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Abstract

This paper proposes a novel approach to action recog-
nition from RGB-D cameras, in which depth features and
RGB visual features are jointly used. Rich heterogeneous
RGB and depth data are effectively compressed and pro-
jected to a learned shared space, in order to reduce noise
and capture useful information for recognition. Knowledge
from various sources can then be shared with others in the
learned space to learn cross-modal features. This guides
the discovery of valuable information for recognition. To
capture complex spatiotemporal structural relationships in
visual and depth features, we represent both RGB and depth
data in a matrix form. We formulate the recognition task
as a low-rank bilinear model composed of row and column
parameter matrices. The rank of the model parameter is
minimized to build a low-rank classifier, which is benefi-
cial for improving the generalization power. The proposed
method is extensively evaluated on two public RGB-D ac-
tion datasets, and achieves state-of-the-art results. It also
shows promising results if RGB or depth data are missing
in training or testing procedure.

1. Introduction
Action recognition from RGB-D cameras has been re-

ceiving increasing interests in the computer vision commu-
nity due to the recent advance of easy-to-use and low-cost
depth sensors such as Kinect sensors [16]. In addition to
RGB visual data captured by conventional RGB cameras,
depth data are provided in RGB-D cameras, encoding rich
3D structural information of the entire scene. Previous work
[16, 13, 21, 5] showed that effective usage of 3D struc-
tural information facilitates recognition tasks as it simplifies
intra-class motion variations and removes cluttered back-
ground noise.

Despite its effectiveness, those methods are only appli-
cable when depth data are available. Methods developed
in [25, 13, 23, 5] are particularly designed for depth data,
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Figure 1. Our method projects and compresses both RGB visual
features and depth features to a learned shared feature space. Clas-
sification boundaries are learned in the shared space for action
recognition. This process iterates until convergence.

and thus would fail if depth data are unavailable or missing
in RGB-D cameras. In addition, depth data are noisy due
to spatiotemporal discontinuous regions. This hinders the
application of feature extraction methods such as surface
normal [25, 13] and spatiotemporal interest points [23, 5]
in these regions. If the discontinuous regions unfortunately
appear in the body parts that were supposed to provide dis-
criminative cues, such as arms or legs, the recognition per-
formance will be undoubtedly degraded in case of having
depth information as a single cue.

RGB data and depth data can be complementary to each
other if one of them is missing. Implicit correlations be-
tween them can be learned to handle the case that one of
them is unavailable. Moreover, RGB data are robust with no
discontinuities. Numerous feature descriptors (e.g. gradient
and optical flow) can be extracted from RGB data, provid-
ing abundant and robust features for recognition tasks.

Furthermore, human bodies consist of multiple structural
objects, and thus motions of human body parts are highly
correlated. Existing work for action recognition from depth
sequences [25, 13] attempted to capture spatiotemporal cor-
relation information of body part movements by aggregat-
ing features from neighborhoods. However, this informa-
tion would unfortunately collapse as co-occurrence features
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are concatenated into high dimensional vectors [18].
In this paper, we propose a novel bilinear heterogeneous

information machine (BHIM) for action recognition from
RGB-D sequences. BHIM learns cross-modal features that
effectively capture heterogeneous visual and depth infor-
mation. RGB and depth data are treated as two modali-
ties in this work. We project the original features of the
two modalities onto a shared space, and learn cross-modal
features shared between them for classification in order to
effectively capture cross-modal knowledge. The learned
cross-modal features inherit the characteristics of both RGB
and depth data that capture motion, 3D structural, and spa-
tiotemporal relationship information. Moreover, the fea-
tures are “filtered” for noise removal in the projection pro-
cedure. We show in the experiment that the learned cross-
modal features are expressive and discriminative for differ-
entiating action categories, even if one modality is missing
in training or testing.

We represent both visual and depth features in a ma-
trix form, which naturally encodes spatiotemporal structural
relationships. Even though feature matrices are projected
onto a low-dimensional space, the structural information
of body parts is conserved and motion information is com-
pressed and denoised. This overcomes the aforementioned
problem of the collapsed information in feature vectors.

The recognition problem is formulated in a low-rank bi-
linear framework, particularly designed for feature repre-
sentations in a matrix form. The proposed model learns
feature projection matrices and a classification parameter
matrix, which operate as feature weighting in both rows
and columns, respectively. The projection matrices are op-
timized to map original heterogeneous visual and depth fea-
tures onto a shared feature space, which is the optimal space
for building robust and effective cross-modal features for
recognition. An information measure is incorporated in the
learning of projection matrices to help to reduce noise in
feature projection procedure. Classification is performed
using the learned cross-modal features. The rank of the
model is minimized from the viewpoint of generalization
power and computational cost [22].

