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Abstract

This paper presents a reliable non-blind method to mea-
sure intrinsic lens blur.  We first introduce an accurate
camera-scene alignment framework that avoids erroneous
homography estimation and camera tone curve estimation.
This alignment is used to generate a sharp correspondence
of a target pattern captured by the camera. Second, we in-
troduce a Point Spread Function (PSF) estimation approach
where information about the frequency spectrum of the tar-
get image is taken into account. As a result of these steps
and the ability to use multiple target images in this frame-
work, we achieve a PSF estimation method robust against
noise and suitable for mobile devices. Experimental results
show that the proposed method results in PSFs with more
than 10 dB higher accuracy in noisy conditions compared
with the PSFs generated using state-of-the-art techniques.

1. Introduction

The quality of images formed by lenses is limited by the
blur generated during the exposure. Blur most often occurs
on out of focus objects or due to camera motion. While
these kinds of blur can be prevented by adequate photog-
raphy skills, there is a permanent intrinsic blur caused by
the optics of image formation e.g. lens aberration and light
diffraction. Image deconvolution can reduce this intrinsic
blur if the lens PSF is precisely known. The PSF can be
measured directly using laser and precision collimator or
pinhole image analysis. However, these approaches require
sophisticated and expensive equipment. Modeling the PSF
by means of camera lens prescription [19] or parameterized
techniques [21] is also possible. However, these techniques
are often applicable only for certain camera configurations
and need fundamental adjustments for various configura-
tions. Hence, there is a requirement to measure the blur
function by analyzing the captured images. Such a PSF es-
timation is an ill-posed problem that can be approached by
blind and non-blind methods. This problem is even more

challenging for mobile devices since they have very small
sensor area that typically creates a large amount of noise.

Blind PSF estimation is performed on a single observed
image [4, 8, 9, 11, 14, 17,23, 25, 28] or a set of observed
images [0, 16, 27]. The features of the latent sharp image
are modeled, and then the model is employed in an opti-
mization process to estimate a PSF. Given the knowledge
that the gradient of sharp images generally follows a heavy-
tailed distribution [20], Gaussian [26], Laplacian [3], and
hyper-Laplacian [15] priors over image derivatives are used
in many techniques such as [14, 8, 18, 13]. In addition to
these general priors, local edges and a Gaussian prior on
the PSF are used in edge-based PSF estimation techniques
[4,5, 11, 25]. In general, blind PSF estimation methods are
suitable to measure the extrinsic camera blur function rather
than the intrinsic one.

Non-blind PSF estimation techniques assume that given
a known target and its captured image the lens PSF can be
accurately estimated. Zandhuis et al. [29] propose to use
slanted edges in the calibration pattern. Several one dimen-
sional responses are required that are based on a symmetry
assumption for the kernel. A checkerboard pattern is used as
the calibration target by Trimeche et al. in [24], and the PSF
is estimated by inverse filtering given the sharp checker-
board pattern and its photograph. Joshi et al.’s non-blind
PSF estimation [ 1] relies on an arc-shaped checkerboard-
like pattern. The PSF is estimated by introducing a penalty
term on its gradient’s norm. In a similar scheme, Heide
et al. estimate the PSF using the norm of PSF’s gradient
in the optimization process [10]. They propose to use a
white-noise pattern rather than regular checkerboard image
or Joshi’s arc-shaped pattern as the calibration target. This
method also constrains the energy of the PSF by introduc-
ing a normalization prior to the PSF estimation function.
Kee et al. propose a test chart that consists of a checker-
board pattern with complement black and white circles in
each block [12]. The PSF estimation problem is solved us-
ing least squares minimization and thresholding out nega-
tive values generated in the result. A random noise target is
also used in Brauers et al.’s PSF estimation technique [!].
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Figure 1. The overview of our lens PSF measurement framework and the enhancement achieved using our measured PSFs.

