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Figure 1: (a) Blurry frame of the bicycle sequence. (b) Deblurring result of Cho et al.[7]. (c) Our result.

Abstract

Several state-of-the-art video deblurring methods are
based on a strong assumption that the captured scenes are
static. These methods fail to deblur blurry videos in dy-
namic scenes. We propose a video deblurring method to
deal with general blurs inherent in dynamic scenes, con-
trary to other methods. To handle locally varying and gen-
eral blurs caused by various sources, such as camera shake,
moving objects, and depth variation in a scene, we ap-
proximate pixel-wise kernel with bidirectional optical flows.
Therefore, we propose a single energy model that simulta-
neously estimates optical flows and latent frames to solve
our deblurring problem. We also provide a framework and
efficient solvers to optimize the energy model. By minimiz-
ing the proposed energy function, we achieve significant im-
provements in removing blurs and estimating accurate op-
tical flows in blurry frames. Extensive experimental results
demonstrate the superiority of the proposed method in real
and challenging videos that state-of-the-art methods fail in
either deblurring or optical flow estimation.

1. Introduction
Motion blurs are the most common artifacts in videos

recorded using hand-held cameras. For decades, several
researchers have studied deblurring algorithms to remove
motion blurs. Their methodologies depend on whether the

captured scenes are static or non-static. Early works on
single image deblurring usually assumed that the scene is
static with constant depth [5, 9, 10, 11, 25, 27]. The suc-
cessful approaches were naturally extended to video deblur-
ring. In the work of Cai et al. [2], a multi-image deconvo-
lution method was proposed using sparsity of blur kernels
and clear image to handle registration errors. However, this
method only enables two-dimensional translational cam-
era motion, which generates uniform blur. Therefore, the
proposed approach cannot handle rotational camera shake,
which is the main cause of large motion blurs [27]. To over-
come this limitation, Li et al. [21] used a method parame-
terizing spatially varying motions with 3x3 homographies,
and could handle spatially varying blurs by camera rota-
tion. In the work of Cho et al. [4], camera motion in three-
dimensional space was estimated without the assistance of
specialized hardware. In addition, non-uniform blurs by
projective camera motion could be removed. Spatially vary-
ing blurs by depth variation in a static scene was handled
recently in the works of Lee and Lee [19] and Paramanand
et al. [23].

However, previous approaches, which assume that the
scene is static, suffer from general blurs not only from cam-
era shake but also from moving objects and depth varia-
tions in a dynamic scene. As parameterizing a spatially
varying blur kernel in the dynamic scene is difficult with
simple homography, kernel estimation to handle dynamic
scene becomes more challenging. Therefore, several re-
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Figure 2: (a) Blurry frame of video containing moving car. (b) Our deblurring result. (c) Our color coded optical flow.

searchers have focused on restoring dynamic scenes, which
is mainly grouped into two approaches: segmentation-based
approach, and exemplar-based approach.

Segmentation-based deblurring approaches simultane-
ously estimate multiple motions, multiple kernels, and as-
sociated image segments. Cho et al. [6] proposed a method
that segments images into multiple regions of homogeneous
motions and estimates the corresponding blur kernel as a
one-dimensional Gaussian kernel. Therefore, this method
cannot handle complex motions of objects and rotational
motions of cameras that generate locally varying blurs. Bar
et al. [1] proposed a layered model and segmented images
into two layers (foreground and background). In addition,
they estimated a linear blur kernel corresponding to a fore-
ground layer. Although this method can explicitly handle
occluded regions using a layered model, the kernel is lim-
ited to a one-dimensional box filter only, and only a static
camera is allowed. Wulff and Black [28] extended the pre-
vious work of Bar et al. They focused on estimating the
parameters for both foreground and background motions.
However, the motions within each segment are only pa-
rameterized using the affine model, and extending to multi-
layered scenes is difficult because such task requires joint
estimation of depth ordering of the layers. In summary,
segmentation-based approaches have the advantage of han-
dling blurs by moving objects in dynamic scenes. How-
ever, parameterizing the motions in each segment remains
an issue [16]. That is, it fails to segment non-parametrically
varying complex motions such as motions of people, be-
cause doing so with the simple models used in [1, 28] is
difficult.