We propose an efficient algorithm to optimize BHIM.
Without approximations nor hard constraint on the rank of
the parameter matrices, we present a regularized risk min-
imization problem that produces low-rank projection ma-
trices and an action classifier by minimizing the Frobenius
norm of the parameter matrices. This allows us to use ex-
isting efficient SVM solvers. The learning problem is itera-
tively solved with a bundle method [19, 4] being the solver
for the inner optimization problem.

The main contribution of this work is the BHIM, a novel
formalism for RGB-D action recognition. With inputs of
feature matrices rather than vectors, BHIM keeps inher-
ent spatiotemporal structural information within features,

which plays a key role in recognition. In addition, BHIM
learns a shared space for heterogeneous data (RGB and
depth data in this work), where knowledge can be shared be-
tween them. BHIM directly minimizes the rank of param-
eter matrices, and produces compact yet expressive cross-
modal features through the use of information measure. An
efficient solver is designed for BHIM and achieves superior
performance over state-of-the-art methods.

2. Related Work
Previous action recognition approaches mainly focus on

RGB action videos [9, 15, 17, 6]. These studies used low-
level interest point features [17], mid-level semantic fea-
tures [9] or human pose [15], or learned features using deep
learning technique [6]. However, misclassification exists
due to large intra-class variations such as motion and pose.

Due to the advent of low-cost Kinect sensors [16], lots of
attempts have been devoted to object recognition [3, 2] and
action recognition [10, 13, 25, 5] from depth images. One
of the main advantages of depth data is that they capture
3D structural information, which helps reduce background
noise, and simplifies intra-class variations. Effective fea-
tures have been proposed for recognition from depth data,
such as action graph [10], histogram of oriented 4D nor-
mals [13], super normal vector [25], 4D interest point-based
method [5], and depth spatiotemporal interest points [23].
Features from depth sequences can be encoded by [12], or
be used to build actionlets [21] for recognition. Recent work
[11] also showed that features of RGB-D data can also be
learned using popular deep learning techniques.

Those methods only use depth data, and thus would fail
if depth data are missing. In contrast, our method uses
both RGB and depth data, and can handle the case if one
modality is missing. Moreover, they use features in a vector
form, in which spatiotemporal structures would easily col-
lapse [18, 8]. In this work, we propose to use features in a
matrix form, which naturally captures both spatiotemporal
structural information and motion information. We show in
the experiment that features in a matrix format significantly
improve the performance even though the rank of the pa-
rameter matrices in BHIM is constrained to be 1.

Feature learning methods [8, 14, 1, 24] have been pro-
posed to learn better feature representations for recogni-
tion. Different from [14], we elegantly use features from
two modalities for recognition. In contrast to [8], we use
the Frobenius norm instead of the trace norm, which allows
us to use existing efficient SVM solvers. In addition, we
use an effective information measure to produce more com-
pact cross-modal features, while this was not considered in
[14, 8]. Method [24] extends information bottleneck [20] to
a multi-view model. In contrast to their work, we learn a
low-rank bilinear model, which shows better generalization
power than a linear model. In addition, our method can rec-
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Figure 2. Feature matrix of size nxyt × nf is constructed from
features (e.g., HOG) computed on all the frames. nxyt is the total
number of pixels in all the feature frames, and nf is the dimen-
sionality of each local feature.

ognize actions if one modality is missing. However, those
methods were not designed for handling missing modality
and their performance is not clear.

3. Bilinear Heterogeneous Information Ma-
chine

The goal of this work is to utilize heterogeneous fea-
tures from RGB-D action videos, and learn shared cross-
modal features for action recognition. Denote N RGB-D
action videos for training purpose by {Xi, yi}Ni=1, where
Xi = {X [v]

i , X
[z]
i } ∈ X contains a RGB visual feature

matrix X [v]
i ∈ Xv and a depth feature matrix X [z]

i ∈ Xz ex-
tracted from RGB-D data, and yi ∈ Y is the corresponding
action label. Note thatX [v]

i andX [z]
i in our work are defined

as feature matrices of size nxyt×nf , different from feature
vectors containing nxyt × nf elements that are popularly
used in computer vision community. In this work, features
X

