for significant impact in mul-
tiple disciplines.

The earliest work on understanding the mechanism of the
hand was highly influential and helped lay the ground work
for many disciplines. In this paper, we are particularly inter-
ested in work that explored the space of hand manipulation
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Figure 1. Canonical grasp types [11]

through discrete grasp categories or taxonomies [16, 17, 18,
28, 40, 41, 49, 52, 63]. Early work by Schlesinger [63] clas-
sified grasps into six major types based on hand and object
properties. Keller [41] observed object-contact patterns in
various activities of daily living to understand the statistics
of hand usage. The basic findings of Keller in the 1940s
played an influential role in the design of the modern ar-
tificial hand. Napier’s [54] 1956 categorizations of grasps
into precision and power grasps was widely adopted by re-
searchers in the medical, bio-mechanical, and robotic fields.

In the context of robotic manipulation, domain con-
strained categorical representations of grasps such as
Cutkosky and Wright’s hand grasp taxonomy [11] played
an important role in guiding robotic hand design. To this
day, robotics researchers painstakingly analyze hours of
hand-object interactions, manually categorizing and label-
ing hand use [6] because of the benefits it brings to under-
standing robotic arm design. In the early 1990’s, Kang and
Ikeuchi [37, 38, 39] presented a computational framework
for grasp identification, allowing a robotic system to ‘under-
stand’ a demonstrated human grasp in order to replicate the
action with a robotic arm. Their work presented an impor-
tant paradigm of using the visual classification of a human
grasp to automate robotic manipulation; a theme which we
will develop in this paper.

The use of grasp categories and taxonomies also play an
important role in fields such as gesture recognition [3], com-



puter graphics [61], neuromuscular rehabilitation [70], oc-
cupational therapy [34], neuroscience [62], and child devel-
opment [8]. Clearly, modeling and understanding of hand
interactions is an important area of work, and automating
the visual analysis of hand interaction can have far reach-
ing consequences beyond the walls of traditional computer
vision tasks such as gesture and action recognition.
Why egocentric video? We make the case that egocentric
video – video footage from a wearable head-mounted cam-
era – is critical for discovering dominant hand-object inter-
actions. The first-person point-of-view (POV) gives us the
optimal vantage point to observe how people manipulate
and interact with objects in the real world. The first-person
POV sees what the camera-wearer sees, is inherently high-
resolution, and is less prone to occlusion. Consider a third-
person POV camera mounted to a wall; it is very difficult to
maintain a detailed view of hands when the person is mov-
ing and manipulating very small objects due to low resolu-
tion and occlusion. On the other hand, a first-person POV
camera can provide detailed information about the contact
points of individual fingers even when the subject is mobile.
Automating Prehensile Analysis. The main contribution
of this work is to crystallize how recent developments in
egocentric vision and data-driven techniques now make it
possible to automate and advance prehensile analysis. Our
aim is to show how well-established computer vision tech-
niques can be used to advance basic science regarding the
functionality of human hands. Specifically, we will show
how to automatically discover dominant hand-object inter-
actions from a stream of ego-centric video.

Here is an outline of our procedure: We first harvest can-
didate hand-object regions by detecting the hand regions (if
any) in each frame, and then group the hand regions based
on their appearance using a Determinantal Point Process
(DPP). Our proposed online DPP clustering algorithm re-
ceives harvested hand regions as a temporal stream and cre-
ates new clusters based on diversity requirements. Our hier-
archical algorithm concurrently learns the secondary struc-
tures between hand grasps clusters in a streaming fashion.
Contributions. (1) We develop a robust method for extract-
ing hand regions from first-person video, (2) we propose a
novel streaming data clustering algorithm using the Deter-
minantal Point Process, (3) we propose a novel hierarchical
extension to the clustering algorithm to learn a grasp tax-
onomy. To the best of our knowledge, this is the first work
to address the problem of unsupervised visual hand grasp
discovery at this level of scale.

