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Abstract

The goal of image stitching is to create natural-looking
mosaics free of artifacts that may occur due to relative
camera motion, illumination changes, and optical aberra-
tions. In this paper, we propose a novel stitching method,
that uses a smooth stitching field over the entire target im-
age, while accounting for all the local transformation vari-
ations. Computing the warp is fully automated and uses
a combination of local homography and global similar-
ity transformations, both of which are estimated with re-
spect to the target. We mitigate the perspective distortion
in the non-overlapping regions by linearizing the homog-
raphy and slowly changing it to the global similarity. The
proposed method is easily generalized to multiple images,
and allows one to automatically obtain the best perspec-
tive in the panorama. It is also more robust to parameter
selection, and hence more automated compared with state-
of-the-art methods. The benefits of the proposed approach
are demonstrated using a variety of challenging cases.

1. Introduction

Algorithms for aligning and stitching images into seam-
less photo-mosaics are among the oldest and most widely
used in computer vision [[L1]. The holy grail of image stitch-
ing is to seamlessly blend overlapping images, even in the
presence of parallax, lens distortion, and scene illumina-
tion, to provide a mosaic without any artifacts that looks
as natural as possible. Evidently, there is some subjectivity
in interpreting how natural a panorama or a mosaic looks.
Furthermore, the stitching techniques must be able to ex-
trapolate well to the regions of the panorama where there is
information only from a single image.

Early methods focused on obtaining global 2D transfor-
mations to align one image with the other [[11]. However,
assuming a single global transformation such as a homogra-
phy, will be incorrect except under special conditions, and
this will lead to misalignments and ghosting effects. Ar-
guably, most of the problems in 2D image stitching happen

because it is impossible to estimate the stitching field accu-
rately due to the complex interaction between the 3D scene
and the camera parameters, both of which are unavailable.
However, several assumptions can be posed on the stitching
field during image alignment [12} 9} 4] 2] and tolerance to
parallax can also be imposed [13]].

We propose a new method that incorporates several tech-
niques to make the panorama look more natural. To miti-
gate perspective distortion that occurs in As-Projective-As-
Possible (APAP) [12] stitching, we linearize the homogra-
phy in the regions that do not overlap with any other image.
We then automatically estimate a global similarity trans-
form using a subset of corresponding points in the over-
lapping regions. Finally, we interpolate smoothly between
the homography and the global similarity in the overlap-
ping regions, and similarly extrapolate using the linearized
homography (affine) and the global similarity transform
in the non-overlapping regions. The smooth combination
of two stitching fields (homography/linearized homography
and global similarity) help us achieve: (a) a fully continu-
ous and smooth stitching field with no bending artifacts, (b)
improved perspective in the non-overlapping regions using
a global similarity transform, (c) full benefits of the state-
of-the-art alignment accuracy offered by APAP.

2. Related Work

A description of fundamental concepts in image stitch-
ing and the many associated transformations is available in
[L1]. Some special cases where cylindrical and spherical
image stitching algorithms can be used are also discussed.
For example, the cylindrical model can be used when the
camera is known to be level and rotating around its verti-
cal axis. Parallax error could be minimized with this as-
sumption, but ghosting occurs when it is violated. A sim-
ple extension for computing a single global homography is
introduced in [7]] by separating a single scene into a distant
plane and a ground plane. A weight map is used to smoothly
combine two homographic transformations over the target
image, but this technique is limited to scenes without local
perspective variation.
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Figure 1: Illustration of proposed algorithm. (a) Original images, (b) Warp after applying moving DLT with Gaussian weight-
ing. (c) Extrapolation of non-overlapping areas using homography linearization and Student’s t-weighting, (d) Proposed final
warps after integrating global similarity transformation, and (e) Final stitched image.