[v]
i and X [z]

i (such as histogram of oriented gradient) are
extracted from a spatiotemporal grid of nxyt = nx×ny×nt,
and nf is the dimensionality of each local feature. Action
representation in a matrix form allows us to capture inher-
ent structure of features, such as spatiotemporal relation-
ships. However, these relationships are collapsed in a vec-
tor form feature representation. Note that one can pull out
other dimensions rather than the feature dimension in X [v]

i

and X [z]
i , but the structure of nxyt pixels in the feature ma-

trices will not be conserved by the proposed model.
RGB-D action data Xi contain two modalities, visual

features X [v]
i and depth features X [z]

i . The major challenge
for effectively using the two-modality features is that they
come from different distributions, and thus their similari-
ties could not be measured directly. To solve this prob-
lem, we would like to learn two projection functions Pv

and Pz for visual features X [v]
i and depth features X [z]

i , re-
spectively. Each of the projection functions maps the cor-
responding features to a space O shared between the two
modalities: Pv : Xv → O, and Pz : Xz → O. After learn-
ing the projection functions, a classification model G can
be learned to classify actions given features in the shared

space: G : O → Y ,
Instead of learning the projection functions, Pv and Pz ,

and the classification function G independently, we are in-
terested in learning these functions simultaneously. There-
fore, the learned projections are optimized for classification.
We focus on learning a discriminant function F : X ×Y →
R that scores each training sample (Xi, yi). The function
F is applied to compute the compatibility between original
RGB-D features Xi and the learned cross-modal features
Oi, and between the features Oi and an action label yi.

3.1. Model Formulation

Suppose we are given M (M = 2 in this work) types
of modalities X [m]

i |Mm=1. Here, m is the index of modal-
ity, which can be either visual (m = 1) or depth (m = 2).
We represent both of the two modality features in a ma-
trix form in order to keep inherent spatiotemporal struc-
ture. In this paper, we are interested in a binary bilin-
ear discriminant function F (Xi, y|W ) = Tr(WTXi) =∑M

m=1 Tr(W
[m]TX

[m]
i ), which is a family of bilinear func-

tions parameterized by a model weight matrix W . The
one-vs-one scheme is adopted to extend our binary clas-
sifier to a multi-class classifier. One of the challenges in
RGB-D action recognition is that the two modalities, RGB
features and depth features, are in different feature spaces,
and thus their similarities cannot be directly computed. We
solve this problem by decomposing the parameter matrix
W [m] for each modality into two components, W [m]

f and

Ww: W [m] = WwW
[m]T
f (see Figure 3). Parameter matrix

W
[m]
f ∈ Rnf×d (m = 1, · · · ,M ) projects the m modality

data, X [m], onto a learned shared space, and parameter ma-
trix Ww ∈ Rnxyt×d is applied to classify the projected data
regardless of modalities. Ww is a spatiotemporal template
defined over d features at each spatiotemporal location. Ob-
viously, the rank of the model parameter matrix W [m] will
be enforced to be at most d.

Once the optimal model parameter matrix W is learned
from training data, the action label y∗i can be computed by

y∗i = sign
(
Tr(WTXi)

)
= sign

(∑
m

Tr(W
[m]
f WT

wX
[m]
i )

)
,

(1)
where sign(·) is the sign function.

We train the bilinear model in Eq. (1) in a max-margin
framework. Based on the empirical risk minimization prin-
ciple, we formulate our learning problem as

min
Ww,W

[v]
f ,W

[z]
f

φ(W
[v]
f ,W

[z]
f ) + λ · r(Ww,W

[v]
f ,W

[z]
f )

+ C · l(Ww,W
[v]
f ,W

[z]
f ),

(2)

where φ(·) is a regularizer term for reducing noise in the
projected data, r(·) is an additional regularizer term related
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Figure 3. Graphical illustration of the proposed BHIM model. Pa-
rameter matrix W [m]

f (m = 1, · · · ,M ) projects the m modality
data,X [m], into a learned shared space, andWw is applied to clas-
sify the projected data regardless of modalities.

to the margin of the bilinear model, and l(·) computes the
training loss for the two-modality data. λ and C are trade-
off parameters balancing the importance of the correspond-
ing terms.