2. Prior Work
Human-object Interactions: Recently, researchers have
started investigating how humans interact with objects and
scenes (i.e. a functional representation) in order to improve
object detection, 3D understanding [24, 31], action recogni-

Figure 2. Images from UTG dataset [7], Yale Human Grasping
dataset [5], and GTEA+ kitchen activities dataset [22].

tion [30] or human pose estimation [71]. Functional repre-
sentations have been learned in completely supervised [13],
weakly supervised [12, 57], and unsupervised [26] learn-
ing paradigms. In terms of the type of data used, most of
these approaches observe human actions or object behav-
ior from third-person videos to extract models of the func-
tional categories [26, 43, 55, 67], to perform scene seg-
mentation [68] or to learn actor-object states [23]. Simi-
lar to these approaches, we also observe human actions in
videos. However, unlike any of these works, we focus on
first-person videos. Recent work has shown that egocen-
tric cameras have an optimal point-of-view for observing
hand-object interactions in unconstrained environments [5].
In egocentric videos, hands and objects are clearly visible
and typically centered in the frame. The most related to our
paper is work that analyzes visual structures of hand grasps
using egocentric videos [7]. However, in stark contrast to
our work, it performs supervised grasp classification using
known grasp types and a dataset with only those known
grasp types. To the best of our knowledge, this is the first
work to automatically mine large video collections to dis-
cover common modes of hand-object interactions for pre-
hensile analysis.

Egocentric Sensing: Egocentric visual analysis is an
emerging field in computer vision as wearable cameras are
becoming readily available. Existing supervised approaches
explore event segmentation using visual and motion sen-
sors [66], joint object and action recognition [20, 59],
understanding social interactions [21], activity recogni-
tion [53, 56, 60], video summarization [46, 50] or gaze pre-
diction [48]. Unsupervised methods discover actions [42] or
scenes [32] using low-level visual features extracted from
ego-centric videos. In contrast, we aim to discover domi-
nant modes of hand-object interactions using automatically
detected hand regions from the first person perspective.

Discovery: Visual object discovery approaches mine for re-
curring visual patterns in the image collection. Prior work
discovers object categories [19, 47, 65] or mid-level dis-
criminative patches [64] by grouping recurring patterns that
share similar appearance or context. Unlike previous work,
which focuses on the visual properties of objects, we focus
on how humans interact with objects (i.e. their affordances)



Figure 3. Hand detection of [9] used to harvest candidate regions.

Figure 4. Candidate regions extracted around hands

to discover human-object interaction categories.
Online Clustering: In our setting, we presuppose large (po-
tentially endless) amounts of streaming first-person POV
video. It is not practical to store and process the data in
batch. In this scenario, online or streaming clustering pro-
cesses data points as they arrive sequentially. Algorithms
such as STREAM [29], BIRCH [72] and variants of Lloyd’s
algorithm (e.g. online k-means [2], leader-follower [15])
have been proposed to solve this problem using a small
amount of memory and time. Recent works on online clus-
tering [1, 10] are able to approximate k-means clustering
objective with performance guarantees. While these online
clustering approaches are efficient, they are not able to en-
force explicit diversity between clusters. In this work, we
advocate the diversity of the discovered hand-object inter-
actions in order to learn a wider range of grasps more ef-
fectively. Determinantal Point Process [45] is a well-known
framework for sampling diverse sub-set of points, and has
been successfully applied to clustering initialization [35],
lexical acquisition [58], document summarization [27], and
pose estimation [44]. Inspired by the fast DPP sampling
scheme [35], we present a single pass additive clustering
algorithm that obtains a greedy set of diverse clusters.

3. Our Approach
Our goal is to discover dominant modes of hand-object

interactions from first-person videos. This is accomplished
in four steps: (1) harvesting candidate hand-object regions,
(2) extracting features from the candidate regions, (3) clus-
tering the regions to discover modes of hand-object interac-
tions, and (4) hierarchical clustering to learn the structure of
the discovered modes of hand-object interactions.

3.1. Harvesting Candidate Hand-Object Regions
In order to discover clusters of hand-object interactions,

we first need a means to robustly extract the key frames and
bounding boxes that capture important hand-object regions.
The location of the hands are important for this purpose,
and we extract a bounding box around the hands.