The works of Matsushital et al. [22] and Cho et al. [7]
are typical exemplar-based approaches. This works esti-
mate latent frames by interpolating sharp patches, that com-
monly exist in a long image sequence. Therefore, these
methods disregard accurate segmentation and deconvolu-
tion, enabling the emergence of ringing artifacts. However,

the former work cannot handle blurs by moving objects.
Moreover, the latter one can only treat blurs by slightly
moving objects in dynamic scenes because it searches sharp
patches of a blurry patch using globally parameterized ker-
nel with homography. Therefore, handling fast-moving ob-
jects, which have distinct motions from backgrounds, is dif-
ficult. Moreover, it degrades mid-frequency textures, such
as grasses and trees, because this method does not use de-
convolution with spatial priors but use interpolation to re-
store latent frames, which renders smooth results.

To alleviate the problems in previous works, we propose
a new generalized video deblurring method that estimates
latent frames without using global motion parametrization
and segmentation. We estimate bidirectional optical flows
and use them to estimate pixel-wise varying kernels. There-
fore, we can naturally handle coexisting blurs by camera
shake, moving objects with complex motions, and depth
variations. However, sharp frames are required to obtain
accurate optical flows because estimating flow fields is dif-
ficult between blurry images. In addition, accurate optical
flows are necessary to restore sharp frames. This case is
a typical chicken-and-egg problem, and thus we simultane-
ously estimate both variables. Therefore, we propose a new
single energy model to solve our joint problem. We also
provide a framework and efficient techniques to optimize
the model. The result of our system is shown in Fig.2, in
which the moving car is successfully restored because ac-
curate optical flows are jointly estimated.

By minimizing the proposed energy function, we achieve
significant improvements in numerous real challenging
videos that other methods fail to do, as shown in Fig.1.
Furthermore, we estimate more accurate optical flows com-
pared with the state-of-the-art flow estimation method, that
handles blurry images. The performances are demonstrated
in our extensive experiments.
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Figure 3: (a) Bidirectional optical flows. (b) Piece-wise lin-
ear blur kernel at pixel location x.

2. Generalized Video Deblurring
Most conventional video deblurring methods suffer from

the coexistence of various motion blurs from dynamic
scenes because the motions cannot be parameterized using
global or segment-wise parameterization. To handle general
blurs, we propose a new energy model using pixel-wise ker-
nel estimation rather than global or segment-wise parame-
terization. As blind deblurring is a well-known ill-posed
problem, our energy model not only consists of data and
spatial regularization terms but also a temporal term. The
model is expressed as follows:

E = Edata + Etemporal + Espatial, (1)

and the details of each term in (1) are given in the following
sections.

2.1. Data Model based on Approximated Blur

In conventional works, the motion blurs of each frame
are approximated using parametric models such as homo-
graphies and affine models [1, 7, 21, 28]. However, these
kernel approximations are valid when motion blurs are pa-
rameterizable within an entire frame or segment. There-
fore, pixel-wise motion and kernel estimation are required
to cope with general blurs. We approximate the pixel-wise
blur kernel using bidirectional optical flows, in accordance
with previous works [8, 16, 24].

Specifically, under an assumption that the velocity of the
motion is constant between adjacent frames, our blur model
is expressed as follows:

Bi =
1

2τi

∫ τi

0

H(Li, t·ui→i+1)+H(Li, t·ui→i−1)dt, (2)

(c)

(a)

(b)

Figure 4: (a) Blurry frame of a video in dynamic scene. (b)
Locally varying kernel using homography. (c) Our pixel-
wise varying kernel using bidirectional optical flows.

where ui→i+1 = (ui→i+1, vi→i+1), and ui→i−1 =
(ui→i−1, vi→i−1) denote bidirectional optical flows at
frame i. Blurry frame and latent frame are Bi and Li, re-
spectively. Camera duty cycle of the frame is τi and denotes
relative exposure time [21]. We define the image warping,
H(Li, t · ui→i+1), which transforms the frame Li to Li+t
when 0 ≤ t ≤ 1, andH(Li, t·ui→i−1) transforms the frame
Li to Li−t. Our bi-directional optical flows, duty cycle, and
the corresponding piece-wise linear kernel used in our blur
model are illustrated in Fig. 3.