Regularizer φ(W [v]
f ,W

[z]
f ) is a function that attempts

to summarize and compress the original two-modality data.
Since the raw RGB and depth data may not be in the same
space, we use this term to compress the data and discover
shared knowledge between the two modalities. We define
this term as

φ(W
[v]
f ,W

[z]
f ) = I(X [v], O) + I(X [z], O), (3)

where X [m] = {X [m]
i }Ni=1 (m = v or m = z) rep-

resents a set of all training samples in the m modality,
O = 1

2 (X
[v]W

[v]
f + X [z]W

[z]
f ) ∈ O is the learned low-

dimensional cross-modal features in the shared space, and
I(·, ·) computes mutual information.

Cross-modal knowledge can be introduced to the model
through the learning of the intermediate features O. Cross-
modal features O inherit information from both RGB and
depth data, including motion, 3D structural, and spatiotem-
poral relationship information. We show in the experiments
that the learned features play an important role in the recog-
nition of RGB-D actions and in case of missing one modal-
ity in training or testing phase.

In addition, the term φ(W
[v]
f ,W

[z]
f ) helps to reduce noise

and produces a compact representation for cross-modal fea-
tures O. In the learning of cross-modal features O, a large
amount of noise irrelevant to action labels would also be in-
troduced to the shared space, and thus degrades the recog-
nition performance. By minimizing φ(W

[v]
f ,W

[z]
f ), both

noisy and discriminative information in O will be reduced,
but discriminative information can be well captured by reg-

ularizer r(Ww,W
[v]
f ,W

[z]
f ) in Eq. (4). Parameter λ for reg-

ularizer r(Ww,W
[v]
f ,W

[z]
f ) is used for balancing the impor-

tance of the noise filter in BHIM.
Regularizer r(Ww,W

[v]
f ,W

[z]
f ) is used to measure

the margin of the bilinear classifier. Minimizing
r(Ww,W

[v]
f ,W

[z]
f ) is equivalent to maximizing the margin

of the bilinear model, thereby capturing discriminative in-
formation. We define this term as

r(Ww,W
[v]
f ,W

[z]
f ) =

1

2
Tr(WwW

[v]T
f W

[v]
f WT

w )

+
1

2
Tr(WwW

[z]T
f W

[z]
f WT

w ).

(4)

Regularizer term r(Ww,W
[v]
f ,W

[z]
f ) naturally induces a

low-rank classifier with the maximum rank of d. This re-
stricts the degree of freedom of model parameter matrices.
As shown in [22], the VC-dimension of low-rank classifica-
tion models is proved to be less than that of the concatenated
linear models.

Regularizer r(Ww,W
[v]
f ,W

[z]
f ) is minimized to extract

discriminative information from cross-modal features O for
action recognition. It works together with φ(W [v]

f ,W
[z]
f ) in

Eq. (3) to extract discriminative information and filter out
noise for recognition.

Loss function l(Ww,W
[v]
f ,W

[z]
f ) computes training

loss given the learned model parameter matrices. We con-
sider a binary classifier in this work, and define a hinge loss
function for each modality, which is similar to the one in
the binary SVM:

l(Ww,W
[v]
f ,W

[z]
f ) =

∑
i

[
max(0, 1− yi Tr(W [v]

f WT
wX

[v]
i )

+ max(0, 1− yi Tr(W [z]
f WT

wX
[z]
i )
]
.

(5)
Plugging Eq. (3), Eq. (4), and Eq. (5) into Eq. (2), opti-

mal parameter matrices W [v]
f , W [z]

f and Ww can be learned
by the following constrained optimization problem:

min
Ww,W

[v]
f ,W

[z]
f

∑
m

[
I(X [m], O) +

1

2
λ · Tr(WwW

[m]T
f W

[m]
f WT

w )

+ C ·
∑
i

ξ
[m]
i

]
,

s.t. yiTr(W
[m]
f WT

wX
[m]
i ) > 1− ξ[m]

i , ∀i,∀m,

ξ
[m]
i > 0, ∀i, ∀m,

(6)
where ξ[m]

i is a slack variable for the m modality in the i-th
RGB-D video.

3.2. Model Learning

The above constrained optimization problem can be
solved by a coordinate descent algorithm that solves for one
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set of parameter matrices at each step with the others fixed.
Each step in the algorithm is a regularized risk minimiza-
tion problem, which can be solved using a bundle method1

[19, 4]. The bundle method is adopted as the inner problem
solver due to its efficiency and good convergence.