We detect hands at the pixel level with [9], using code
obtained from the authors. It computes a hand probability
value for each pixel based on the color and texture of a lo-
cal surrounding image patch. It then thresholds the prob-
ability values and extracts a set of connected components
from each frame. The bounding boxes are centered around
the hand contour such that the top most pixel of the con-

Hand Contour descriptor

Masked HOG descriptor

Figure 5. Visualization of the hand contour and masked HOG fea-
ture descriptor used to represent candidate regions.

tour is at the top center position of the box. Regions are also
adjusted so that they never exceed the image boundaries.

We use a fixed size bounding box region of 350 × 160
pixels. We selected the size heuristically by observing a few
qualitative examples. In practice, we found it to encompass
various objects in the environment (cups, plates, utensils)
well 1. The box is also wide enough to capture two hands
interacting with an object (e.g., peeling an onion with two
hands). Examples of harvested regions are given in Fig. 4.

3.2. Representing Hand-Object Interactions
Given an incoming stream of candidate hand-object re-

gions we would like to group similar interactions into the
same cluster. Before we can proceed to group the regions,
we are faced with the challenge of representation.

We use a large HOG template generated only for a
masked region (Masked HOG), inspired by work in object
discovery [36]. This representation removes the effect of the
background (i.e. non-hand regions, including interactive ob-
jects) and uses only the contour of the hand to group the
regions. We use the following HOG template parameters:
8 × 8 cell, 8 × 8 stride, 16 × 16 blocks with 9 gradient
orientation bins (see Fig. 5) 2.

3.3. Grouping Hand-Object Interactions
Now that we have a means of detecting and represent-

ing hand-object interactions, we can proceed to cluster them
to discover common modes. Classical clustering algorithms
will result in multiple clusters learned over high density re-
gions of the data distribution. In the case of hand-object in-
teractions, certain grasp types occur more often than other
types and will therefore dominate the type of clusters dis-
covered by classic clustering algorithm. The Determinantal
Point Process can be used as a sampling prior to enforce
diversity between discovered clusters.

To deal with the large number of candidate regions that
can be generated by a large video corpus or a continuous

1We compare this harvesting strategy with five other different methods
in the supplementary material.

2We compare the Masked HOG descriptor to five other different feature
representations including SIFT-BOW and HOF in supplementary material.



stream of ego-centric video (near 106 regions in our exper-
iments) and the high dimensionality of the data (near 8K
dimensions), we present a simple, yet efficient clustering al-
gorithm based on Determinantal Point Process (DPP). In the
first stage, our algorithm generates diverse candidate cluster
centers by fast Determinantal Point Process sampling [35],
and in the second stage, it assigns all data instances to each
cluster center (or none).

3.3.1 Determinantal Point Process
Given an dataset D = {d1, . . . , dM}, and a similarity ma-
trix S ∈ RM×M describing the pairwise similarity Sij =
s(di, dj) between data items, a DPP defines a probability
distribution PS over the set of all subsets of D. Let Y be
the set of all subsets, PS is of the form:

PS(Y = Y ) =
det(SY )∑

Y ′⊆D det(SY ′)
=

det(SY )

det(S + I)
, (1)

where I is the identity matrix, and SY ≡ [Sij ]i,j∈Y denotes
the restriction of S to the entries indexed by elements of Y .
It is known that this distribution assign more probability to
subsets with larger diversity. A more comprehensive survey
of the DPP can be found in [45].

3.3.2 Fast DPP Sampling
The overall idea of fast DPP sampling is to design a rapidly-
mixing Markov chain whose stationary distribution is PS

by the Metropolis-Hastings algorithm. In this case, the state
space of this Markov chain consists of all possible config-
urations. In particular, if only the transitions between adja-
cent states are considered, then the transition is either the in-
sertion or deletion of a single element. The transition prob-
ability of insertion is defined as:

Pr(Y → Y ∪ {u}) = min

{
1,

det(SY ∪{u})

det(SY )

}
, (2)

and the deletion probability is defined similarly. It has been
proven that if we sample u uniformly from D, then this
Markov chain has a stationary distribution PS .

