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Abstract

We present an outdoor photometric stereo method us-
ing images captured in a single day. We simulate a sky
hemisphere for each image according to its GPS and times-
tamp, and parameterize the obtained sky hemisphere into
a quadratic skylight and a Gaussian sunlight distribution.
Unlike previous works which usually model outdoor illu-
mination as a sum of constant ambient light and a distant
point light, our method models natural illumination accord-
ing to a popular sky model and thus provides sufficient con-
straints for shape reconstruction from one day images. We
generate pixel profiles of uniformly sampled unit vectors for
the corresponding time of captures and evaluate them using
correlation with the actual pixel profiles. The estimated sur-
face normal is refined by MRF optimization. We have tested
our method to recover objects and scenes of various sizes in
real-world outdoor daylight.

1. Introduction
3D reconstruction of the scene from images has drawn

interests from many researchers in computer vision for
decades. There are several 3D reconstruction methods using
more than two images such as multi-view stereo using im-
ages from different viewpoints [6], photometric stereo using
images under different light directions [38], and depth from
focus [7] and defocus [36] using images with different fo-
cal settings. There have been successful approaches using a
single image as well, such as shape from shading [9], with
appropriate assumptions and constraints.

The related experiments were originally conducted in-
side the lab where the equipments and environments can
be controlled. Then the methods have been improved to
overcome the difficulties of uncontrolled elements one by
one. For example, multi-view stereo has been evolved from
using images captured by uniformly placed cameras in the
lab [25] to searching and downloading images of the scene
of interest from the web [4]. The results are promising even
though the input images are taken from different cameras in
different time, viewpoints, and many other conditions.

(a) Input image (b) Albedo estimation

(c) Normal estimation (d) 3D reconstruction

Figure 1: An example of one-day outdoor photometric
stereo result. 15 input images are captured at intervals of
30 minutes. The surface is reconstructed using Poisson
solver [35].

Compared to multi-view stereo, which reconstructs the
scene based on feature matching, photometric stereo has an
advantage to recover details on the surface up to the level of
image resolution since the method is based on the reflected
radiance determined by the incoming light direction and the
surface normal of the object of interest. Photometric stereo
methods had required specific conditions on experimental
environments, which are recently being alleviated.

Traditional photometric stereo methods require three
or more input images under different distant point light
sources of which the directions are non-planar on the unit
sphere [38]. There are approaches named uncalibrated
photometric stereo [24] and self calibrating photometric
stereo [34] that deal with unknown light directions. There
are methods to handle less than three light directions or with
the presence of ambient light [40]. In particular, natural il-
lumination plays an important role in photometric stereo to
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come out of controlled environments [10, 14]. Reflectance
and shape of an object are recovered from the illumination
map with complex light information around the object [26]
and analogously the illumination map and reflectance are
recovered using an object with known shape [23]. Recently,
fusing shape-from-shading with a depth sensor alleviates
many assumptions and shows promising results [8, 16, 39].

So far, an outdoor environment has been regarded as full
of unknowns and complexities. The appearance of an open
field changes drastically depending on its weather condition
and time of day, but at the same time, it does have a general
appearance. While the appearance of a room can easily be
influenced by which kind of light we turn on, an outdoor
field on a clear day presents a relatively predictable scene.

In this work, we present an outdoor photometric stereo
method based on the motivation that the outdoor illumina-
tion which is mainly contributed by the sun and clear sky
can be generally modeled. We process geo-tagged, time-
stamped images captured from a static camera in a single
day to estimate the surface normal of the scene. There are
three major contributions of this work. First, we adapt the
skylight distribution [28] to work for outdoor photometric
stereo without any depth priors of the scene. Second, we
overcome the weak rank-3 qualification of sunlight direc-
tions during a single day by exploiting natural illumination
via skylight estimation. Finally, since we deal with a hand-
ful of images, there exist pixels lit by the sun in less than
two images. Incomplete surface normal estimation for these
pixels are refined using information from their neighboring
pixels of similar profiles through MRF optimization.