Although our blur kernel model is simple, our model can
be justified because we treat video that has short exposure
time to some extent. Therefore, we approximate the kernel
as piece-wise linear using bidirectional optical flows:

ki,x(u, v) =
δ(uvi→i+1−vui→i+1)

2τi‖ui→i+1‖ , if u ∈ [0, τiui→i+1], v ∈ [0, τivi→i+1]
δ(uvi→i−1−vui→i−1)

2τi‖ui→i−1‖ , if u ∈ (0, τiui→i−1], v ∈ (0, τivi→i−1]

0, otherwise.

,

(3)

where ki,x(u, v) is the blur kernel using bidirectional opti-
cal flows at pixel location x, and δ denotes Kronecker delta.

Using this pixel-wise kernel approximation, we can eas-
ily manage multiple different blurs in a frame, unlike con-
ventional methods. The superiority of our kernel model is
shown in Fig. 4. Our kernel model fits blurs from differ-
ently moving objects and camera shake much better than
the conventional homography-based model.

Therefore, we cast pixel-wise kernel estimation problem
as an optical flows estimation problem. Discretizing the



constraint (2) gives the following data term:

Edata(L,u,B) =

λ
∑
i

∑
∂∗

‖∂∗Ki(τi,ui→i+1,ui→i−1)Li − ∂∗Bi‖2, (4)

where the row vector of blur kernel matrix Ki, correspond-
ing to the blur kernel at pixel x, is the vector form of ki,x(.),
and its elements are non-negative and their sum is equal
to one. Linear operator ∂∗ denotes the Toeplitz matrices
corresponding to the partial (e.g., horizontal and vertical)
derivative filters. Parameter λ controls the weight of the
data term, and L, u, and B denote the set of latent frames,
optical flows, and blurry frames, respectively.

2.2. Temporal Coherence with Optical Flow Con-
straint

Here, we determine that optical flows are required to esti-
mate the pixel-wise blur kernel. However, the proposed data
term does not have conventional optical flow constraints
such as brightness constancy or gradient constancy in (4).
In general, such constraints do not hold between two blurry
frames. Thus, Portz et al. [24] proposed a method to apply
flow constraints between blurry images. Based on the com-
mutative law of shift invariance of kernels [13], the authors
of [24] convolved the approximated blur of each observed
image to the other image and assumed constant brightness
between them at matched points. However, the commutativ-
ity property does not hold in theory when the kernel is not
translation invariant. Therefore, this approach only works
when the motion is smooth enough.

To address this problem, we propose a new model that
finds correspondences between two latent sharp images to
enable abrupt changes in motions and the corresponding
kernels. In using this model, we need not restrict our blur
kernels to be shift invariant. Our model is based on the con-
ventional optical flow constraint between latent images, that
is, brightness constancy. The formulation is expressed as
follows:

Etemporal(L,u) =
∑
i

N∑
n=−N

µn|Li(x)− Li+n(x + ui→i+n)|,

(5)

where n denotes the index of neighboring frames at i. Con-
stant parameter µn controls the weight of each term in the
summation. We apply the robust L1 norm to offer robust-
ness against outliers and occlusions.

Notably, a major difference between the proposed model
and the conventional optical flow estimation methods is that
our problem is a joint problem. That is, the brightness of
latent frames and optical flows need to be simultaneously
estimated. Therefore, our model simultaneously enforces
the temporal coherence of latent frames and estimates the
correspondences.