A critical insight made by Kang [35] is that the determi-
nant ratio can be computed by:
det(SY ∪{u})

det(SY )
=

det(SY )(cu − b>u S−1Y bu)

det(SY )
= cu−b>u S−1Y bu,

(3)
where cu = s(u, u) is the self similarity, and bu =
[s(yi, u)]yi∈Y is a vector of u’s similarity to elements of
Y . In this case, the determinant ratio can be computed effi-
ciently (an order faster) by incrementally updating S−1Y ∪{u}
from S−1Y . More details can be found in [35].

3.3.3 DPP-based Online Clustering
In the first stage, we quickly generate a set of candidate
cluster centers Y = {y1, . . . , yN} by sampling exem-
plars through fast DPP sampling in Section 3.3.2. With this

Algorithm 1
GetClusterCenters(X)
Y = {x1}
for i = 2 : τ : |X| do
u← xi

p ← min
{
1, cu − b>u S

−1
Y bu

}
Y ← Y ∪ u with prob. p
Update S−1

Y if necessary
end for
return Y

Algorithm 2
TwoPassClustering(X, θ)
Y = GetClusterCenters(X)
Z = {−1, . . . ,−1}
for xi ∈ X do
k = argminj d(xi, yj)
if d(xi, yk) ≤ θ then
zi = k

end if
end for
return Y, Z

scheme, the sampled subset (candidate cluster centers) Y is
likely to have larger diversity, and thus can cover the space
of hand-object interactions more effectively.

We adapt the procedure in Section 3.3.2 to our streaming
setting, in which the new data u comes in sequentially from
a stream of X = {x1, . . . , xM}. We assume that the length
of the stream M is much larger than the number of candi-
date cluster center N , and thus the probability of selecting
u from the current candidate cluster centers Y is negligible.
In other words, we only consider the insertion of xi from a
data stream X to the set of candidate cluster centers Y .

In the second stage, each candidate region xi ∈ X is
assigned to the nearest cluster yk and the corresponding as-
signment index k is stored in Z = {z1, . . . , zM}. If the
distance between the data point xi and the nearest cluster
center yk ∈ Y , is less than a threshold θ, the i-th data point
is assigned to zi = k, otherwise it is assigned to −1. Our
clustering approach is summarized in Algorithms 1 and 2.

3.4. Learning a Grasp Taxonomy
Up to now, we have only considered each type of grasp

or hand-object interaction separately. However, it seems
reasonable that there exists a higher-order relationship be-
tween each grasp type. For example, the way we grasp a
baseball is different from how we grasp a water bottle, but
they are similar when compared to the way we grasp the
pen when writing. This higher-order relationship between
grasps can be specified by a grasp taxonomy. As state be-
fore, grasp taxonomies have been instrumental in guiding
robotic hand design as it concisely describes the space of
possible grasps [11].

While Cutkosky and Wrights grasp taxonomy [11] has
had an important role in the design of robotic manipula-
tion, the original taxonomy was not designed to be compre-
hensive. The taxonomy was task-based and learned from
a machinst. Therefore, there are numerous everyday hand
interactions that are not included in the taxonomy. With
our framework it is also possible to automatically discover
novel grasp concepts outside of Cutokosky’s taxonomy.
Furthermore, our approach also facilitates the potential to
learn the higher-order relationships or taxonomy of our dis-
covered grasps. One possible approach to learn a heirarchi-
cal structure is to use agglomerative clustering on top of the



Algorithm 3 GetHierarchyCenters(X)
L← 1, Y1 ← {x1}
for i = 2 : τ : |X| do
`← 1
while ` ≤ L do
Y` → Y` ∪ xi with prob. p+`
if Y` → Y` ∪ xi then
`← `+ 1

else
break

end if
end while
if ` == L then
L← L+ 1, YL ← {xi}

end if
end for
return {Y`}

discovered cluster centers [58]. Instead, we propose a new
hierarchical clustering algorithm based on our online DPP-
based clustering algorithm, which we describe below.

