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Abstract The manipulation of panoramic/wide-angle im-
ages is usually achieved via image warping. Though vari-
ous techniques have been developed for preserving shapes
and straight lines for warping, these are not sufficient for
panoramic/wide-angle images. The image projections will
turn the straight lines into curved “geodesic lines”, and it
is fundamentally impossible to keep all these lines straight.
In this work, we propose a geodesic-preserving method for
content-aware image warping. An energy term is intro-
duced to preserve the geodesic appearance of the geodesic
lines, and can be used with shape-preserving terms. Our
method is demonstrated in various applications, including
rectangling panoramas, resizing panoramic/wide-angle im-
ages, and wide-angle image manipulation. An extension to
ellipse preservation for general images is also presented.

1. Introduction

Panoramic/wide-angle images are getting increasingly
popular for common users, thanks to the inexpensive and
convenient devices, such as phones that capture panoramas
[2] and GoPro cameras [1] that capture wide-angle pho-
tos. Panoramic/wide-angle images are inevitably warped
in the image formation procedures, so image warping is a
natural way of processing and manipulating these images
[14, 23, 3, 12, 6, 11, 9, 22].

Studies on image warping have paid particular atten-
tion to preserving shapes [10, 15, 24] and straight lines
[6, 11, 5, 7, 9]. However, these techniques are not sufficient
for warping panoramic/wide-angle images. It has been long
realized in cartography [16] and computer science [18] that
it is impossible to preserve all straight lines when projecting
panoramic/wide-angle images1. As Carroll et al. [6] recog-
nized, the straight-line-preserving methods can fail if the
number of straight lines is large. Carroll et al. [6] and Kopf
et al. [11] also observe if a straight line is long spanned,
preserving its straightness can seriously distort other con-
tent. In He et al.’s work [9], the straight lines are detected

1Perspective projection always preserves straight lines but only applies
to narrow-angles < 60◦ [26, 18].
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Figure 1. When a straight line is projected to a manifold, it be-
comes a curve. In the case of spherical projection (left), the curve
is a section of a great circle; in the case of cylindrical projection
(right), the curve is a section of an ellipse.

on the projected images and then preserved. But if the lines
have become curved due to the projection, this method can
fail to address them (Fig. 2(b)).

Instead of preserving straightness, in this work we pro-
pose to preserve geodesic lines. We define “geodesic
lines” as projections of 3-D straight lines onto 2-D man-
ifolds (Fig. 1). They are great circles on spheres and el-
lipses on cylinders2. Unlike the methods in [6, 11] that
straighten geodesic lines, our method allows them to be
curved. But an unnaturally curved geodesic line can be
noticeable (Fig. 2(b)), because a geodesic line is not sim-
ply a locally smooth curve. In our solution, we constrain
a geodesic line to remain “geodesic”: it should be warped
into another geodesic line, so can preserve its geodesic ap-
pearance. Fig. 2(c) is an example of our solution.

Preserving geodesic lines is a challenging task. Firstly,
a geodesic line is a non-local geometric entity whose points
can be far away from each other. So we need to use
some non-local representations. Secondly, geodesic lines
are complex nonlinear entities, and it is difficult to repre-
sent them via curve equations. To address these problems,
we rely on 3-D planes that are linear and non-local. We
treat a geodesic line as the intersection of a 3-D plane and
the projection manifold. Then we constrain all points of a
geodesic line to be on another plane after warping, so as to

2A great circle is mathematically “geodesic” (shortest path), but an el-
lipse is not. For simplicity, in this paper we term them as “geodesic lines”.
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(b) He et al.’s rectangling result (c) our rectangling result
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Figure 2. An example of preserving straight lines vs. geodesic lines. He et al. [9] warp an irregularly shaped panorama to fit a rectangle, and
preserve the straight lines detected on the projected image (a). This method will distort geodesic lines as in (b). Our method can preserve
geodesic lines and produce a better result as in (c). On the bottom are the zoom-in regions.

(a) detected lines (b) lines on manifolds (c) lines grouped (d) before warping (e) warp with geodesic lines preserved

Figure 3. An overview of our approach. (a) Straight lines are detected on images before projection and stitching. These lines become curves
(blue) on the projected image. (b) On the 3-D coordinate system, these lines are geodesic lines (great circles) on the manifold. (c) The
geodesic lines are grouped according to their normal directions. We use one color to represent one group. (d) The image before warping
with the grouped lines. (e) The image warped by our algorithm to fit a rectangle. (For illustrations, not all detected lines are displayed.)

preserve its geodesic appearance. We formulate this as an
optimization problem.