2.3. Spatial Coherence

To alleviate the difficulties of highly ill-posed deblurring
and optical flow estimation problems, several researchers
have emphasized the importance of spatial regularization.
Therefore, we also enforce spatial coherence to penalize
spatial fluctuations while allowing discontinuities in both
latent frames and flow fields. We assume that spatial priors
for latent frames and optical flows are independent. They
are expressed as follows:

Espatial(L,u) =
∑
i

|∇Li|+
N∑

n=−N
gi(x)|∇ui→i+n|.

(6)

The first term in (6) denotes the spatial regularization term
for the latent frames. Although more sparse Lp norms (e.g.,
p = 0.8) fit the gradient statistics of natural sharp images
better [17, 18, 20], we use conventional total variation (TV)
based regularization [12, 14, 16], as TV is computationally
less expensive. The second term denotes the spatial smooth-
ness term for optical flows. We adopt edge-map coupled
TV-based regularization [15] to preserve discontinuities in
the flow fields at edges. Similar to [16], the edge-map is
expressed as follows:

gi(x) = ν exp(−( |∇Li|
σI

)2), (7)

where ν controls the scale of the edge-map, parameter σI
controls the weight, and Li is an initial latent image in the
iterative optimization framework.

3. Optimization Framework
In the previous sections, we described the Edata,

Etemporal, and Espatial terms. When camera duty cycle τi
is known, our final objective function becomes as follows:

min
L,u

λ
∑
i

∑
∂∗

‖∂∗Ki(ui→i+1,ui→i−1)Li − ∂∗Bi‖2+

∑
i

N∑
n=−N

µn · |Li(x)− Li+n(x + ui→i+n)|+

∑
i

|∇Li|+
N∑

n=−N
gi(x)|∇ui→i+n|.

(8)

Unlike the work of Cho et al. [7], which sequentially per-
forms multi-phase approaches, our model obtains a solution
by minimizing a single objective function. However, be-
cause of its non-convexity, our model is required to adopt
practical optimization methods to obtain approximated so-
lution. Therefore, we divide the original problem into two



sub-problems and use conventional iterative and alternating
optimization techniques [5, 28] to minimize the non-convex
objective function. In the following sections, we introduce
efficient solvers and describe how to estimate unknowns L
and u, with one of them being fixed.

3.1. Sharp Video Restoration

While the optical flows u are fixed, corresponding blur
kernels are also fixed, and our objective function in (8) be-
comes convex with respect to L, and is expressed as fol-
lows:

min
L

λ
∑
i

∑
∂∗

‖∂∗KiLi − ∂∗Bi‖2+

∑
i

N∑
n=−N

µn · |Li(x)− Li+n(x + ui→i+n)|+ |∇Li|.

(9)

To obtain L, we adopt the conventional convex optimization
method in [3], and derive the primal-dual update scheme as
follows:

sm+1
i =

smi +ηLALm
i

max(1, abs(smi +ηLALm
i ))

qm+1
i,n =

qm
i,n+ηLµnDi,n

 Lmi

Lmi+n


max(1, abs(qm

i,n+ηLµnDi,n

 Lmi

Lmi+n

))

Lm+1
i = argmin

Li

λ
∑
∂∗

(∂∗KiLi − ∂∗Bi)2+

(Li − (Lmi − εL(A
T sm+1
i +

∑N
n=−N µnDi,nTqm+1

i,n )))2

2εL
,

(10)
where m ≥ 0 indicates the iteration number, and, si and
qi,n denote the dual variables. Parameters ηL and εL de-
note the update steps. A linear operator A calculates the
spatial difference between neighboring pixels, and another
operator Di,n calculates the temporal differences between
Li(x) and Li+n(x+ui→i+n). To update the primal variable
and obtain Lm+1

i in (10), we apply the conjugate gradient
method to optimize the quadratic function.

3.2. Optical Flows Estimation

While the latent frames L are fixed, temporal coherence
term Etemporal becomes convex but the data term Edata re-
mains non-convex. Therefore, we define a non-convex fi-
delity function ρ(.) as follows:

ρ(x,u) = λ
∑
i

∑
∂∗

‖∂∗Ki(ui→i+1,ui→i−1)Li − ∂∗Bi‖2+

∑
i

N∑
n=−N

µn · |Li(x)− Li+n(x + ui→i+n)|.