We first reformulate the optimization problem (6) as an
unconstrained regularized risk minimization problem:

min
Ww,W

[v]
f ,,W

[z]
f

C ·
∑
i

∑
m

L
[m]
i +

∑
m

R[m], (7)

where

L
[m]
i = max(0, 1− yiTr(W [m]

f WT
wX

[m]
i )),

R[m] = I(X [m], O) +
1

2
λ · Tr(WwW

[m]T
f W

[m]
f WT

w ),

(8)
are empirical loss and regularizer, respectively.

We solve the above problem by a coordinate descent al-
gorithm. Specifically, if W [m]

f is fixed, the optimization
problem is

min
Ww

1

2
λ
∑
m

Tr(WwW
[m]T
f W

[m]
f WT

w )

+ C
∑
i

∑
m

max(0, 1− yiTr(W [m]
f WT

wX
[m]
i )).

(9)

To efficiently solve this problem, we define A =∑
mW

[m]T
f W

[m]
f , and define two auxiliary variables Ŵw =

WwA
1
2 and X̂ [m]

i = XiW
[m]
f A− 1

2 . Note that A is a matrix
of size d × d that is in general invertible for small d. Then
the problem (9) can be equivalently rewritten as

min
Ŵw

1

2
λTr(ŴT

w Ŵw) + C
∑
i

∑
m

max(0, 1− yiTr(ŴT
w X̂

[m]
i )).

(10)
This is an unconstrained regularized risk minimization
problem equivalent to linear SVM if Ŵw and X̂ [m]

i are vec-
torized. We solve this problem using a bundle method. Af-
ter learning Ŵw, the original parameter matrix Ww can be
reconstructed by Ww = ŴwA

− 1
2 .

When Ww is fixed, W [m]
f for each modality can be opti-

mized in a similar form to Eq. (7) and (8) but with Ww as
constant. We define B = WT

wWw, and further define two
auxiliary variables, W̃f and X̃i, as W̃ [m]

f = W
[m]
f B

1
2 and

X̃
[m]
i = X

[m]T
i WwB

− 1
2 . Then, the parameter matrix W̃ [m]

f

for each modality can be optimized independently by

min
W̃

[m]
f

1

2
Tr(W̃

[m]T
f W̃

[m]
f ) + λI(X̃ [m], Õ)

+ C
∑
i

max(0, 1− yiTr(W̃ [m]T
f X̃

[m]
i )),

(11)

1https://forge.lip6.fr/projects/nrbm

Algorithm 1 Bilinear IB model learning algorithm

1: Input: {(X [m]
i , yi)}Ni=1(m = 1, . . . ,M).

2: Output: Ww,W
[m]
f .

3: Initialize variables Ww,W
[m]
f .

4: repeat
5: Compute A =

∑
mW

[m]T
f W

[m]
f , Ŵw = WwA

1
2 ,

and X̂ [m]
i = XiW

[m]
f A− 1

2 .

6: Fix W [m]
f , and optimize Ŵw by (10).

7: Recover Ww = ŴwA
− 1

2 .
8: Compute B = WT

wWw, W̃ [m]
f = W

[m]
f B

1
2 , and

X̃
[m]
i = X

[m]T
i WwB

1
2 .

9: Fix Ww, and optimize W̃
[v]
f and W̃

[z]
f indepen-

dently by (11).
10: Recover W [v]

f = W̃
[v]
f B− 1

2 and W [z]
f = W̃

[z]
f B− 1

2 .
11: until Objective changes < threshold.

with the assumption that the conditional distribution
p(Ww, B

− 1
2 |X [m], O) is a uniform distribution2. This is

also an unconstrained regularized risk minimization prob-
lem for linear SVM and can be solved by a bundle algorithm
if W̃ [m]

f and X̃ [m]
i are unfolded into vectors. We repeat this

step twice, each of which is fed with visual features X [v]
i

or depth feature X [z]
i . After optimizing W̃ [m]

f , W [m]
f can be

recovered by W [m]
f = W̃

[m]
f B− 1

2 .
The proposed BHIM is solved by iteratively optimizing

problems (10) and (11) until convergence. This is a bicon-
vex problem as optimizing one parameter matrix holding
the others fixed is a convex problem. The learning algo-
rithm is shown in Algorithm 1.

3.3. Discussion

We highlight key properties of the proposed BHIM here.
Matrix form feature representation. Visual and depth

features are represented in a matrix form in BHIM, which
naturally considers spatiotemporal motion relationships of
body parts. However, the relationships would be collapsed
in a vector form representation in existing methods [13, 25].