One of the first approaches that estimates a smooth
stitching field is the smoothly varying affine (SVA) stitch-
ing proposed in Lin et al. [9)]. A global affine transform
is estimated, which is then relaxed to form a smoothly
varying affine stitching field, using an EM style formula-
tion. It is flexible enough to handle parallax while retain-
ing the extrapolation and occlusion handling properties of
parametric transforms. Although it can handle local varia-
tions well, it fails to impose global projectivity. This draw-
back is alleviated by the APAP approach proposed in [12],
which estimates a smoothly varying projective stitching
field and hence provides excellent alignment accuracy. A
simple moving Direct Linear Transformation (DLT) method
is used to estimate the local parameters, by providing higher
weights to closer feature points and lower weights to the far-
ther ones.

Since APAP extrapolates the projective transform in the
non-overlapping regions, it introduces severe perspective
distortions in regions far from the boundary. The authors
in [4], propose the shape-preserving half-projective (SPHP)
warp to preserve shapes in the non-overlapping areas. They
analyze the projective transform along a rotated co-ordinate
axis [3]] and propose an approach to gradually change the
warp from projective to similarity, as we move from the
overlapping to the non-overlapping regions. The stitch-
ing provides for shape preservation, but does not guarantee
against parallax. Although the combination of SPHP and
APAP can be claimed to the state-of-the-art approach, it is
sensitive to parameter selection. Furthermore, if the over-
lapping areas have multiple distinct planes, deriving a single
global similarity transformation from the global homogra-
phy may not be sufficient. This may lead to undesirable and

unnatural visual effects in the mosaic.

Carroll et al. [3] proposed a novel method to manipu-
late the perspective of a single image employing the user’s
annotations of planar regions, the straight lines, and asso-
ciated vanishing points. This method can synthesize a new
image from images with different perspectives. Kopf er al.
proposed a method to obtain an image with more plau-
sible visual effects by post-processing a panorama availing
user’s annotations on unnatural regions. However, both the
above methods cannot perform perspective preserving im-
age stitching automatically.

3. Proposed Algorithm

We will provide a detailed presentation of the proposed
algorithm. We first describe the moving DLT method to es-
timate the local homography, and proceed to propose an ap-
proach to linearize it in the non-overlapping regions. Then,
we explain the computation of a global similarity transfor-
mation between the reference and the target images. Since
many similarity transformations are possible, we automat-
ically choose the one with the lowest rotation angle as the
best candidate. Finally, the details of the proposed warp,
which is constructed by combining the homography or its
linearized version across the whole image with the global
similarity, are presented.

3.1. Local Homography Model

Let the target and the reference images be denoted by I
and image I'. Given a pair of matching points p = [z y|
andp’ = [2’ 3], between I and I’, the homographic trans-
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formation p’ = h(p) can be represented as

. h1x+h2y+h3

h,(p)=— """, 1

(p) h7x + hgy + hg ( )
hax + h5y + hg

h = 2

In homogeneous coordinates p = [z y 1]7, and p/ =

[" y' 1]T, it can be represented up to a scaling using the
homography matrix H € R3*3 as

p’ ~ Hp. 3)
The columns of H are given by hy = [hy hg h7]T, hy =
[ha hs hg]T, and hs = [h3 he ho)T. Taking a cross product
on both sides of (3)), we obtain

0341 =p' x Hp 4

which can be re-written as follows

031 —p’  y'p’ h;
03x1 = pT 0351 —ap” hy [. (5
—yp?  'PpT 03.1 h3

We will denote the 9 x 1 vector in (3)) as h. Since only two
rows of the 3 x 9 matrix in (3)) are linearly independent, for
a set of N matching points {p;}¥;, and {p{}},, we can
estimate h using

2
= argmin HAh||2, (6)
h

St
a; 2
where a; ; and a; 5 correspond to the two rows of the matrix
in (5). We will also incorporate the constraint ||h[|? = 1
since the homographic transformation has only 8 degrees of
freedom.