2. Related work
There have been several approaches for outdoor photo-

metric stereo in recent years. Ackermann et al. [3] and
Abrams et al. [1] use time-lapse sequences captured by
static outdoor webcams. Since both approaches model the
illumination as a distant point light (the sun) with a con-
stant ambient light, they require many months of images to
avoid coplanar light directions in photometric stereo. They
undergo image selection to remove images of bad weather
and night time and process hundreds of selected images.
Abrams et al. [1] propose an iterative, non-linear optimiza-
tion of ambient light, shadows, light color, surface normals,
radiometric calibration, and exposures. It is a huge op-
timization using 500 images of careful selection. Acker-
mann et al. [3] present a process of image filtering and se-
lection to find 50 proper images from 20k candidate images.

Shan et al. [32] present large-scale reconstruction and re-
lighting results using hundreds of thousands of images from
various sources through structure-from-motion, multi-view
stereo, and surface reconstruction. They select cloudy im-
ages first to estimate albedo and ambient light, then sunny
images to estimate light including a distant point light per

image and to refine the surface normal of the scene.
While a point light source with a constant ambient light

are shown to be an effective way of modeling outdoor en-
vironment with the help of large amount of observations or
depth priors, we paid attention to the complexity of natural
illumination being an aid rather than hindrance to the gen-
eral shape-from-shading problems, as in [14]. Since out-
door scenes are covered with sky by definition, there are
researches that utilize the sky as a source of information for
diverse purposes.

Sunkavalli et al. [37] assume that the subspace contain-
ing daylight spectra is two-dimensional and propose a color
model for the temporal color changes of outdoor image se-
quences. Lalonde et al. [21] recover camera parameters in-
cluding its focal length and pose from the sun position or
a part of clear sky in the image with time and location of
the capture. The same group estimates the natural illumi-
nation conditions from a single image using sky model and
inserts a virtual object into the image so that it looks nat-
ural under the estimated illumination [20]. Kawakami et
al. [17] compare the sky image with the sky model to esti-
mate camera spectral sensitivity and white balance setting.
Inose et al. [12] refine the multi-view stereo result of an out-
door scene by using one day images for photometric stereo.
The sky model is incorporated to seperate the effect of the
sun and sky illumination onto the surface.

Shen et al. [33] present an interesting analysis on the
stability of the photometric stereo problem using one-day
images. As the earth revolves around the sun, the angle
of declination varies from 0 to 23 degrees which leads to
non-planar sunlight directions in certain days of the year.
They calculated the inverse of the condition number (ra-
tio of minimum to maximum eigenvalues) of the light di-
rection matrix per day, for varying latitude and date. For
limited cases, the light direction matrix does suffice rank-3
constraint, but with a small inverse condition number. This
analysis shows the limitation of the point light source mod-
eling of one day outdoor photometric stereo and therefore
we seek for promising solution in natural illumination us-
ing skylight estimation.

3. Sky appearance
Skylight is a non-uniform extended light source whose

intensity and angular distribution pattern varies as a func-
tion of insolation conditions [27]. Daylight environment es-
timation requires sky luminance angular distribution, which
is more complex than a direct sunlight plus a constant
brightness.

3.1. Sky luminance and chromaticity

The sky model proposed by Perez et al. [27] describes
the luminance of any arbitrary sky element as a function of
its elevation, and its relative orientation with respect to the



𝜃𝜃

𝛾𝛾

𝜙𝜙𝑠𝑠 𝑥𝑥(𝐸𝐸𝐸𝐸𝑠𝑠𝐸𝐸)

𝑦𝑦(𝑁𝑁𝑁𝑁𝑁𝑁𝐸𝐸𝑁)

𝑧𝑧(𝑈𝑈𝑈𝑈)

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉

(a) World coordinate (b) A simulated sky

(c) Quadratic skylight (d) Gaussian sunlight

Figure 2: (a) World coordinate specifying the sun position
and the viewing direction in the sky hemisphere. (b) A sky
hemisphere is simulated using a sky model [28] and it is
parameterized into (c) a quadratic skylight distribution and
(d) a Gaussian sunlight distribution.

sun. It is a generalization of the CIE standard clear sky for-
mula [5], and it has been found to be accurate for a wide
range of atmospheric conditions [11, 18]. Consider the il-
lustration in Fig. 2(a). The relative luminance l of a sky
element is a function of its zenith angle θ and the angle γ
with respect to the position of the sun:

l = f(θ, γ) = (1+a exp(b/ cos θ))(1+c exp(dγ)+e cos2 γ),
(1)

The coefficients a, b, c, d and e are functions of the current
atmospheric conditions, and all angles are in radians.