We demonstrate our algorithm in various applications,
including rectangling panoramas [9] (Fig. 2), resizing
panoramic/wide-angle images, and wide-angle image ma-
nipulation [6]. Experiments show that our method is more
flexible than the methods that preserve straight lines, and
produces pleasing visual quality in challenging cases. We
further extend our method to ellipse preservation in general
(non-panoramic/wide-angle) warping tasks.

2. Related Work

Preserving Local Shapes. In the pioneer work of Igarashi
et al. [10], an as-rigid-as-possible formulation is proposed
for warping images. This method encourages each triangle
in the mesh to undergo a “rigid” transform (rotation+shift).
A Moving-Least-Squares method [15] generalizes it and
supports affine/similarity transforms. Zhang et al. [24] de-
rive a matrix form of as-similar-as-possible warping. This
form produces a single linear system and is flexible to be
combined with other energy terms. It has been applied
in image retargeting [24, 7], video retargeting [20], video
stabilization [13], rectangling panoramas [9], and content-
aware rotation [8].

Preserving Straight Lines. Several methods [6, 5, 7, 9, 8]
have been proposed for preserving straight lines. Though

these methods have different formulations, they share some
key components. Firstly, these methods cut a long straight
line into small segments, such that each segment can be ma-
nipulated by a local mesh quad. Secondly, these methods
introduce some non-local variables that relate these seg-
ments together. The rotational angle or its equivalence is
a non-local variable used by these methods.

3. Our Approach
Spherical/cylindrical projections are commonly used

projections [17]. They will map a straight line in the
3-D world into a geodesic line on the projecting mani-
fold (Fig. 1). A 3-D straight line and the camera center
form a 3-D plane. This plane intersects with the manifold
(sphere/cylinder) and produces a geodesic line. In the 3-D
coordinate systems, the geodesic lines are nonlinear curves
- they are great circles or ellipses. In the 2-D coordinate
systems on the projected manifolds, the curve equations are
more complicated combinations of trigonometric functions.

Due to the nonlinearity, it is more challenging to preserve
the geodesic lines than straight lines. We resort to a linear
subspace as a guidance. Consider a group of points on a
geodesic line. They lie on a common plane before warp-
ing. After warping, if they are on another common plane
(and intersect the manifold), they can still produce another
geodesic line. Because planes are linear subspaces, it is eas-
ier for us to manipulate them.



3.1. Overview

The overview of our warping algorithm is in Fig. 3. Here
we use panorama rectangling [9] as an example warping
application. First we detect the geodesic lines in the im-
age (Fig. 3(a)). These lines are projected on the manifolds
(Fig. 3(b)), and are clustered into groups (Fig. 3(c)). The
line segments in each group are approximately in the same
3-D plane, and correspond to a consistent geodesic line.
With the grouped lines, the image is warped by optimizing
a grid mesh (Fig. 3(d,e)). The details are as follows.

3.2. Detecting and Grouping Geodesic Lines

We first detect the geodesic lines. We assume the projec-
tion coordinate system is known. For panoramas, the pro-
jection is used when stitching the source image sequence
[17] and is known. We detect the straight lines in each
source image (before projection) using the LSD method
[19]. These straight lines are projected onto the stitched
image and become detected geodesic lines (Fig. 3(a)). For
wide-angle images, the projection can be given by camera
calibration [25] and the rest is similar.

Next we group the geodesic lines, such that the lines in
a group should be approximately on the same plane. We
first cut all the geodesic lines into small segments, such that
each segment is inside a mesh quad. For each segment, we
find the 3-D coordinates of their two endpoints on the man-
ifold, and compute their normal vector (Fig. 3(b)). Then
we run k-means clustering on the set of all normal vectors.
The resulting K k-means centers represent the normal vec-
tors of the K planes (Fig. 3(c)). Each group approximately
corresponds to a consistent geodesic line (Fig. 3(d)).

3.3. Energy for Preserving Geodesic Lines

The segments in the same group should have a non-local
property, i.e., they are expected to lie on a common plane
after warping. This non-local property is given by the two
rotation angles (θ, φ) that rotate one plane to another3. Next
we present a warping energy function that only involves the
non-local variables (θ, φ) and the mesh vertexes.

Consider a single segment with two endpoints p̂1, p̂2

before warping (Fig. 4(a)). p̂1, p̂2 are 3-D points and rep-
resented as 3×1 vectors. We use the camera center as the
origin of the 3-D coordinates.