In [12], authors introduced moving DLT framework to
estimate local homography by including locality-enforcing
weights in the objective of (). The local homography at the
location p; is estimated as

N

h = argmin E
h
=1

N 2
h; = argmin E Wi,

i =1

(7

a;1 h
a; 2
which can be writtenas h; = argmin |[W;Ah||?, where
h

Wj = diag([ij Wwi,5 -.- WN,j wN’j]). In [12], the
weights are generated using the offsetted Gaussian which
assumes high value for pixels in the neighborhood of p;
and equal values for those that are very far, ie., w;; =
max(exp(—||p; — p;l|*/c?), 7). The parameter v € [0 1]
is the offset used to prevent numerical issues. Note that the
local homography can be computed only in the regions of
the target image that overlap with the reference image.

For each pixel in the non-overlapping regions, the trans-
formation is computed as a weighted linear combination of
the local homographies in the overlapping regions. Here it
becomes important to choose a proper offset to avoid ex-
trapolation artifacts. This is demonstrated in Figure [T{b)l
where setting v = 0 leads to “wavy” effects due to the
isotropic nature of Gaussian weighting, whereas choosing
a proper offset leads to a good result. Even in this case, the
perspective distortion in the non-overlapping area is appar-
ent with APAP, as noted in [4] as well.

In our proposed method, we use the moving DLT without
offset in overlapping area to estimate the local homography,
and extrapolate to the non-overlapping area using homog-
raphy linearization, as described in the following section.
This reduces the perspective distortion, and our proposed
weighting scheme for extrapolation is less dependent on the
choice of the parameters.

3.2. Homography Linearization

The extrapolation of homographic transformation in the
non-overlapping areas produces extreme and unnatural scal-
ing effects, as seen in Figure[[[b)] The reason for this effect
can be understood by considering the 1-D perspective trans-
form, ' = %' If we estimate the parameters {a, b, ¢, d}
using a set of corresponding points, outside the range of the
available corresponding points as well, the relationship be-
tween z and 2’ will be non-linear. This translates to severe
perspective distortion in 2-D. However, this distortion can
be minimized by linearizing the transformation.

With images, the linearization of homography at any
point q in the neighborhood of the anchor point p can be
understood by considering the Taylor series of the homo-
graphic transformation h(q), where h : R? — R?

h(q) = h(p) + Jn(p)(q —p) +o([la —pl)), (8)

where Jy,(p) is the Jacobian of the homography h at the
point p. The first two terms in (8)) provide the best lineariza-
tion for h(q). Since, if h is differentiable at p, J,, (p) is in-
vertible, the linearization of homography is an affine trans-
formation. However, it is not straightforward to compute
linearization at an arbitrary point q in the non-overlapping
region as in the case of 1—-D data, since the boundary
between the overlapping and the non-overlapping regions
could contain multiple points and we would not know where
the Jacobian has to be computed. Therefore, we consider
anchor points in the boundary for linearization and compute
a weighted average of the transformations.

For a set of R anchor points {p;}Z , at the boundary
with possibly different local homographies, the weighted
combination of linearizations is given as

h*(q) = Z a; (h(pi) +In(pi)(@—p:i)). (9)
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We assume «; to be a function of ||q — p;]|, and in par-
ticular we consider the Gaussian weighting where o; =
exp(—|lq — pi||?/c?), or the Student’s t-weighting where

a; = (1+ M . Student’s t-weighting is more
robust since that tail of the distribution decays slowly com-
pared to Gaussian and hence when q is far from anchor
points, all the anchor points are given similar weighting.
However, if Gaussian weighting is chosen, the tail should
be made flat at the offset parameter ~ to avoid “wavy” ef-
fects.

The stitching result using our extrapolation method is
shown in Figure Using the linearized homography
to extrapolate the non-overlapping area has less perspective
distortions than the result using APAP. The result is simi-
lar to the stitching result using dual-homography warping
[7]. However, with our method, there is no need to esti-
mate two homographies of distant plane and ground plane.
Our method can adapt to the more complicated scenes and
is a generalized method in comparison of dual-homography
method. It does not need the parameter « that should be
determined on a case-by-case basis [12], hence being less
dependent on parameter choices.