They propose to apply inverse filtering to measure the PSF,
and then threshold it as a naive regularization. Delbracio
et al. show in [7] that a noise pattern with a Bernoulli dis-
tribution with an expectation of 0.5 is an ideal calibration
pattern in terms of well-posedness of the PSF estimation
functional. In other words, pseudo-inverse filtering without
any regularization term would result in a near optimal PSF.
The downside of the direct pseudo-inverse filtering is that it
does not consider the non-negativity constraint of the PSF.
Hence, the PSF can be wrongly measured in presence of
even a little amount of noise in the captured image. These
techniques rely strongly on an accurate alignment (geomet-
ric and radiometric) between the calibration pattern and its
observation. Reducing alignment errors is essential to pro-
duce accurate PSFs using these techniques.

In this paper, we introduce a non-blind method to mea-
sure the intrinsic camera blur. We build a reliable hardware
setup that unlike existing non-blind techniques omits ho-
mography and radial distortion estimation for the camera-
scene alignment. Hence, potential errors of the geometric
alignment between the captured pattern and the original one
are greatly reduced. This setup also provides pixel to pixel
intensity correspondence between the captured pattern and
the sharp pattern. Hence, there is no need for tone curve
estimation or complicated radiometric correction between
the two images. We use Bernoulli (0.5) noise patterns to
estimate the PSF. Unlike the method proposed in [6], we in-
troduce a non-negativity constraint and take into account
the frequency and energy specifications of the Bernoulli
noise pattern directly in the functional of the PSF estima-
tion. Also, the proposed alignment allows us to utilize mul-
tiple PSF estimation targets (i.e. Bernoulli noise patterns)
in the PSF estimation function to significantly reduce the
effect of noise. As a result of our main contributions i.e.
simplified and accurate alignment, employing spectral in-
formation of the kernel as a prior, and using multiple targets,
we achieve an accurate PSF estimation which is greatly ro-
bust against noise. This becomes an appropriate scheme
to measure lens blur of mobile devices that suffer from a
large amount of noise caused by their small sensors. The
accuracy of our PSF estimation method is validated by com-
paring with state-of-the-art non-blind PSF estimation tech-
niques, and by deblurring images using PSFs that we mea-
sured for camera lenses.

2. Overview

Typically, a perspective projection of a 3D world scene
onto a focal plane is the base of camera model. Light rays
are concentrated via a system of lenses toward the focal
plane passing through the aperture. It is often assumed that
the observed scene ¢ is planar. Hence, the perspective pro-
jection can be modelled as a planar homography h. The
perspective projection is followed by some distortion due to
the physics of imaging, especially the use of a non-pinhole
aperture in real cameras. Denoting the geometric distortion
function by d, image formation can be modeled as:

b=5(v(d(r(@)) + k) +n, (1)

where b is the captured image, k is a PSF that represents
lens aberrations, v denotes optical vignetting often caused
by physical dimensions of multi-element lens, S is the sen-
sor’s sampling function, and n represents additive zero-
mean Gaussian noise. It is assumed that the camera re-
sponse function is linear, and for brevity, avoided in Eq. (1).

Measuring the intrinsic blur kernel k given the observed
image b and a known scene ¢ requires an accurate estima-
tion of h, d, and v in Eq. (1). The homography h is often
estimated [1, 7, 10, 11, 12, 24] using some known feature
points in ¢ (e.g. corners in checkerboard calibration pattern)
and fitting them to the corresponding points in the observed
image b, and then the effect of distortion d is taken into ac-
count by Brown’s radial-tangential model [2]. After warp-
ing ¢ according to h and d, devignetting/color correction
algorithms are applied to estimate v in order to generate a

sharp correspondence v = v (d(h(z))) of the observed im-
age b to be used in the imaging model

b=S(uxk)+n. 2)

Observation-scene alignment (h, d and v estimation)
is prone to severe errors. Even advanced calibration and
warping techniques may negatively affect the accuracy of
PSF estimation [22]. Hence, we propose to avoid tradi-
tional homography, distortion, and vignetting estimation.
An overview of our PSF measurement method is shown in
Fig. 1. We use four different patterns; a 0.5 expectation
Bernoulli noise pattern as the scene pattern, a checkerboard
with a large number of checker patterns as the calibration
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Figure 2. Patterns used in calibration and PSF estimation. (a) Orig-
inal synthetic patterns. (b) Photographs of the synthetic pat-
terns displayed on a screen. (c) Detected corners in the checker-
board images and the corresponding points in the noise images.
(d) Warped and color corrected sharp noise pattern.