The sky model proposed by Preetham et al. [28] suggests
an approximation of the five distribution coefficients to be a
linear function of a single parameter, the turbidity T . Intu-
itively, the turbidity encodes the amount of scattering in the
atmosphere, so the lower the T , the clearer the sky [21]. In
[5], a table of five distribution coefficients is provided for
skies in various conditions. The coefficients for CIE stan-
dard clear sky can be approximately estimated by applying
T = 2.2 to the Preetham’s model.

Preetham et al. [28] also introduce that the absolute sky
luminance Y as well as the chromaticities x and y of a sky
element can be calculated if the absolute luminance Yz and
the chromaticities xz and yz at the zenith are known:

Y =
f(θ, γ)

f(0, θs)
Yz, x =

f(θ, γ)

f(0, θs)
xz, y =

f(θ, γ)

f(0, θs)
yz,

(2)
where θs denotes the zenth angle of the sun. The position of
the sun for a given time and location can be calculated using
[29]. The zenith chromaticities xz and yz are determined by
the turbidity T and θs as shown in the appendix of [28].

3.2. Sky spectra and simulation

The same sky may appear differently to individual cam-
eras due to their inherent camera sensitivity to light spectra.
To simulate a sky image, we need to transform the chro-
maticity x, y and the absolute luminance Y in the unit of
[cd/m2] into appropriate RGB values.

From the chromaticity x, y, the sky spectra can be calcu-
lated using the known basis functions of daylights [15]. The
sky spectrum SD(λ) is given by a linear combination of the
mean spectrum and the first two eigenvector functions:

SD(λ) = S0(λ) +M1S1(λ) +M2S2(λ), (3)

where coefficients M1 and M2 are determined by the chro-
maticity x and y, and the three basis functions S0(λ),
S1(λ), and S2(λ) can be found in [15].

Then, the sky image Ĩsky can be constructed as

Ĩsky = qTSD, (4)

where Ĩsky is a 3 × n pixel matrix, SD is a w × n spectral
matrix filled with the sky spectrum SD(λ) values, and q is
a w × 3 camera sensitivity matrix. n denotes the number
of pixels and w denotes the number of wavelengths. The
camera sensitivity database for various commercial digital
cameras are publicly available [17].

However, both q and SD are in relative values. The
camera spectral sensitivity is generally expressed within 0
to 1 since the scaling factor is decided by many other fac-
tors such as ISO, exposure time, camera gain and aperture
size. The sky spectra are normalized as well to have 100 at
λ = 560nm. Therefore Ĩsky is in relative value and needs
proper scaling to be represented in RGB value of [0,1].

Kawakami et al. [17] show that the luminance ratio of
the sky in Eq. (2) can be calculated with respect to any other
point in the sky in the same way it is obtained with respect
to the zenith:

f(θ, γ)

f(θref , γref )
=

Y

Yref
=

J

Jref
, (5)

where J denotes the total intensity of a pixel, i.e. J =
Ir + Ig + Ib. If we assume that camera gamma function
is linear, the image intensity ratio is proportional to the lu-
minance ratio of the sky regardless of the camera sensitivity
and white balance setting.

Therefore, to obtain Isky ∈ [0, 1] from Ĩsky, we find the
brightest total intensity of Ĩsky and scale it to be 3, which is
the maximum possible value of J after scaling. This scaling
is reasonable in simulating daylight sky hemisphere because
the pixel of the sun is always saturated to white. The other
total intensities of Isky are determined by Eq. (5) and their
RGB values are divided according to the RGB ratio of Ĩsky.
Fig. 2(b) shows an example of sky hemisphere simulation at
noon in a mid-latitude region. The top corresponds to north,
right is east, and the center is the zenith.