Low-rank bilinear model. BHIM naturally models fea-
ture matrices using two model parameter matrices Wf and
Ww. The rank of the proposed model is minimized to pro-
vide a better generalization power [22].

Information measure. This is computed in the pro-
cess of data projection in order to compress data and reduce
noise in the learned space. We validate its effectiveness in
the experiments.

Cross-modal features. Our BHIM learns cross-modal
features from RGB and depth data. The cross-modal fea-

2Please refer to supplemental material for details.
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Table 1. Comparison results with various dimensionality d of the feature space. The dimensionality of features for each modality in linear
SVM is nxyt · d.

Methods d = 1 d = 5 d = 31
Depth RGB RGB-D Depth RGB RGB-D Depth RGB RGB-D

linear SVM 47.22% 42.78% 51.67% 72.78% 70.00% 75.00% 86.11% 87.22% 87.78%
bilinear SVM 53.89% 50.00% 70.56% 90.00% 87.22% 91.11% 92.78% 80.00% 96.11%
Our method 83.33% 91.11% 96.11% 88.33% 76.11% 98.33% 93.89% 97.22% 100%

tures are discriminative for classification as they capture im-
plicit correlations between RGB and depth data, and inherit
the characteristics of them including motion, 3D structural,
and spatiotemporal correlation information.

Knowledge transfer. The learned projection matrix
W

[v]
f or W [z]

f transfers information from original data X [m]

to the learned shared features O. This helps exploit cross-
modal knowledge if one modality is missing in testing.

4. Experiments
4.1. Datasets and Settings

The proposed method is evaluated on the MSR Ac-
tion Pairs dataset [13] and MSR Daily Activity dataset
[21]. MSR Action Pairs dataset is an indoor RGB-D ac-
tion dataset containing 12 types of activities performed by
10 subjects with both RGB and depth videos. Each actor re-
peats an action for 3 times, to provide a total of 360 videos
for each of the RGB and depth modality. MSR Daily Ac-
tivity dataset contains 16 types of activities performed by
10 subjects. Each actor repeats an action twice, providing a
total of 320 videos for each of the RGB and depth channels.

4.2. MSR Action Pairs Dataset

Videos in this dataset are temporally normalized to 10
frames with spatial resolution of 120× 160. Histograms of
gradient oriented feature is extracted from both depth and
RGB videos with patch size 8 × 8. Thus, a total of nxyt =
3000 patches are extracted from each video, with the feature
dimensionality of nf = 31. We follow [13] and use RGB-D
videos of the first 5 subjects as training data.

Comparison experiment. We compare with existing
method [13, 21, 26, 25, 7], and use linear SVM as base-
line. We also extend the bilinear SVM [14] to capture two-
modality data, and use it as baseline.

Results in Table 2 show that our method outperforms all
the comparison approaches. We achieve 100% accuracy as
we effectively use both visual and depth features. Com-
pared with linear SVM that simply concatenates the two
features into a long vector, our method finds the optimal
space for fusing the two features, and thus improves the
performance. Although bilinear SVM also learns a shared
feature space for the two features, our method uses the in-
formation measure φ(W [v]

f ,W
[z]
f ) in Eq. (3) to compress

data and reduce noise irrelevant to our recognition task.
Our method also outperforms [13, 21, 26, 25], which shows
the benefits of effectively utilizing both visual and depth
data, and representing features in a matrix form. Using a
matrix form feature representation allows us to construct a
low-rank bilinear model that can improve the generalization
power. The learned features and parameter matrices are vi-
sualized in Figure 4.

Table 2. Recognition accuracy of comparison methods on MSR
Action Pairs dataset.

Methods Accuracy
linear SVM 87.78%

Bilinear SVM [14] 96.11%
Deep Motion Maps [26] 66.11%

Skeleton+LOP+Pyramid [21] 82.22%
LTTL [7] 91.48%

HON4D [13] 96.67%
SNV [25] 98.89%

Our method 100%

Sensitivity to parameters. The proposed BHIM has
three parameters to set, the maximum rank of the bilinear
model d, the parameter C and the parameter λ in Eq. (2). In
this experiment, we investigate the sensitivity of BHIM to
these parameters.