guide, and a black and a white image as intensity references.
A high resolution screen is used to display these patterns so
that no relative motion between them and between the cam-
era and the scene is induced during the imaging. The cor-
ners found in the picture of the checkerboard are used to find
the correspondence between the camera grid and the scene.
These points are used in a bilinear interpolation scheme to
transform the synthetic noise pattern into the camera grid
space. Next, the pictures of the black and the white images
are used to adjust the intensity of the transformed synthetic
noise pattern. This process is further detailed in Sec. 3.1.
The resulting warped and color adjusted sharp noise pattern
u is then employed in our PSF estimation procedure.

Considering model (2), the lens PSF £ is estimated by

generating a linear system to solve a least squares problem
with smoothness and sparsity constraints for the kernel. In
addition, since the spectrum of the Bernoulli pattern is uni-
form and contains all frequency components, we employ
its spectral density function (SDF) to derive a prior for the
PSF as detailed in Sec. 3.2. With this framework we can
employ multiple noise patterns in order to measure the lens
PSF more accurately.

3. Measuring Lens Blur
3.1. Alignment

Separating the calibration pattern from the scene ¢ pro-
vides us with more flexibility in the size of checker blocks
and the number of feature points in the calibration pattern.
Fig. 2(a) shows the synthetic patterns; a 25x48 checker-
board pattern, a Bernoulli (0.5) noise pattern, a black image
and a white image. The size of all of these images is chosen
so that they fit the entire screen when displayed on a high
resolution screen. Then, pictures of the displayed synthetic
images are captured as shown in Fig. 2(b) using the camera
whose lens PSF needs to be measured.

In the first step, the corner points in the pictured checker-
board and the synthetic one are detected using a Harris cor-
ner detector. By inspection, the corresponding pairs of cor-
ner points in these two images are identified. These points
are in fact mapped from the synthetic sharp pattern to the
camera grid through the imaging process while some lens
blur is induced. Since, the geometry alignment between
camera and display is unchanged between captures, the
points detected in the checkerboards (Fig. 2(c)) are used to
warp the sharp Bernoulli noise pattern ¢ to align it with its
corresponding captured picture b.

We denote the planar coordinates of each block identified
using corner detection by ¢; = (a1,61), ca = (az,61),
c3 = (ag,B2), ¢4 = (a1, B2) in the synthetic checker-
board, and by ¢| = (x1,¥1), ¢a = (x2,y2), &3 = (23,Y3),
¢y = (x4,y4) in the pictured checkerboard (Fig. 2(c)). The
synthetic noise pixels that lie in the block denoted by c;, c2,
cs, ¢4 are mapped to the corresponding block coordinated
by ¢, o, €3, é4. This is carried out by bilinear interpolation.
In fact, the warping procedure can be reduced to a texture
mapping from a square space into an irregular quadrilateral:

1 -1 -1 1\ /&
B -1 1 0 ol |é
(@ y)=(@b o 5 D1 o 1 o]l
1 0 0 0/ \é
3)

where (a, 3) is the pixel coordinate in the square ¢y, ¢2, c3,
¢q. In Eq. (3), (o, B) is normalized by mapping the range
[a1, o] to [0, 1] and [y, B2] to [0, 1]. The transformed co-
ordinate into the area 1, ¢», ¢3, ¢y is denoted by (x, y). For
better accuracy, the pixels in the synthetic noise pattern ¢ are
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Algorithm 1 Bilinear warping.

Require: ¢y, cs, c3, ¢4 and 7, ¢3, c3, ¢4 for all Ny
checkerboard blocks, captured noise pattern b, syn-
thetic noise pattern %

1: Generate M x N matrices of zeros count and 7

2: for all N, blocks do

3:  map [ag,az] to [0,1] and [B1, Bo] to [0, 1]

4:  for o = o to ag, step: S, do

5: for 5 = (3, to 32, step: S;, do

6

7

8

9

find « and y using Eq. (3)
count(z,y) < count(x,y) + 1

i(e.9) = (i(e.) +i(a.5)) Jecount(z.y)

end for
10:  end for
11: end for

12: return i

divided into .S}, sub-pixels. Hence, more samples are taken
into account in the warping. Assuming that N, blocks exist
in the checkerboard pattern and that the size of bis M x N,
Algorithm 1 lists the steps to warp the synthetic noise pat-
tern ¢ and generate i. In this algorithm, count is used to
keep track of pixels that are mapped from ¢ space into a
single location in the b space. This avoids rasterizarion arti-
facts especially at the borders of warped blocks.