The resulting subset Y obtained using a DPP prior de-
pends highly on the selected similarity function s(x, y).
In this work, we use the radial basis function s(x, y) =

exp( ||x−y||
2

h2 ). We observe that with smaller bandwidth h,
the size of the resulting subset Y is larger since it is harder
for two points x and y to have a high similarity score, and
thus the diversity is usually large between a set of points.
Empirically, with a sequence of bandwidths h1 ≤ . . . ≤ hL,
we find that approximately Y1 ⊇ . . . ⊇ YL, where Y`
is the resulting subset with bandwidth h`. This gives us a
straightforward online algorithm to find the centers of each
level in the hierarchy. In the streaming setting, given a new
data point u, let Y` be the current cluster centers of level
`, then the probability of inserting u to Y` is defined as
P+
` (u) =

∏`−1
j=1 p

+
j (u), where p+` (u) = Pr(Y` → Y` ∪ u)

is defined by equation (2). Here Y1 corresponds to the clus-
ter centers discovered in Section 3.3.3. Our taxonomy learn-
ing approach is summarized in Algorithm 3. After the clus-
ter centers for each level are determined, we use nearest
neighbors to assign the edges in the taxonomy tree. For
each cluster center yi` ∈ Y`, we find the nearest center
y∗`+1 ∈ Y`+1 as its parent.

4. Experiments
We evaluate the effectiveness of our approach using ego-

centric videos from three datasets: (1) the Yale Human
Grasping (YHG) dataset [5], (2) the University of Tokyo
Grasp (UTG) dataset [7], and (3) the Georgia Tech Egocen-
tric Activities GTEA with Gaze (GTEA+) dataset [22]. The
first two datasets contain grasp type labels for the videos,
and the GTEA+ dataset is constructed for action recogni-
tion without grasp type labels. For experiments, we will
first compare different online clustering algorithms quan-
titatively using labeled datasets. Then we will show the
discovered novel grasp concepts and taxonomy from the
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Figure 6. Number of unique grasp types against the number of
clusters. DPP discovers unique grasp types more effectively.

GTEA+ dataset, which contains numerous everyday grasps
that are not included in standard grasp taxonomies. Finally,
we evaluate the taxonomy tree learned by the proposed hi-
erarchical DPP clustering.

4.1. Evaluating Grasp Cluster Diversity
A known property of the DPP is that a sampled subset

will be diverse. This feature of the DPP has been proved
beneficial in several areas of computer vision and natural
language processing [27, 44, 58]. First we confirm that our
online DPP clustering can indeed capture the high diversity
of human grasps. We use the two labeled datasets (YHG and
UTG) to measure performance. The full YHG [5] dataset
contains 27.7 hours of tagged video and represents a wide
range of manipulative behaviors spanning much of the typ-
ical human hand usage [6]. A spreadsheet of the tagged
grasp type, object and task parameters, and time informa-
tion for each successive grasp is also provided. We only use
a subset of the first 20 egocentric videos in our experiments,
in which the grasp types are well-labeled. The UTG [7]
dataset contains 20 grasp types (Fig. 1) based on the sta-
tistical result of grasp prevalence provided in [6]. The ego-
centric videos were recorded by a HD head mounted cam-
era (GoPro Hero2) under controlled environment while sub-
jects performed each grasp type with varying hand poses. In
our experiments, we merge the following grasps categories
that are distinguished only by finger tip contact or slight
changes in apperture: Thumb-#-Finger grasps and Parallel
Extension are merged to Precision-Thumb-Finger; Lateral
Tripod is merged with Tripod; Small Diameter and Large
Diameter are merged to Diameter.

Although each algorithm is able to determine its own
number of clusters, for the diversity experiment, we grad-
ually change (and set) the number of clusters K and count
the number of unique grasps that are recovered. We assign
each cluster to a canonical grasp type by the majority rule.
Higher number of unique grasp types means that the dis-
covered clusters are more diverse with respect to the true
grasp categories. In order to control the resulting number of
clusters, the insertion/deletion probability of DPP (2) can be



Figure 7. Cluster of Precision-Thumb-Finger grasps observed mul-
tiple times in the UTG dataset.

extended to the replacement probability:

Pr(Y → Z ∪ {v}) =
det(SZ∪{v})

det(SY )
, (4)

where Z = Y \{u}. We select the online k-means [2]
for comparison. We initialize both the algorithms by uni-
formly sampling the first K point in the data stream, and
update centers iteratively. The results of the YHG and UTG
datasets are shown in Figure 6. It is observed that the pro-
posed k-DPP algorithm has better coverage (more diversity)
with the same number of clusters when compared to the on-
line k-means algorithm. For example, with 50 discovered
clusters, the k-DPP algorithm learns 10 types of canonical
grasps while the k-means algorithm only learns 5 canonical
grasp types (i.e., many clusters are redundant). This lack-
of-diversity property of k-means is also discussed in [33].
Our experiment reinforces the claim that online DPP clus-
tering obtains a more diverse set of clusters when compared
to online k-means.