3.3. Skylight parameterization

We separate the simulated sky hemisphere in Fig. 2(b)
into a dominant sunlight and a diffuse skylight to model
shadowed and non-shadowed pixels. A point in the scene is
illuminated by all the rays coming from the hemisphere de-
termined by its surface normal. The shadowed pixel mainly
appears when its hemisphere does not contain the sun (self
shadow) or if the sun is occluded (cast shadow). The re-
sulting shadowed pixel is illuminated by a part of the sky
without the sun.

Since it is difficult to distinguish if the shadow is self
shadow or cast shadow, we model every shadowed pixel to
be illuminated by the hemisphere determined by its surface
normal excluding the sunlight. This method has two advan-
tages over the constant ambient light modeling. One is that
it models the ambient light to vary according to the surface
normal and the skylight distribution, which is physically
plausible. The other is the illumination ratio between the
skylight and the sunlight for a pixel is already determined,
and leave us only one scaling factor to disambiguate, which
is albedo. This removes the ambiguity between the ambi-
ent and direct illumination and therefore makes the problem
more constrained.

Given the simulated skylight for every angle of the sky
hemisphere, we make it grayscale and fit a Gaussian func-
tion of the angle γ with respect to the known sun position.
Then we subtract the hemisphere containing only the Gaus-
sian sunlight from the original sky hemisphere and model
the rest of the sky using a quadratic function with respect to
the sky orientation as a shading equation in [14].

Lsky(sk) = sTkAqsk + bT
q sk + cq, (6)

Lsun(γ) = ag exp(−((γ − bg)/cg)2), (7)

where sk is the direction of a sky element k, which can be
defined by the angle γ with respect to the position of the
sun as in Fig. 2(a). The parameters of the quadratic func-
tion are composed of a symmetric matrix Aq ∈ R3×3, a
vector bq ∈ R3×1 and a constant cq ∈ R. The quadratic
skylight distribution Lsky and the Gaussian sunlight distri-
bution Lsun are shown in Fig. 2(c) and (d), respectively.

The proposed parametric model represents the sky hemi-
sphere effectively. In addition, it leaves open the possibility
for optimizing the skylight parameters in the future.

4. Image formation
The imaged appearance I(x) at a given pixel x de-

pends on the surface orientation nx. The orientation deter-
mines the hemisphere of light that is visible at that location.
The material Ψ determines how this light is integrated to
form the observed appearance [26]. Therefore, the light-
ing environment and the material form reflected radiance

RΨ(nx,L) that gives the appearance for a given surface
orientation.

The reflected radiance is computed by integrating the in-
cident irradiance E modulated by the reflectance over the
illumination L,

RΨ(nx,L) =

∫
ρ(ωi, ωo; Ψ)L(ωi) max(0,nx · ωi)dωi,

(8)

E(nx,L) =

∫
L(ωi) max(0,nx · ωi)dωi, (9)

where ωi and ωo are the incident and outgoing (viewing) an-
gles of the light on the surface [26]. Assuming Lambertian
reflectance, albedo ρ is invariant to the viewing direction.
Therefore, we model the pixel intensity of each color chan-
nel to be proportional to the incident irradiance E on the
surface by the albedo.

I(x) = Isky(x) + S(x)Isun(x), (10)

Ic(x) = ρc(x)(E(nx,Lsky) + S(x)E(nx,Lsun)), (11)

where c denotes a color channel and S(x) is a binary value
which indicates the pixel x is in shadow. The equations
hold independently for each input image t, but we omit the
subscript for simplicity.

Using the simulated sky hemisphere as an illumination
map, we calculate the incident irradiance for uniformly
sampled unit vectors, as Eq. (9). The incident irradiance
due to skylight illumination Lsky and sunlight illumination
Lsun are computed separately. For each pixel, the estimated
shadow mask S(x) is applied to sum those two incident ir-
radiances as Eq. (11). The incident irradiance values for all
the input images are stacked to be a profile for each sam-
ple unit vector. These sample profiles in the dimension of
the number of images are compared with the actual pixel
profiles.