3.3. Global Similarity Transformation

In previous section, we introduced a method to linearize
the homography and hence reduce the perspective distor-
tion in the overlapping areas. In the following sections,
we will propose approaches to further reduce the distortions
and hence make the panorama look natural. The idea is to
use a similarity transformation in the non-overlapping areas
in the target image, since it will not introduce any perspec-
tive distortions.

If the global similarity transformation approximates the
camera motion between the the target and the reference im-
ages, the estimated similarity transform can be used to com-
pensate for the camera motion. However, finding a global
similarity transformation using all point matches may result
in non-optimal solution particularly when the overlapping
areas contain distinct image planes. The problem is appar-
ent in Figure [2] which shows the stitching result of SPHP.
Note that SPHP uses the global homography transformation
to uniquely determine the global similarity, which may not
approximate the camera motion well.

Given that there are multiple planes in the scene and an
image projection plane at the focal length of the cameras,
every plane in the scene has an intersection angle with the
image projection plane, and each plane in the scene cor-
responds to a local homography transformation. The ho-
mography transformation corresponding to the plane that
is most parallel (smallest intersection angle) to image pro-
jection plane can be used to derive the optimal similarity
transformation that represents the camera motion.

Figure 2: Stitching result for Temple image dataset using
SPHP [4].

We propose an approach to compute an optimal similar-
ity transformation between the reference and the target im-
ages by segmenting the corresponding points in the follow-
ing manner. After obtaining the feature point matches, we
first remove the outliers using RANSAC [6] with threshold
€4. Then, we use RANSAC with a threshold ¢, to find a ho-
mography of the plane with largest inliers, where ¢; < ¢,
and we remove the inliers. This is repeated until the num-
ber of inliers is small than n. Each group of matched in-
lier points is used to calculate an individual similarity trans-
formation. Then, the rotation angles corresponding to the
transformations are examined and the one with the smallest

rotation angle is chosen.

Figure 3] shows an example of the grouping results. The
green and yellow circles on the figure belong to two differ-
ent groups of point correspondences. The red circles do not
belong to any group. In this example, the group with yellow
points generate the optimal global similarity transformation
with the least rotation angle.

Figure 3: Grouping feature points for computing the opti-
mal global similarity transform.

3.4. Integration of Global Similarity Transforma-
tion

After the global similarity transformation is calculated,
it is used to adjust warps of target image in order to miti-
gate the perspective distortions in the overall panorama. If
we only adjust the transformations on the non-overlapping
area, the stitching result may have an unnatural visual ef-
fect. Hence, we gradually update the local transformations
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Figure 4: Comparisons with state-of-the-art image stitching techniques on the Temple image dataset.

of entire target image to the global similarity transformation
using the following equation:

A" =, HY + 4.8 (10)

Here, Hgt) is 7*" local homography, ﬂgt) is updated local
transformation, S is the global similarity transformation. gy,

and ps are weighting coefficients. The superscript (¢) refers
to the target image and the superscript (1) denotes the refer-
ence image. We also constrain up + ps = 1, where pp, and
s are between 0 and 1. They are computed as,

1 (3) = (eonp (D, o) rind (1)
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ps(7) =1 — pn (2), (12)

where « is the projected point of warped target image on the
o,0; direction. o, and o; are the center points of the refer-
ence image and the warped target image. x,, and ks are

the points with smallest and largest value of (0,p(i), 6,0;)
respectively. Here, p(i) is the location of the i location in
the final panorama.

Updating the warps of target image with global similar-
ity transformation causes misalignment of overlapping ar-
eas between reference image and target image that were
previously aligned. Therefore, we need to compensate the
changes by appropriately propagating the changes from the
target image to the reference image. The local transforma-
tion of the reference image can be now obtained as

) = ) (13)

Fig. [I{d)] show the final warping results of reference image
and target image. The final stitching result shown in Fig.
clearly resembles a natural-looking panorama.