(11)
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Figure 5: Temporally consistent optical flows over three
frames.

To find the optimized values of optical flows u, we first con-
vexify the non-convex function ρ(.) by applying the first-
order Taylor expansion. Similar to [16], we linearize the
function near an initial u0 in the iterative process as follows:

ρ(x,u) ≈ ρ(x,u0) +∇ρ(x,u0)
T (u− u0). (12)

Therefore, our approximated convex function for optical
flows estimation is expressed as follows:

min
u
ρ(x,u0) +∇ρ(x,u0)

T (u− u0) +
∑
i

N∑
n=−N

gi(x)|∇ui→i+n|.

(13)

Next, we apply the convex optimization technique in [3] to
the approximated convex function (13), and the primal-dual
update process is expressed as follows:{

pm+1
i,n =

pm
i,n+ηu(GiA)um

i→i+n

max(1, abs(pm
i,n+ηu(GiA)um

i→i+n))

um+1
i→i+n = (umi→i+n − εu(GiA)Tpm+1

i,n )− εu∇i,nρ(x,u0),
(14)

where pi,n denotes the dual variable of ui→i+n on the vec-
tor space and the diagonal matrix Gi is the weighting matrix
denoted as Gi = diag(gi(x)). Parameters ηu and εu denote
the update steps and∇i,nρ(x,u0) means ∂ρ(x,u)

∂ui→i+n
|u0.

4. Implementation Details
To handle large blurs and guide fast convergence, we

implement our algorithm on the traditional coarse-to-fine
framework with empirically determined parameters. We use
λ = 250 for our most experiments, and other parameters are
determined as µn = λ, ν = 0.08λ, σI = 25

255 , and N = 2.
In the coarse-to-fine framework, we build image pyramid
with 17 levels for a high-definition(1280x720) video, the
scale factor is 0.9, and use bi-cubic interpolation to prop-
agate both the optical flows and latent frames to the next
pyramid level.

Moreover, to reduce the number of unknowns in optical
flows, we only estimate ui→i+1 and ui→i−1. We approxi-
mate ui→i+2 using ui→i+1 and ui+1→i+2. For example, it
satisfies, ui→i+2 = ui→i+1 + ui+1→i+2, as illustrated in
Fig. 5, and we can easily apply this for n 6= 1.



The overall process of our algorithm is in Algorithm 1.
Further details on estimating the duty cycle τi and post-
processing step that reduces artifacts are given below.

Algorithm 1 Overview of the proposed method
Input: Blurry frames B
Output: Latent frames L and optical flows u
1: Initialize duty cycle τi and optical flows u. (Sec. 4.1)
2: Build image pyramid.
3: Restore sharp video with fixed u. (Sec. 3.1)
4: Estimate optical flows with fixed L. (Sec. 3.2)
5: Detect occlusion and perform post-processing. (Sec 4.2)
6: Propagate variables to the next pyramid level if exists.
7: Repeat steps 3-6 from coarse to fine pyramid level.

4.1. Duty Cycle Estimation

In this study, we assume that the camera duty cycle τi is
known for every frame. We can obtain the duty cyle from
public SDK, when we use Kinect to capture RGB videos.
However, when we conduct deblurring with conventional
data sets, which do not provide exposure information, we
apply the technique proposed in [7] to estimate the duty cy-
cle. Contrary to the original method in [7], we use optical
flows instead of homographies to obtain initially approxi-
mated blur kernels. Therefore, we first estimate flow fields
from blurry images with [26], which runs in near real-time.
We then use them as initial flows and approximate the ker-
nels to estimate the duty cycle.

4.2. Occlusion Detection and Refinement

Our piece-wise linear kernel naturally results in approx-
imation error and it causes problems such as ringing arti-
facts. Moreover, our data model in (4), and temporal coher-
ence model in (5) are invalid at occluded regions.