Assume a 3-D point p can be modeled by a transform
T from p̂1, p̂2. The transform involves two parts. In the
first part, it is shifted inside the plane spanned by the two
vectors p̂1, p̂2 (see p̂ in Fig. 4(b)). If we use a 3×2 matrix
B̂ = {p̂1, p̂2} to denote the basis4 of this plane, then p̂ can
be written as B̂s, where s is a 2×1 vector to be determined.

3Though a 3-D rotation should be fully represented by three Euler an-
gles (θ, φ, ψ), the in-plane rotation ψ does not impact the coplanarity and
thus need not be considered.

4These basis need not be orthogonal.

p1
^ p2

^

n̂

p̂

p

Rθ,φ

(a) (b)

Figure 4. Left: p̂1 and p̂2 are two end points of a geodesic line
segment before warping. Right: p̂ = B̂s is a shifted point on the
same plane (black) as p̂1 and p̂2. This plane is rotated by Rθ,φ and
mapped to another plane (red). Then p̂ becomes p after warping.

In the second part, the transform rotates this plane by some
angles (θ, φ) (Fig. 4(b)). This rotation can be written as
a 3-D rotation matrix Rθ,φ (see supplementary materials).
Combining these two parts, the transform T is:

T (s, θ, φ) = Rθ,φB̂s. (1)

We define an energy to minimize the difference between
a point p and its expected transformed position:

e(p, s, θ, φ) = ‖Rθ,φB̂s− p‖2. (2)

Here p is the 3-D position (of p1 or p2) after warping and
will be related to the mesh vertexes, and {θ, φ} are non-
local variables that are shared by all the segments in the
same group.

We first minimize Eqn.(2) w.r.t. s and obtain:

s = (B̂TB̂)−1B̂TRT
θ,φp (3)

This shows a nice property that s is a linear function of p.
Substituting s into Eqn.(2) we obtain:

e(p, θ, φ) = ‖Cθ,φp‖2, (4)

with a matrix Cθ,φ defined as:

Cθ,φ , Rθ,φB̂(B̂
TB̂)−1B̂TRT

θ,φ − I, (5)

where I is a unit matrix. e(p, θ, φ) is quadratic on p.
Given all segments clustered into K groups, the energy

EG for preserving all geodesic lines is:

EG({p}, {θk, φk}) =
1

L

K∑
k=1

∑
l∈G(k)

∑
i=1,2

‖Cθk,φk
pl,i‖2.

(6)

Here L is the number of segments, pl,i (i=1,2) are the two
end points in a segment l, and l belongs to the k-th group
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Figure 5. Use non-local properties to preserve lines. (a) Preserve
geodesic lines. The non-local properties are the 3-D rotation Rθ,φ.
If the points after warping have inconsistent θ, φ, the geodesic line
is distorted (green). (b) Preserve straight lines [7, 9]. The non-
local properties are the 2-D rotation Rθ . If the line segments have
inconsistent θ, the straight line is distorted (green).

G(k). The notations θk and φk imply that the rotation angles
are shared by the segments in the group k, such that these
segments are expected on the same plane after warping. So
{θk, φk} are non-local variables of the group k.

Fig. 5(a) illustrates the effect of the non-local variables.
The black points are in the same plane before warping. If
they share the same rotation {θ, φ}, they will be on the same
plane after warping. Then they still present as a geodesic
line (Fig. 5(a) red). If the points have individual rotation
angles, they are not on the same plane and the geodesic line
is distorted (Fig. 5(a) green).

The above derivation is related to the methods for pre-
serving 2-D straight lines as in [7, 9]. In the 2-D cases,
the straight line segments are grouped into bins. The seg-
ments on the same straight line (Fig. 5(b) black) are in the
same bin. The nonlocal variable is a 2-D rotation angle θ.
If these segments share the same θ, then they still have the
same orientations after rotation. Thus the line is still straight
(Fig. 5(b) red). If the segments have individual rotation an-
gles, the line will be distorted (Fig. 5(b) green). Our method
introduces linear planes as guidance, and generalizes this
behavior to 3-D.