5. Surface normal and albedo estimation
In this section, we present a framework for outdoor pho-

tometric stereo using the estimated natural illumination that
consists of skylight and sunlight distribution. We detect the
shadowed pixels explicitly and estimate the initial (relative)
albedo using the color ratio. The surface normal is esti-
mated using the correlation between the pixel profile and
the sample profiles generated according to the image for-
mation model. The (absolute) albedo is updated and then
the surface normal is refined by MRF optimization.

5.1. Shadow detection

We detect the shadowed pixels explicitly using the
shadow estimation method for [2]. This method is an expec-
tation maximization approach which simultaneously esti-
mates shadows, albedo, surface normals, and ambient light.



Unlike previous shadow detection procedures, this method
use the sunlight directions and solves for the shadows that
are most consistent with a Lambertian assumption.

For pixel x in image t, the shadow S(x, t) is defined as

S(x, t) =

{
0 if x is in shadow in image t,
1 otherwise. (12)

5.2. Albedo estimation

A color profile is a set of RGB color values at the same
image coordinate in a set of photometric stereo images. It
is represented as a line in RGB space as shown in blue in
Fig. 3(a). Shi et al. [34] assess the degree of nonlinearity of
the color profiles to perform radiometric calibration. While
this is a simple and clear method to estimate the inverse
response function of a high quality camera in a dark room,
in our case it was hard to define the curvature of the color
profile. It is due to the fact that the illumination intensity
varies for outdoor scenes and the profiles are more noisy
when the images are captured by a low quality webcam.

However, most of the color profiles still showed enough
linearity to estimate the color ratio (ρr : ρg : ρb), which
we call the relative albedo. We construct a matrix with the
color profile of a pixel, excluding any RGB set with at least
one saturated channel. Using singular value decomposition,
we estimate the relative albedo as the first eigen vector of
the color profile matrix, as shown in red in Fig. 3(a).

Instead of converting the input image to grayscale to get
the intensity profile of a pixel, we project the color profile
onto its albedo line in RGB space. The projected values
form a new profile, which we call the pixel profile. It is
proportional to the term inside the parentheses in Eq. (11),
which is the common value to all three color channels, up to
a scale factor. Therefore the pixel profile can be compared
with the sample profiles using Pearson correlation coeffi-
cient which is invariant to scaling.

Before we project the color profile onto its albedo line,
we handle the saturated values. When the value of one chan-
nel is saturated, we estimate its proper value over the satura-
tion level using other unsaturated channels and the relative
albedo. The saturated value is modified in the assumption
that the color set would have the same color ratio of the rel-
ative albedo. The pixel profile is generated using the mod-
ified values. The case of two saturated channels is handled
in the same way. An example of the color profile and its
pixel profile is shown in Fig. 3(b).

5.3. Surface normal estimation

The pixel profile is proportional to the term inside the
parentheses in Eq. (11) by the scalar ρs(x) per pixel. The
relative albedo specifying the color ratio of the pixel be-
comes the absolute albedo by multiplying ρs(x).

(a) Initial albedo estimation (b) Pixel profile generation

Figure 3: (a) The initial albedo for a pixel is estimated as
the first eigen vector in RGB space (red line). (b) The color
values (red, green, and blue lines) are projected onto the
albedo line in RGB space to be the pixel profile (black line).

As explained in Sec. 4, we uniformly sample 1000 points
on a unit sphere using [30]. For each unit vector, we gen-
erate incident irradiance for skylight and sunlight respec-
tively, defined for m input images. Then for each pixel x,
we generate 1000 sample profiles using the skylight irradi-
ance, sunlight irradiance and the pixel’s shadowness S(x)
as in Eq. (11) for each image t without multiplying its
albedo. All the profiles would be m-dimensional vectors.

We find the best sample profile having the highest corre-
lation with the pixel profile. Since there exist a scalar am-
biguity in image formation, correlation is the proper mea-
surement because it is invariant to scaling. The unit vector
which corresponds to the best sample profile becomes the
surface normal estimate for the pixel.