We first test the sensitivity of BHIM to the maximum
rank d. BHIM is compared with linear SVM and bilinear
SVM with various d values. Note that there are a total of
nxyt × d elements in the shared space for each modality in
BHIM and bilinear SVM. To conduct a fair comparison, for
linear SVM, we use PCA to reduce the dimensionality of
feature vectors of each modality to nxyt · d, making sure all
the three methods have the same number of elements in the
low-dimensional features. The projected visual and depth
features are concatenated into a long vector and fed to lin-
ear SVM. In bilinear SVM and BHIM, the original feature
matrix X [m] is projected by W [m]

f . The rank parameter d is
set to 1, 5, and 31, respectively.

The performance of the three methods on depth features,
RGB features, and RGB-D features are shown in Table 1.
Results indicate that our method achieves higher perfor-
mance in most of the cases given low-dimensional features,
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Figure 4. Visualizations of (a) the projected visual features X [v]W
[v]
f , (b) the projected depth features X [z]W

[z]
f , (c) the learned cross-

modal features O in the shared space, and the parameter matrices (d) W [v]
f , (e) W [z]

f , and (f) Ww.

Table 3. Knowledge transfer results on MSR Action Pairs dataset. X → Y denotes that X is the training data and Y is the testing data.
d = 31 for both bilinear SVM and BHIM, and dimensionality of features in linear SVM is nxyt · d. The number of elements in the input
feature vector/matrix to the three methods is the same.

Methods RGB-D→RGB RGB-D→Depth RGB→RGB-D Depth→RGB-D
linear SVM 83.33% 81.67% 87.22% 86.11%

Bilinear SVM 90.56% 93.89% 81.67% 91.67%
Our method 97.78% 92.78% 97.78% 93.33%

and its performance on RGB-D data is not sensitive to pa-
rameter d. When d = 1, the projected feature matrices may
lose certain amount of information. However, the struc-
tural information is reserved in BHIM, resulting in signifi-
cant higher performance over linear SVM. In addition, the
learned shared space in BHIM is optimized for classifica-
tion, while it is not the case in PCA. Compared with bilin-
ear SVM, noisy information is reduced in BHIM, and thus
it achieves superior performance.

When d = 31, even though linear SVM captures full
information from visual and depth features, it does not cap-
ture spatiotemporal relationship information due to its vec-
tor form feature representation. In addition, depth and RGB
features are concatenated in linear SVM, suggesting that the
similarities between the two types of features are directly
compared. This may not be appropriate since they are from
different distributions. In contrast, our BHIM solves these
two problems by a matrix form feature representation and
learning a shared feature space. The matrix form represen-
tation naturally captures spatiotemporal body part correla-
tions. The learning of a shared feature space allows us to
effectively use the two types of features for recognition.

BHIM achieves lower results on depth-only and RGB-
only data compared with bilinear SVM when d = 5. This
is because the learned cross-modal features in BHIM loses
too much discriminative information using the information
measure φ(W [v]

f ,W
[z]
f ) in Eq. (3). However, when use both

of the two modalities, BHIM outperforms bilinear SVM
since the discriminative information missing in one modal-
ity can be complemented from the other available modality.

RGB-D action recognition results of BHIM with differ-
ent values of parameter C are shown in Table 4. Results
indicate that our BHIM is insensitive to parameter C when
the value of parameter C is lower than 1. However, the per-
formance drops when the value becomes large.

Table 4. RGB-D action recognition results of our BHIM on MSR
Action Pairs dataset with different values of parameter C.

C value C = 0.01 C = 0.1 C = 1 C = 5
Accuracy 97.22% 98.33% 97.22% 64.44%

We also evaluate the performance of BHIM given differ-
ent values of λ. The value of λ is set to 0.01, 0.1, 1, and 10.
Results in Table 5 indicate that BHIM is insensitive to pa-
rameter λ. The largest performance difference is about 5%
between λ = 0.01 and λ = 0.1. The insensitivity of BHIM
to parameter λ significantly saves time in parameter tuning.

Table 5. RGB-D action recognition results of our BHIM on MSR
Action Pairs dataset with different values of parameter λ.

λ value λ = 0.01 λ = 0.1 λ = 1 λ = 10
Accuracy 97.22% 98.33% 92.78% 95.00%

Knowledge Transfer. We evaluate the performance
of our BHIM, and investigate the effectiveness of the
cross-modal features and the information measure when
one modality is missing in training or testing. BHIM

7



is tested in four scenarios: depth data are missing in
testing (RGB-D→RGB), RGB data are missing in test-
ing (RGB-D→Depth), depth data are missing in training
(RGB→RGB-D), and RGB data are missing in training
(Depth→RGB-D). We compare BHIM with linear SVM
and bilinear SVM, and investigate how the knowledge trans-
ferred from observed modality influences the performance
of the three methods.