3.4. The Energy Function

Next we incorporate the geodesic-preserving energy
Eqn.(6) in a warping energy. We consider quad meshes
in this paper. The vertexes are denoted as {vj} with each
vj = (uj , vj) as 2-D coordinates. Denote all the vertexes
by a vector V. The warping energy is defined as:

E(V, {θk, φk}) = λBEB(V) + λSES(V)

+λGEG(V, {θk, φk}). (7)

Here EB is a boundary-preserving term, ES is a shape-
preserving term, and EG is a geodesic-preserving term. We

Algorithm 1 Optimization
1: Initialize V.
2: for iter = 1 to itermax do
3: Fix V, update θk, φk in each group k.
4: Fix all {θk, φk}, do:
5: for t = 1 to tmax do
6: Solve a linear system on Vt with Vt−1 fixed.
7: end for
8: end for

set λB = 108 for hard constraints, and set λS = 1 and
λG = 100. The details of the terms are as below.
EB(V) is defined on the boundary vertexes to repre-

sent boundary constraints, as required in image resizing [7]
and panorama rectangling [9]. It has a quadratic form as
EB(V) = (V− V̂)TD(V− V̂). Here D is a diagonal ma-
trix whose diagonal entry is 1 for a boundary vertex and 0
otherwise. V̂ is the pre-defined boundary constraints (usu-
ally a rectangle).
ES(V) is a term that preserves local shapes. We adopt

the form used in [24, 7, 9] that expects the input/warped
quads are “as-similar-as-possible”: ES(V) = VTLV
where L is a Laplacian matrix as derived in [24] (see also
supplementary materials).

The geodesic-preserving term EG is due to Eqn.(6).
When defined on the vertexes V, it has the following form:

EG(V, {θk, φk}) =
1

L

K∑
k=1

∑
l∈G(k)

∑
i=1,2

‖Cθk,φk
f(Ml,iV)‖2,

(8)
where Cθk,φk

is as in (5). Here the matrix Ml,i de-
notes the coefficients used to bilinearly interpolate an end
point of a segment from its nearby four vertexes. This
matrix only depends on the input vertexes and the in-
put position of the (l, i)th end point, and so can be pre-
computed. The reverse projection function f projects any
point on the 2-D manifold back to 3-D. Its form depends
on the projections [18]: for spherical projections f(u, v) =
(sinu cos v; sin v; cosu cos v) and for cylindrical projec-
tions f(u, v) = (sinu; v; cosu). The function f can also be
other projections, e.g., a lens distortion function obtained
by camera calibration [25].

3.5. Optimization

We adopt an iterative algorithm to minimize Eqn.(7). We
fix {θk, φk} and update V, and vice versa. The two sub-
problems are both non-linear.

Fix {θk, φk}, update V. This subproblem is nonlinear on
V because of the function f in Eqn.(8). We adopt the Gauss-



Newton method. We expand f(Ml,iV) in (8) as:

f(Ml,iVt) ≈ f ′(Ml,iVt−1)Ml,i(Vt−Vt−1)+f(Ml,iVt−1),
(9)

where f ′ is the derivative (Jacobian matrix) of f , Vt−1 is the
solution in iteration t−1, and Vt is the solution in iteration
t. With Vt−1 fixed, the energy is a quadratic on Vt and can
be solved by a linear system. This procedure is iterated.

Fix V, update {θk, φk}. In this case, we can independently
estimate θk, φk for each group k:

min
θk,φk

∑
l∈G(k)

∑
i=1,2

‖Cθk,φk
f(Ml,iV)‖2. (10)

Intuitively, this is a regression problem of fitting a plane,
such that all the vectors pi,k , f(Ml,iV) are expected to
be on this plane. We propose a simple solution based on
this intuition. Suppose n̂k is the normal vector of the input
plane (i.e., before warping) corresponding to group k. We
randomly select two points p1,k and p2,k in the group k.
The cross product p1,k × p2,k will give us a normal vector
orthogonal to the plane spanned by these two points. It is
easy to compute the angles (θk, φk) that rotates n̂k to this
new normal vector. These values of (θk, φk) are a candidate
solution to (10). Actually, this is a solution to a single term∑
i=1,2 ‖Cθk,φk

f(Ml,iV)‖2 = 0. We randomly select 100
pairs of (p1,k, p2,k) and obtain 100 candidates solutions.
Then we put each candidate solution into (10) and evalu-
ate the energy. The candidate that gives the smallest energy
will be chosen. In practice we find this simple solution ef-
fectively reduces the energy.