After the surface normal estimation, we calculate the
scalar factor ρs(x) using least squares and yield the abso-
lute albedo. The process of selecting the best surface ori-
entation based on a measurement as simple as correlation is
possible because the only ambiguity in our image formation
model is a scalar per pixel.

Our framework is simple and fast. When processing 18
images of 640× 480 in resolution with 166k valid pixels, it
takes 16 seconds to simulate and parameterize skylight dis-
tributions, 50 seconds for shadow detection, and 19 seconds
for albedo and surface normal estimation in our current un-
optimized Matlab implementation on a 3.40GHz machine.

5.4. MRF optimization

Since we process a handful of input images, there exist
pixels which are in shadow for most of the images. The
number of observations are not sufficient to determine their
surface normals, and therefore their estimates may not be
correct. To solve this problem, we use the estimates of their
neighboring pixels. The basic concept is that if the color
profiles of the neighboring pixels are similar, then their sur-
face normal estimates should be similar as well.

Given a set of pixels P and a set of labels L which corre-
spond to uniformly sampled unit vectors, our goal is to find



a labeling l (i.e. a mapping from P to sample orientations
L) which minimizes the following energy function:

E(l) =
∑
p∈P

Dp(lp) +
∑

p,q∈N
Vp,q(lp, lq), (13)

where N ⊂ P × P is a neighborhood system on pixels.
Dp(lp) is a data term that measures the cost of assigning
ulp as the surface normal of the pixel p. Vp,q(lp, lq) is a
smoothness term that measures the cost of assigning ulp ,
ulq to the adjacent pixels p, q.

Dp(lp) = 1− corr(SP (lp, p), PP (p)), (14)

Vp,q(lp, lq)=
∑

c=R,G,B

(1 + corr(Ic(p), Ic(q)))(1− uT
lpulq ),

(15)
where corr(a, b) denotes the Pearson correlation coefficient
of two profiles a and b, SP (l, p) denotes the sample profile
of the unit vector ul using the shadow mask of pixel p, and
PP (p) denotes the pixel profile of p. Here Ic(p) denotes the
color profile of p for all the images. We perform multi-label
optimization using graph cut [19] to seek the set of surface
orientations that minimizes the energy E(l).

6. Results
We demonstrate our approach on five real-world

datasets. We captured Elephant and Cicero datasets on two
different days using the same Canon 5D Mark III camera.
Each set contains 15 images taken at intervals of 30 min-
utes. We tested our algorithm on Düsseldorf, Meersburg,
and Arizona datasets from the AMOS webcam archive [13].
We manually selected sunny days from the available images
and processed 18 images or less for each set.

In the experiments, we assume that the scene has Lam-
bertian reflectance and that the image intensities are linear
to the scene radiance except for the saturated intensities. We
did not include an explicit radiometric calibration process
to the framework due to its unstable outcome. However,
we believe any existing radiometric calibration method such
as [22] with proper modification may improve the perfor-
mance of our method.

6.1. Qualitative evaluation

Fig. 1 shows the results of our algorithm followed by
a 3D reconstruction using Poisson solver [35]. The sur-
face is successfully reconstructed due to the smooth vari-
ation of the surface normal estimation. MRF refinement
removes sparkling noises which can cause conspicuous er-
rors in surface reconstruction. Fig. 4 shows the results of
our surface normal estimation before and after MRF refine-
ment. Though the first estimation embeds fine details of the
shape, MRF refinement removes noisy estimates especially
in the shaded regions and yields smooth surfaces.

(a) Surface normal estimation (b) After MRF optimization

Figure 4: Surface normal estimation before and after MRF
optimization. Noisy estimates became smoother.

Figure 5: Scanlines through a tower and a dome in
Düsseldorf dataset showing x (East, red), y (North, green),
and z (Up, blue) components of the normal vectors. The
lines are fitted after 1D median filtering.