Recognition results in Table 3 show that BHIM signifi-
cantly outperforms linear and bilinear SVM in this knowl-
edge transfer experiment. Our BHIM achieves significantly
higher accuracy than linear SVM. This demonstrates the su-
periority of using a matrix form feature representation and
the learned cross-modal features in BHIM. Compared with
bilinear SVM, BHIM also achieves superior results in most
cases. Thanks to the information measure in learning the
projection matrices, BHIM is capable of reducing noise in
learning the shared feature space, and thus outperforms bi-
linear SVM.

4.3. MSR Daily Activity Dataset

RGB and depth sequences in this dataset are spatially
and temporally normalized, and the people of interest are
extracted from these sequences. We follow the same train-
ing protocol in [21]. BHIM is first compared with existing
approaches [26, 11, 27, 13, 21, 25] on this dataset, and then
evaluated given RGB, depth, and RGB-D data, respectively.
Linear SVM and bilinear SVM are used as baseline.

Table 6. Recognition accuracy of comparison methods on MSR
Daily Activity Dataset.

Methods Accuracy
linear SVM 65.00%

Bilinear SVM 85.63%
Depth Motion Maps [26] 43.13%

RGGP [11] 72.10%
Moving Pose [27] 73.80%

Local HON4D [13] 80.00%
Actionlet Ensemble [21] 85.75%

SNV [25] 86.25%
Our method 86.88%

BHIM is compared with existing approaches [26, 11,
27, 13, 21, 25], and results are shown in Table 6. BHIM
achieves superior performance over state-of-the-art meth-
ods. BHIM significantly outperforms linear SVM possi-
bly due to the learning of a shared feature space for the
two types of features, and a matrix form representation
that naturally captures spatiotemporal structural informa-
tion. Recognition accuracy of BHIM is also higher than
bilinear SVM due to the use of information measure, which
is helpful in removing redundant information and noise.

BHIM outperforms recent surface normal-based approaches
[13, 25]. Although these approaches essentially capture
structural information in the feature design stage, they only
focus on depth sequences, and do not utilize valuable visual
information. In addition, the two approaches use the full
length feature vectors and do not learn a better feature space
for classification. BHIM achieves better performance than
the actionlet ensemble approach [21] since we elegantly use
visual and depth information, and effectively compress in-
formative cues and remove noise before classification.

Performance of the proposed BHIM on the RGB-only,
depth-only, and RGB-D data in the MSR Daily Activity
dataset is also reported in this paper. Linear SVM and bi-
linear SVM are adopted as baseline. Recognition accuracy
in Table 7 shows that BHIM achieves satisfactory results
even though only one modality of features is given. When
only depth features are given, linear SVM simply uses the
features in the original feature space for classification. By
contrast, our BHIM finds a better feature space to remove
noise in order to achieve better performance. Compared
with bilinear SVM, BHIM also utilizes information mea-
sure to compress data, and elegantly reduces redundancy in
the data, which facilitates the recognition task.

Table 7. Comparison results on MSR Daily Activity Dataset given
depth-only, RGB-only, and RGB-D data.

Methods Depth RGB Depth+RGB
linear SVM 61.88% 54.38% 65.00%

Bilinear SVM 72.50% 67.50% 81.88%
Our method 81.88% 77.50% 86.88%

5. Conclusion

We have proposed a bilinear heterogeneous information
machine (BHIM) for action recognition from RGB-D se-
quences. Both RGB and depth data are effectively utilized,
and used to learn cross-modal features for recognition. We
represent both visual and depth features in a matrix form to
capture spatiotemporal relationships. A novel low-rank bi-
linear classifier is proposed to naturally model these feature
matrices. BHIM learns a shared space for fusing RGB and
depth data, and produces the cross-modal features. A large
amount of noise is reduced in BHIM using the information
measure. Classification is performed in the shared space
using the learned cross-modal features. We learn a low-
rank BHIM by directly minimizing the rank of the model,
in order to increase the generalization power. An efficient
optimization algorithm is proposed in this work with an off-
the-shelf SVM solver as the inner optimization solver. The
BHIM is extensively evaluated on two public RGB-D action
datasets, and outperforms state-of-the-art approaches.
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