4. Experiments

We have conducted comparative experiments of pro-
posed algorithm on a variety of existing datasets made avail-
able by [12]]. The compared methods include Microsoft Im-
age Composite Editor (ICE) [1]], APAP [12], SPHP with
global homography [4], SPHP with local homographies
computed with APAP (SPHP+APAP). In our experiments,
we use the same set of parameters suggested in the respec-
tive papers. We use the code provided by the authors of
the papers to obtain the results for comparison. The corre-
sponding points are detected using SIFT [[L0]]. For the mov-
ing DLT, we set o as 12.5, for Student’s t, we set v as 5,
the threshold, €4, for global RANSAC error function is set
as 0.1, the threshold, ;, for the local RANSAC error func-
tion is fixed at 0.001, and the threshold for inlier number,
K, is fixed at 50. The proposed method typically takes from
20 to 30 seconds with a 2.7GHz CPU and 16GB RAM to
stitch two images with 800 x 600 resolution. To keep the
paper concise, we show provide results only for Temple and
Railtracks datasets, but more results are available in the sup-
plementary material.

The results for the Temple dataset are provided in Figure
Ml Each row is a result of different methods. The results are
in the following order: ICE, APAP, SPHP, SPHP+APAP,
and our method. Two areas of each results have been high-
lighted. Red boxes show parallax error in overlapping ar-
eas, and blue boxes show the perspective distortion in non-
overlapping areas. The result of ICE look good visually.
The perspective is preserved but there is some misalign-
ment on the ground region. The APAP results on the sec-
ond row, as discussed in the previous section, show good

alignment on the overlapping areas, but the perspective dis-
tortion on non-overlapping area is non-negligible, for the
reasons discussed before. The third row shows the results
of SPHP method. As described in SPHP paper, it pays more
attention to mitigating the perspective distortion but not the
alignment accuracy. The result shows the shape is preserved
but parallax errors exist. To alleviate the parallax errors, au-
thors of SPHP suggest combining SPHP with APAP. The re-
sults in the next row show the parallax errors are improved.
However in both SPHP and SPHP+APAP, the buildings on
the right side are not parallel to temples. This is because the
similarity transformation is derived from the global homog-
raphy and hence may not be optimal. This is particularly
true, if there are multiple distinct planes in the overlapping
areas, just like in the image. This can be corrected only if
the rotation angle of the camera is known. The results in the
last row show that our method mitigates the perspective dis-
tortion and can also successfully handle the parallax issue.

Figure [5) compares the results for the Railtracks dataset.
We can still see parallax error in ICE/SPHP and perspec-
tive issues in APAP. Without manually correcting for the
rotation angle, the results from SPHP and SPHP+APAP do
not look natural. The proposed method maintains alignment
accuracy and shows robustness in this challenging exam-
ple. The panorama examples that follow demonstrate the
performance of our proposed method with multiple images.
The image dataset in Figure [6] consist of a truck, a round-
about, and an arced ground surface. The images in Figure
includes skylines, buildings, trees, and a swimming pool.
Our method works well in both datasets, maintaining the
integrity of image contents, and providing a natural look to
the panorama. There are no visible parallax errors and per-
spective distortions.

5. Conclusion

In this work, we have presented a novel stitching method
that uses a smooth stitching field derived from local homog-
raphy or its linearized version and a global similarity trans-
formation. Results show that our approach provides a more
natural panorama with no visible parallax in the overlapping
regions and mitigates the perspective distortion issue in the
non-overlapping regions. Furthermore, it is less dependent
on the choice of the parameters and computes the appropri-
ate global similarity transform automatically. Experimen-
tal comparisons to existing methods show that the proposed
method yields the best stitch compared to the state-of-the-
art methods. Future research developments will include
compensating for parallax when large motion exists, which
can be performed by integrating seam-cut methods into this
framework. This will make our approach a one-stop solu-
tion that addresses all major problems in image stitching.
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Figure 5: Comparisons with state-of-the-art image stitching techniques on the Railtracks image dataset.
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Figure 7: Panorama of skyline images.
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