To reduce such artifacts from kernel errors and occlu-
sions, we use spatio-temporal filtering as a post-processing:

Lm+1
i (x)=

1

Z(x)

N∑
n=−N

∑
y

wi,n(x, y) · Lmi+n(y), (15)

where y denotes a pixel in the 3x3 neighboring patch at
location (x + ui→i+n) and Z is the normalization factor
(e.g. Z(x) =

∑N
n=−N

∑
y wi,n(x, y)). Notably, we enable

n = 0 in (15) for spatial filtering. Our occlusion-aware
weight wi,n is defined as follows:

wi,n(x, y) = oi,n(x, y) · exp(−
‖Pi(x)− Pi+n(y)‖2

2σ2
w

),

(16)
where occlusion state oi,n(x, y) ∈ {0, 0.5, 1} is determined
using the method proposed in [15]. The 5x5 patch Pi(x) is
centered at x in frame i. The similarity control parameter
σw is fixed as σw = 25/255.

5. Experimental Results
In what follows, we demonstrate the superiority of the

proposed method. (For more results, see the supplementary
video.)

First, we compare our deblurring results with those of the
state-of-the art exemplar based method [7] with the videos
used in [7]. As shown in Fig. 6, the captured scenes are
dynamic and contain multiple moving objects. The method
[7] fails in restoring the moving objects, because the object
motions are large and distinct from the backgrounds. By
contrast, our results show better performances in deblurring
moving objects and backgrounds. This exemplar-based ap-
proach also fails in handling large blurs, as shown in Fig.
7, as the initially estimated homographies in the largely
blurred images are inaccurate. Moreover, this approach ren-
ders excessively smooth results for mid-frequency textures
such as trees, as the method is based on interpolation with-
out spatial prior for latent frames.

Next, we compare our method with the state-of-the-art
segmentation-based approach [28]. In Fig. 8, the captured
scene is a bi-layer and used in [28]. Although the bi-layer
scene is a good example to verify the performance of the
layered model, inaccurate segmentation near the boundaries
causes serious artifacts in the restored frame. By contrast,
our method does not depend on accurate segmentation and
thus restores the boundaries much better than the layered
model.

In Fig. 9, we quantitatively compare the optical flow ac-
curacies with [24] on synthetic blurry images. Although
[24] proposed to handle blurry images in optical flow esti-
mation, its assumption does not hold in motion boundaries,
which are very important for deblurring. Therefore, their
optical flow is inaccurate in the motion boundaries of mov-
ing objects. However, our model enables abrupt changes of
motions and thus performs better than the previous model.

Moreover, we show the deblurring results with and with-
out using the temporal coherence term in (5), and verify
that our temporal coherence model significantly reduces
ringinig artifacts near the edges in Fig. 10.

Other deblurring results from numerous real videos are
shown in Fig. 11. Notably, our model successfully restores
the face which has highly non-uniform blurs because the
person moves rotationally (Fig. 11(e)).

6. Conclusions
In this study, we introduced a novel method that removes

general blurs in dynamic scenes, which conventional meth-
ods fail to do. By estimating a pixel-wise kernel using op-
tical flows, we handled general blurs. Thus, we proposed
a new energy model that estimates optical flows and latent
frames, jointly.

We also provided a framework and efficient solvers to
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Figure 6: Left to right: Blurry frames of dynamic scenes, deblurring results of [7], and our results.

Figure 7: Left to right: Blurry frame, deblurring result of [7], and ours.

Figure 8: Comparison with segmentation-based approach. Left to right: Blurry frame, result of [28], and ours.
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Figure 9: EPE denotes average end point error. (a) Color
coded ground truth optical flow between blurry images. (b)
Optical flow estimation result of [24]. (c) Our result.
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Figure 10: (a) Real blurry frame of a video. (b) Our de-
blurring result without using Etemporal. (c) Our deblurring
result with Etemporal.

minimize the energy function and achieved significant im-
provements in removing general blurs in dynamic scenes.

(c)

(d)

(e)

(a)

(b)

Figure 11: Left to right: Numerous real blurry frames and
our deblurring results. (a)-(b) Data sets used in [7]. (c)-(e)
Captured RGB data sets using kinect.
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