The camera’s vignetting effect can be reproduced by
means of the pictures of black and white images i.e. [ and w
(Fig. 2(b)). Assuming that the pixel intensity ranges from 0
to 1 in ¢, the intensity of sharp version u of the scene cap-
tured by the camera is calculated as:

u(z,y) = Uz,y) +i(z,y) (wz,y) — Uz,y)), @

where w(z,y) and I(z, y) denote pixel intensities at (x,y)
in the white and the black images (Fig. 2(b)) respectively.

Fig. 2(d) shows the result of the alignment process. Our
alignment scheme avoids the estimation of the homography,
distortion, and vignetting functions generally performed in
state-of-the-art non-blind PSF estimation techniques. Due
to the separation of calibration and target patterns, we are
able to increase the number of checker patterns in the cali-
bration image, and thus increase the accuracy of the bilin-
ear interpolation done in the warping scheme. Our accurate
vignetting reproduction is due to the use of camera refer-
ence intensities (black and white reference images), which
is only possible if there is no change in the camera-scene
geometry alignment while capturing the images. This in
turn becomes possible by using a high-resolution screen to
expose the sequence of images.

3.2. PSF estimation

The Bernoulli (0.5) noise pattern that we use in PSF esti-
mation contains all frequency components and its spectrum

does not contain zero magnitude frequencies. Therefore, it
is ideal for direct estimation of PSF from b and u via inverse
filtering [ 1, 7]. However, the presence of unknown noise in
the observation b violates the expected uniform frequency
in b. Hence, direct methods result in artifacts and negative
values in the estimated PSF. This motivates utilizing priors
in the PSF estimation.

Let M x N be the size of b and v and R x R be the
size of k. Hereafter, by b and u we mean the rectangular
regions in these images that contain the noise pattern. The
blur model (2) can be rewritten in vector form,

b=uk+n ®))

where b € RMN n ¢ RMN x ¢ REE and u €
RMNXRE For brevity, the sampling operator S is dropped
as it is a linear operator that can be easily determined by
measuring the pixel ratio between the synthetic image and
the corresponding captured image.

The Bernoulli noise pattern has a homogeneous spec-
trum density function (SDF) i.e. |F(i)|*> where F(.) de-
notes the Fourier transform. Hence, in an ideal noise-
free image acquisition, the SDF of the captured image b is
| F(3)|?|F (Kk)|2. Therefore, the SDF of the ideal blur kernel

k is expected to be
F(b)F(b)

IFR))? = ==,
F(u)F(u)
where @ denotes the complex conjugate of a.

We propose to solve the following function to estimate
the PSF:

minimize £(k) =||ak — b||2 + A||k[|? + u||VK|?

(6)

+AIFW)] — [FOEI?, stk >0
@)
where the first term is the data fitting term, and the second
and the third terms are the kernel sparsity and the kernel
smoothness constraints weighted by A and p, respectively.
The last term in Eq. (7) weighted by ~ is the constraint of
the SDF of the PSF. Note that ||.|| is the £2 norm and V is
the gradient operator. Due to the use of a screen to display
the target patterns and a fixed configuration for the cam-
era, we are able to have multiple noise patterns and their
observations. Using multiple observations and sharp corre-
spondences in problem (7) results in a more accurate PSF.
In problem (7), G contains L stacked number of different
uie U = [uuy- --uL]T, a € RMNLXRE  Gimilarly,
b =[biby---b]T, b e RMNL | F(K)| is also calculated

using multiple sharp and observation images (1 and b).
The objective function of problem (7) can be written as:

1
E(k) =5 (6" 0+ pdydy T + pdydy T 4+ MkkT — 0T bk

+AI[F ()| — [F k)|,
®)
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where d, = [—11] and d, = [—1 1] are the first order
derivative operators whose 2D convolution vector format in
Eq. (8) are dy (dy € REFXER) and dy (dy € REEXRR)
respectively. The data fitting term and the two regulariza-
tion terms in Eq. (8) follow a quadratic expression whose
gradient is straightforward to find. Then, the gradient of the
SDF constraint in Eq. (8) can be derived as:

OIIIF (k)| — |F I _ L ( FOFO)
i =2(k-F <—e">,

€))
where 6 is the phase of the Fourier transform of k (Eq. (6)).
We solve problem (8) by a gradient descent solver with the
descent direction as —0F (k) /0k.

Since the intrinsic lens blur is spatially varying, the ob-
servation and sharp images are divided into smaller corre-
sponding blocks, and then the PSF estimation problem (7)
is solved for each block independently.

4. Experimental Results

We tested the accuracy of our alignment (calibration)
technique and the proposed PSF estimation method inde-
pendently. Then, the entire lens PSF measurement proce-
dure was applied on real devices and the produced PSFs
were used to enhance the quality of images captured by
these devices. In our experiments, an Apple Retina dis-
play with resolution 2880 x 1800 was used to display the
patterns. Our technique was compared with state-of-the-art
non-blind PSF estimation methods as detailed below.

4.1. Alignment Evaluation

We used a Ximea Vision Camera sensor MQ022CG-CM
with a 12 mm lens in order to test the alignment. This lens-
camera configuration was chosen as it generates a reason-
able geometric and radiometric distortion. The acquisition
was set so that only raw images were generated and no fur-
ther process was done by the camera. The image acquisition
and alignment method discussed in Sec. 3.1 was performed
using the pictures of the calibration pattern and the noise tar-
get. The camera’s aperture was set to be very small so that
the effect of the lens blur was minimal. Images were cap-
tured in different exposure times i.e. 1076, 1073 and 10~*
second, to have images with different induced noise levels.
The similarity of the warped and color corrected synthetic
noise pattern generated in each test was compared with the
captured image using PSNR listed in Table 1. Although
there is some blur in the images, the PSNR can still show
the similarity between the warped synthetic pattern and the
one captured by the camera.

Using the same camera-lens configuration, the geometric
and radiometric calibration techniques and the calibration
patterns used in [7, | |, 12] were employed to produce sharp
correspondence of the captured targets. The PSNR values

) 69 () 60 () &9 ¢
s
’ @ " (h) " ) ‘

Figure 3. Synthetic data used in evaluation of the PSF estima-
tion. (a) Our sharp Bernoulli (0.5) noise pattern. (d) Kee et al.’s
[12] pattern. (g) Joshi ef al.’s [11] pattern. (b,e,h) Blurred im-
ages with noise n = N(0,0.1). (c,f,i) Blurred image with noise
n = N(0,0.01).

d

obtained for these results are listed in Table 1. Compared
to our method, the calibration strategies used in these meth-
ods produce less accurate correspondences. The reason our
technique outperforms the other methods is mainly due to
the use of a display that allows us to separate the calibra-
tion pattern from the kernel estimation target. This leads
to an accurate bilinear mapping since a calibration pattern
with a large number of feature points (corners) can be used.
Moreover, the availability of a large number of correspond-
ing feature points helps avoid error-prone homography and
distortion estimation steps. In addition, the use of a screen
to display the patterns provides us with an accurate pixel to
pixel intensity reference used in reproducing the camera’s
vignetting effect.

4.2. PSF Estimation Evaluation

Our PSF estimation using Bernoulli noise patterns was
evaluated in alignment-free tests to gain an insight into its

Table 1. PSNR values in dB obtained between the warped and
color corrected target and the observation (captured image of the
target) using different methods.