The optimization is described in Algorithm 1. To ini-
tialize, we solve a linear system on V by ignoring the term
EG in (7). The iteration numbers are fixed as itermax=10
and tmax=10. The size of the optimization problem is quite
small. We use a mesh with around 400 vertices, so V is
800-dimensional. The angles {θk, φk} contribute K pairs
of variables, where the group number K depends on image
content. In our implementation we initialize 200 clusters,
and remove empty clusters during the k-means iterations.
This usually leaves K ∼ 102. The optimization in Algo-
rithm 1 on such a small size is efficient, taking < 0.2 sec-
onds in our C++ implementation.

3.6. Preserving Ellipses in General Image Warping

In above we focus on panoramic/wide-angle images.
Next we extend our method to ellipse preservation in warp-
ing general (non-panoramic/wide-angle) images.

We first require the user to mark an ellipse to be pre-
served in the input image. Take image resizing for exam-
ple. We apply an existing resizing method (e.g., [7]) to pre-
liminarily warp the image to the desired size. The sample
points on the user-marked ellipse are warped to their new

(b) line-preserving (c) virtual sphere (d) ellipse-preserving

(a) input

Figure 6. Preserving ellipses in general image resizing. (a) Input
and a user-marked ellipse. (b) Retargeting (50% width) with line-
preserving only. (c) A virtual sphere fitted to guide ellipses. (d)
Our ellipse-preserving resizing.

positions, which may not create a new ellipse if without
preservation (Fig. 6(b)). Then we fit (using least squares)
a new ellipse using the warped sample points, and create a
virtual 3-D sphere whose cross section is the fitted ellipse
(Fig. 6(c)).

We expect the new ellipse to be an intersection of this
sphere and a plane through the center of it. This can be
easily modeled as in our above derivations. We only need to
modify the projection function f in Eqn.(8). For an upright
sphere, we use f in this form:

f(u, v) = (u− u0; v − v0;±
√
r2 − (u− u0)2 − (v − v0)2). (11)

Here (u0, v0) is the center of the virtual 3-D sphere in the
image plane, and r is its radius. The sign ± is given by the
sign of v−v0. Intuitively, this function f maps a point in the
image plane back onto the surface of the sphere. With this
f , we optimize the energy in (7) and warp the image again
to preserve the ellipse (Fig. 6(d)).

4. Results and Applications
4.1. Rectangling Panoramas

This is an application proposed in [9]. The purpose is to
warp an irregularly shaped panorama image and fit it to a
rectangle. The boundary constraint EB in Eqn.(7) is given
by the rectangle boundary. In [9] the straight lines in the
projected panorama are detected and preserved.

Fig. 2 and Fig. 7 show the comparisons between He et
al.’s and our method. The results of He et al. are provided
by the authors. Though He et al.’s method is able to pre-
serve straight lines, it distorts the geodesic lines (see the
zoom-in in Fig. 7). It often treats geodesic lines as piece-
wise linear curves. In contrast, our algorithm manages to
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Figure 7. Rectangling panoramas [9]. (a) Input panoramas. (b) He et al.’s results [9]. (c) Our results.

(a) input panorama (b) preserving local smoothness (c) our geodesic-preserving

Figure 8. Local-smoothness-preserving vs. Geodesic-preserving. (a) Input panorama. (b) Rectangling result of only preserving the local
smoothness of the geodesic lines. (c) Rectangling result of preserving the geodesic lines.

preserve the geodesic lines. The zoom-in windows in Fig. 2
and Fig. 7 demonstrate that the geodesic lines are non-local
geometric entities: they should remain consistent on a large
area of the image.

Geodesic Lines vs. Smooth Curves. The geodesic lines
are not simply locally smooth curves but non-local enti-
ties. A key component in our method is the usage of the
non-local variables (θk, φk). To show the importance of
the non-local property, we implement a curve-preserving
method that preserves the local smoothness of the curve. In
this method, the adjacent segments on a curve (in our case
a geodesic line) are encouraged to have similar directions,
so as to preserve the local smoothness of the curve. The
technical details of this alterative can be found in the sup-
plementary materials. Fig. 8 shows the comparison between
our geodesic-preserving method and the local-smoothness-
preserving method. In Fig. 8(b), the long geodesic lines
still appear wiggled, because they are not treated as non-

local entities. In Fig. 8(c), our result does not have these
artifacts.

4.2. Wide-angle/Panoramic Image Resizing

Content-aware image resizing or retargeting is a widely
studied topic [4, 21, 24, 7]. However, little attention has
been paid to the case of resizing wide-angle/panoramic im-
ages. We point out this is a practical scenario of resizing,
because these images are often taken with special lens or
photographic techniques, and thus exhibit a larger variety
of aspect ratios. These images almost inevitably present
geodesic lines, so our technique is desired.