4.2. Evaluating Clustering Quality
Now that we have empirically verified that DPP-based

clustering yields more diverse clusters, we want to know if
diversity is really beneficial to our online clustering prob-
lem. Again, we compare the performances on the labeled
YHG [5] and UTG [7] datasets.

We use three standard metrics in [51] to evaluate the
clustering quality. The first one is purity, which is the clas-
sification accuracy. To compute purity, each cluster is as-
signed to the most frequent grasp label in the cluster, and
then the purity is defined by the number of correctly as-
signed data divided by the total number of data. High purity
is easy to achieve with large number of clusters. A trivial
case is when each data gets its own cluster, then purity is 1.
Other metrics described below will help to analyze results
from other perspectives.

This second metric is normalized mutual information
(NMI), which measures the mutual dependence of the la-
bel and the cluster assignment. The minimum of the NMI
is 0 if the clustering assignment is independent to the grasp
label and 1 if they are perfectly aligned. NMI is defined by
the mutual information normalized by the average entropy
of label distribution and cluster assignment distribution:

NMI(C,G) =
I(C;G)

[H(C) +H(G)]/2
, (5)

where C = {c1, . . . , cK} is the set of clusters, G =
{g1, . . . , gJ} is the set of grasp labels, I is the mutual in-
formation, and H is the entropy. The mutual information

I(C;G) is defined by:

I(C;G) =
∑
k

∑
j

P (ck ∩ gj) log
P (ck ∩ gj)
P (ck)P (gj)

. (6)

High NMI is also easy to achieve when the number of clus-
ters is small - in particular, NMI is 1 if all data are assigned
to a single cluster, which is the opposite of purity.

The third metric is based on an alternative information-
theoretic view of clustering by interpreting it as a series of
decisions, one for each pair of data points in the dataset.
When two data points of the same label belong to the same
discovered cluster, it is counted as a single true positive.
When two data points with different labels belong to differ-
ent discovered clusters, it is counted as a single true nega-
tive. False positive and false negative are defined similarly.

We select three baselines for comparative evaluation:
Leader-Follower clustering. The first baseline is the
leader-follower (L-F) algorithm [15], which is a variant of
the well-known Lloyd’s algorithm to the online setting. It
replaces the need to specify the number of clusters by using
a sensitivity threshold. The centers are updated by a winner-
take-all strategy, where only the nearest centroid to the new
data point is updated.
NRP clustering. The second baseline is based on the code-
book generation algorithm in [33], which assumes stream-
ing data that arrives in batches of size n. At each itera-
tion, data points belonging to preexisting clusters are first
removed. Then a mean-shift procedure is used to discover
new cluster centers from the remaining points. In our set-
ting, data arrives one at a time (n = 1) so we require no
mean-shift procedure – the point either belongs to a pre-
existing cluster or it becomes the center of a new cluster.
This algorithm looks for local diversity by removing data
points that are already members of existing clusters. In con-
trast, our proposed DPP method maximizes global diversity
over the entire set of clusters. We will refer to this simplified
algorithm as nearest representive point clustering (NRPC).
Dirichlet Process clustering. The third baseline is the fast
Dirichlet Process Mixture (DPM) model inference [69],
which has been successfully applied to unsupervised learn-
ing of ego-action categories [42]. The nonparametric nature
of DPM makes it an ideal candidate for clustering problem
with unknown number of clusters, and the computational
issue for our large dataset is solved by the online inference
framework proposed by Wang and Dunson [69]. For details
of DPM and online inference, please refer to [42, 69].