The surface normal estimates for two scanlines of
Düsseldorf dataset are shown in Fig. 5. The normals are in
xyz-coordinate that corresponds to an absolute East-North-
Up frame. The building in the scene is facing approximately
south according to its satellite image. In the left graph of
Fig. 5, the 87th pixel on the scanline corresponds to the cor-
ner of the tower. The red line(x, East) changes from facing
west to east drastically while the blue line(z, Up) stays close



to zero since both faces are vertical. A peak at the 40th pixel
corresponds to the arch on the wall. The red line in the right
graph of Fig. 5 shows slightly discontinuous structure of the
dome in the scene.

In Fig. 6 and Fig. 7, we compare our performance with
two previous methods. Fig. 7 shows the albedo and surface
normal estimation of our method using one-day images of
Düsseldorf and Meersburg datasets. The shadow detection
method for [2] which also estimates albedo, surface nor-
mals, and ambient light is compared using the same one
day images. Abrams et al. [1]’s results using 500 images
of many months are obtained from their original paper. For
comparison, we used the same color map defined in their
paper. Since the color coding is based on absolute East-
North-Up coordinate, we indicate the color sphere of the
corresponding view point with the surface normal results.

It is shown that our method definitely outperforms other
methods using one day or even one month of images. The
illumination model of a point light source and a constant
ambient light shows severe performance degradation when
the observations do not cover several months. On the other
hand, our modeling of natural illumination using skylight
distribution gives sufficient constraints from small number
of observations, and shows similar or better performance
with the previous method using 4 months of images.

6.2. Quantitative evaluation

For quantitative evaluation, we obtained a reference sur-
face normal map for Arizona dataset. As mentioned in [1],
this reference normal is from Google Earth, and many loca-
tions in the reference have substantial angular error because
it does not consider trees and bushes in the scene. There-
fore, for evaluation, we compute the robustness statistics
used in the Middlebury stereo dataset [31]. In particular,
R30 denotes the percentage of pixels that have an angular
error less than 30 degrees. For the same reason, we ruled
out ground plane regions in the reference in the evaluation.

Table 1 shows the stability of our method. We tested
the previous methods [1], [2] and ours on 15 single-day
datasets. Each set(day) is selected from an individual month
among 15 months of data. For some sets, [1] failed be-
cause of the severe rank deficiency of the sun trajectory.
The average performance of our method is much higher
than other two methods and our method shows stable per-
formance throughout the different datasets.

Table 2 shows the performance improvement of our
method when using many days of images. Our method us-
ing one-day images performs better than [1] using 4 months
of images, and ours gets better as we use more images.

7. Discussion and conclusion
We have presented an outdoor photometric stereo

method via skylight estimation. We model the outdoor

Table 1: Performance evaluation on fifteen different sets of
one-day images (R30) [%]

Minimum Average Maximum
[1] 0.00 2.09 4.09
[2] 11.8 19.1 25.9

Our method 29.9 36.1 42.2

Table 2: Performance evaluation on images of many days
(R30) [%]

1 day 1 week 2 weeks 4 months
[1] 1.40 2.54 11.2 31.6
[2] 12.9 24.7 36.4 44.8

Our method 38.1 40.8 47.0 51.0

lighting environment as natural illumination which gives
more constraints to surface normal estimation than the con-
ventional modeling of a point light source with a constant
ambient light. Therefore, much less images are required
to recover the outdoor scene, which makes it possible to
use images captured in a day. Our method is practical and
shows similar or better results than other outdoor photomet-
ric stereo methods using many months of images.

There are possible limitations in our modeling since we
simulate the skylight distribution based on the assumption
that the scene is in open field on a clear sunny day. If the
sun is occluded by clouds or other kinds of obstructions, or
if there exist other powerful sources of light or reflection,
then our skylight estimation would not be appropriate for
the illumination model. Since we use less than 20 images,
some part of the scene may lack of observations which can-
not be covered by optimization. Incorrect shadow detection
may cause errors in surface normal estimation.

We believe a proper radiometric calibration will reduce
our error considerably. In practice, it is best to use RAW
images, and our method makes the data acquisition more
feasible because it only requires one-day images. We plan
to deal with this problem in the future by considering the
camera response function and white balance setting into the
skylight model optimization.
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