In Fig. 9 we compare with Chang and Chuang’s method
[7], a resizing technique for preserving straight lines. For
fair comparisons, we adopt the same saliency map as in
[7] that weights the shape-preserving terms in Eqn.(7). As
such, our method only differs from their method in the
ways of addressing lines. Fig. 9 shows that preserving
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Figure 9. Resizing wide-angle (top, by 2× width) and panoramic (bottom, by 50% width) images. (a) Input. (b) Uniform scaling. (c)
Chang and Chuang’s [7] line-preserving retargeting. (d) Our results.

(c) ours(b) Carroll et al.’s stereographic projection(a) input wide-angle

(a) input wide-angle zoom-in (c)(b) Carroll et al.’s zoom-in (b)(c) ours 

Figure 10. Wide-angle image manipulation [6]. (a) Input images with user-specified lines. (b) Carroll et al.’s results obtained from their
paper [6]. This method attempts to keep all these lines straight. (c) Our method treats the long-spanned lines (magenta) as geodesic lines,
and preserve the rest as straight lines. The results are manually cropped for display.

straight lines in wide-angle/panoramic images is not suf-
ficient. The straight-line-preserving method treats geodesic
lines as piece-wise linear curves. Our solution can better
handle these images.

4.3. Wide-angle Image Manipulation

Carroll et al. [6] propose an interactive tool of manip-
ulating wide-angle images - the user marks several lines
in the wide-angle image, and these lines are straightened
(Fig. 10(a)). But as Carroll et al. indicate in the limitation
of their work, distortion is unavoidable if the long straight
lines span very wide angles like∼180◦, such as the magenta

lines in Fig. 10(a). In this case, the image content would be
severely distorted (Fig. 10(b)).

Our method is more flexible than preserving straight
lines. In this interactive case, we use user interactions
to specify lines that are preserved as straight (green in
Fig. 10(a)) or as geodesic (magenta in Fig. 10(a)). To
preserve straight lines, we incorporate the straight-line-
preserving term of [9] into our energy function. This in-
troduces a new set of variables (2-D rotation angles {θ′}
of the straight lines) besides V and {θk, φk} in our energy
Eqn.(7). To optimize this new energy, we simply iterate
among these three sets of variables, fixing two and updating
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Figure 11. Images resizing with ellipse preservation. (a) Input image and user-marked ellipses. (b) Uniform scaling. (c) Chang and
Chuang’s [7] line-preserving retargeting. (d) Our result with ellipse preservation.
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(c)

(b)
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(a) input and user interactions (d) zoom-in(c) our ellipse-preserving(b) line-preserving only

Figure 12. Interactive perspective manipulation [5]. (a) Input and user interaction (more details in supplementary materials). (b) Warping
for perspective manipulation with line-preserving only. (c) Our ellipse-preserving results. (d) Zoom-in. The images are manually cropped
for display.

input panorama our rectangling result

zoom-in zoom-in

Figure 13. A limitation. Our method cannot preserve an arbitrary
curve that is not a geodesic line.

the rest one. Fig. 10(c) shows our result. Our method man-
ages to preserve the long-spanned lines as geodesic lines,
and straighten the other lines.

4.4. Ellipse Preservation

Our method can be extended to preserve ellipses in gen-
eral image warping. Fig. 6 and 11 show examples of image
resizing. Fig. 11(c) shows Chang and Chuang’s [7] line-
preserving result. Without ellipse preservation, this method
distorts the glasses. Fig. 11(d) shows our result that pre-

serves the ellipses.
In Fig. 12 we show examples of warping-based perspec-

tive manipulation proposed in [5] - the user marks sev-
eral perspective lines and vanishing points, and manipulates
them to change the perspective appearance. The image con-
tent is warped subject to the user-marked constraints. The
warping method may lead to noticeable distortion if ellipses
present (Fig. 12(b)). Our ellipse-preserving method reme-
dies this problem (Fig. 12(c)).

5. Limitations and Conclusions

Our method is not a solution to preserving general
curves. The geodesic lines and ellipses have special proper-
ties: they are curves generated by the intersections of mani-
folds. Our method may fail if a curve is really from a curved
object. Fig. 13 shows a failure example. The geodesic line
preservation term does not take effect on this curve. More
failure images are in the supplementary materials.

Our algorithm requires to know the projections of the
wide-angle/panoramic images. This was also required, e.g.,
in [6]. As future work, we will study estimating the projec-
tion only from the projected image.
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