Comparative results for YHG and UTG are shown in Ta-
ble 1. The proposed DPP clustering performs best for most
metrics and is able to find almost all grasp types. The results
for L-F and DPM do not have high purity because the cen-
ters can be significantly distorted by outliers [33]. Without
the DPP diversity prior or Dirichlet Process prior to con-
trol the number of clusters, both NRPC and L-F yield large
numbers of clusters. Interestingly, the purity of DPP is still



Table 1. Comparative Analysis for YHG and UTG
(a) YHG purity NMI P R F1 unique clusters
L-F [15] 0.630 0.095 0.353 0.079 0.129 14 52
NRP [33] 0.874 0.138 0.677 0.093 0.164 14 20
DPM [69] 0.512 0.092 0.233 0.260 0.246 10 17
Ours 0.836 0.146 0.655 0.206 0.313 14 13
(a) UTG Purity NMI P R F1 unique clusters
L-F [15] 0.438 0.088 0.097 0.100 0.099 13 22
NRP [33] 0.535 0.100 0.188 0.046 0.074 13 41
DPM [69] 0.271 0.077 0.043 0.196 0.070 7 7
Ours 0.535 0.122 0.224 0.187 0.204 12 11

high for both datasets without large number of clusters. De-
spite a much smaller number of clusters, almost all grasps
are discovered (12 out of 13 grasps for UTG; all grasps for
YHG). This result shows the advantage of the DPP for ef-
fectively discovering hand-object interactions.

4.3. Discovering Novel Hand-object Interaction
In the previous section, we have shown that the proposed

DPP online clustering is the best for finding clusters that are
consistent with the grasp labels. We now apply it to daily
life egocentric videos. The goal is to automatically discover
everyday grasps that may not be included in standard tax-
onomies [11, 6].

We use the publicly available egocentric activities
dataset of Fathi et al. [22]. It consists of first-person videos
captured by 9 users preparing 8 different dishes (i.e. Amer-
ican breakfast, hamburger, Greek salad, pasta, pizza, snack,
Tilapia, turkey sandwich) in a kitchen environment for a to-
tal of 40 videos. The videos range from 7 to 18 minutes
depending on recipe, which amounts to a total of about 0.8
million frames and 7 hours of video. This data is particu-
larly well-suited for our task since egocentric videos contain
many naturally occurring interactions with typical kitchen
countertop objects (sample images in Fig. 2).

We show examples of discovered interactions in Fig. 8.
A subset of the cluster exemplars correspond to Cutkosky’s
grasp taxonomy, such as cylindrical power grasp or ab-
ducted thumb power grasp. However, our method also
learns valid grasp concepts outside of Cutkosky’s taxon-
omy: Clamping grasps that are formed by the fingers and
another supporting surface, e.g. holding down a piece of
mushroom against a plate, and tripod precision grasps of
flat objects required when pulling off a slice of cheese or ba-
con from its wrapping. This result is due to the fact that the
task domain is different. Cutkosky analyzed grasps in small-
batch machining operation while we focused on cooking
activities. This result suggests that different tasks require
a distinct set of hand interactions and also reinforces our
claim that an automatic data-driven approach is necessary
for large-scale analysis.

4.4. Extension to Taxonomy Tree Learning
Understanding the relationship between grasps types is

another dimension across which we can better understand
human hand use. Here we evaluate our proposed hierarchi-

(a) power-prehensile-prismatic-adducted index finger (3 virtual fingers)

(b) precision-small flat-tripod (3 virtual fingers)

(c) precision-circular-thumb-index finger (2 virtual fingers)

(d) medium-power-circular-tripod-push (4 virtual fingers)

(e) precision-circular-thumb-index finger (2 virtual fingers)
Figure 8. Discovered hand-object interactions sorted by distance
to centroid. Both inliers and outliers are included to illustrate
the purity of the clusters. Labels are manually assigned based on
Cutkosky’s grasp taxonomy.

cal DPP-based clustering by comparing our learned grasp
taxonomy to Cutkosky’s grasp taxonomy [11].

The visual grasps taxonomy learned by our approach is
given in Fig. 9. Each colored box in Fig. 9 corresponds to
an equivalent subtree in Cutkosky’s taxonomy. For exam-
ple, the red box, consisting of power disk and power sphere,
corresponds to the power circular grasp; the blue box, com-
posed of precision thumb-index finger, precision thumb-3
finger, and precision thumb-4 finger, represents the preci-
sion prismatic grasp; the green box, including the power
light tool and the power medium wrap, refers to the power
prismatic light grasp. These qualitative examples show that
the grasp relationships discovered by our approach corre-
spond well to parts of Cutkosky’s taxonomy

To enable a more quantitative analysis for comparing tree
structures, we propose a new metric called weighted mini-
mum coverage (WMC) score. The WMC consists of two
terms: a tree distance score and a weight factor.

WMC(T, Tref ) =∑
nA,nB∈Tref

wAB min
ni∈A,nj∈B

|d(ni, nj)− dref (nA, nB)|,

(7)

where ni and nj are nodes in the tree T , nA and nB are
nodes in the reference tree Tref , A and B are labels of nA
and nB , wAB is the weight for labels A and B, and d(·, ·)
is the Lowest Common Ancestor [14] distance between two
nodes. In our case, the reference tree Tref is the Cutkosky’s
tree taxonomy, and the labels A and B are grasp labels in
the taxonomy. By ni ∈ A we mean grasp ni has grasp label
A. The weight wAB is introduced to penalize the size of the
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Figure 9. Automatically learned taxonomy tree on the UTG dataset
by our DPP-based hierarchical clustering.

sets {ni ∈ A} and {nj ∈ B}. If the size of these two sets
are large, we can find the nodes ni and nj that minimize the
tree distance score. Therefore, the weight is defined as:

wAB =
|{ni ∈ A}||{nj ∈ B}|

|C|

C =

{
argmin

ni∈A,nj∈B
|d(ni, nj)− dref (nA, nB)|

}
, (8)

where C is the set of pairs ni and nj that minimize the tree
distance score. Note that wAB is zero if either |{ni ∈ A}|
or |{nj ∈ B}| is zero.

Our WMC metric is necessary since traditional tree dis-
tance metrics [4, 25] cannot compare tree structures with
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Figure 10. Distance to the Cutkosky’s taxonomy tree of the pro-
posed online DPP hierarchical clustering and k-means based hier-
archical clustering. The proposed DPP tree learning is more con-
sistent with the standard taxonomy.

redundant terminals or non-common terminal nodes .
Using the WMC score we evaluate the stability of our

learned trees over various DPP bandwidth parameters. We
also evaluate the performance of a hierarchical k-means al-
gorithm to provide a comparative baseline3. We vary the
kernel bandwidth of DPP and radius of online k-means to
get various trees with different grasp coverage. We define
the grasp coverage ratio as the number of unique grasps in
the tree divided by the total number of grasps defined by
Cutkosky’s taxonomy. The grasp coverage ratio acts as a
common axis along which to compare the two algorithms.

The WMC distance with respect to Cutkosky’s taxon-
omy are plotted against the grasp coverage ratio in Fig. 10.
As expected the WMC score increases as we increase the
grasp coverage ratio for both models. The important obser-
vation is that our approach consistently has similar or better
(lower) WMC distance.

5. Conclusion
We have presented a new DPP-based online clustering

algorithm for discovering diverse and dominant modes of
hand-object interaction through the effective use of the ego-
centric videos. Through extensive experiments, we have
showed the effectiveness of the proposed approach in terms
of both diversity and standard clustering evaluation metrics.
Our evaluation of the discovered interactions shows that we
are able to learn a wider range of hand-object interactions in
comparison to Cutkosky’s classical hand grasps taxonomy.
Furthermore, we propose a DPP-based hierarchical cluster-
ing framework to automatically learn the higher-order struc-
ture or taxonomy of the discovered modes of hand-object
interactions. The learned taxonomy is validated both qual-
itatively and quantitatively consistent with standard hand
grasps taxonomy. We believe that this work has taken a solid
step forward in data-driven methods for analyzing hand-
object interaction and hope that it will lead to significant
cross-disciplinary impact on prehensile analysis.

Acknowledgement. This research was supported in part by
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3Details are included in the supplementary material.
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