Method Exposure (s): 106 1073 107!
Ours 31.21 30.88 29.45
Joshi’s [11] 21.30 19.64 18.98
Kee’s [12] 22.42 19.36 19.05
Delbracio’s [7] 22.82 20.21 18.91
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Ground-truth  Delbracio et al. [6] Joshietal. [11]
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Ours L =1
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Figure 4. Estimated PSFs using different non-blind techniques and their PSNRs in dB. (a) Ground-truth PSF. (b-g) Estimated PSFs in
presence of noise n = N'(0,0.1) in b. (h-m) Estimated PSFs in presence of noise n = A/ (0,0.01) in b.

accuracy. A sharp noise pattern was blurred according to
Eq. (2). A synthetic 17 x 17 Gaussian kernel with standard
deviation 1.5 was generated shown in Fig. 4(a) and con-
volved with the noise pattern. Then, zero-mean Gaussian
noise n was added. Fig. 3(b) and (c) show two Bernoulli
patterns blurred using the PSF shown in Fig. 4(a). The noise
standard deviation is 0.1 and 0.01 in Fig. 3(b) and (c), re-
spectively. The PSF estimation was performed given the
blurry and sharp noise patterns. We set the regularization
weights as ¢ = 10, A = 10, and v = 100 in problem (7).
Fig. 4(e) shows the estimated PSF using images shown in
Fig. 3(a) and (b) and its calculated PSNR with regard to the
ground-truth PSF (Fig. 4(a)). The noise corrupted the blurry
image so that there is little similarity between the blurry and
the sharp image. However, the estimated PSF is very similar
to the ground-truth PSF (Fig. 4(a)). The PSF can be more
accurately estimated by using more than one noise pattern
(L factor in generating 1 and b in Eq. (7) and (8)). The
resulting PSFs by choosing L = 5 and L = 10 different
Bernoulli (0.5) noise patterns and their corresponding ob-
servations are illustrated in Fig. 4(f) and (g). As the number
of patterns increases, the estimated PSF looks more similar
to the ground-truth. It is illustrated by the obtained PSNRs.
A similar test was performed on the blurry images with a
lower noise level (Fig. 3(c)). Although the noise level is
still considerable, the resulting PSFs (Fig. 4(k), (1) and (m))
are estimated quite accurately compared to the ground-truth
PSF Fig. 4(a).

In order to gain an insight into the effect of our proposed
SDF prior in PSF estimation, we performed a similar ex-
periment with similar values for p and A, but with different
values for . This time we only used one single noise pat-
tern (L = 1). The noise pattern shown in Fig. 3(a) and
its blurred and noisy observations were used (Fig. 3(b) and
(c)). Resulting PSFs by setting the weight of the SDF prior
to 0, 10 and 100 are presented in Fig. 5. As the PSNR values
indicate, employing the SDF prior increases the accuracy of
the PSF even though the observations (b) are very noisy.

v=0 v =10 v = 100

PSNR=27.44

-
b=

(@)

-

Figure 5. Effect of SDF prior in our PSF estimation (a-c) Estimated
PSFs in presence of noise n = A(0,0.1) in b. (d-f) Estimated
PSFs in presence of noise n = A(0,0.01) in b.

We estimated the PSF using Delbracio et al.’s method [7]
designed to perform well on Bernoulli noise patterns. This
method fails to estimate the PSF for the image that con-
tains a noise level of 0.1 (Fig. 4(b)). Even for a lower noise
level (0.01), it generates a considerable amount of artifacts
in the estimated PSF (Fig. 4(h)). This occurs in the pres-
ence of even a little amount of noise, mainly due to avoid-
ing regularization and non-negativity constraint of the PSF
in the process. We simulated the same blur and noise levels
on the PSF estimation targets of Joshi ez al. [11] and Kee
et al. [12] shown in Fig. 3(d) and (g), and then employed
their proposed methods to estimate the PSF. In all cases, the
proposed PSF estimation technique generates more accurate
PSFs than these methods as illustrated in Fig. 4.

4.3. Experiments with Real Devices

We selected two camera devices to test the proposed
PSF measurement technique; a Ximea Vision Camera
(MQO022CG-CM) sensor whose resolution is 2048 x 1088
with a 12 mm lens, and a Blackberry mobile phone’s front
facing camera with resolution 1600 x 1200. Unlike SLR
cameras, these cameras have small pixel sensors and create
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a large amount of noise. Hence, it is more challenging to
measure their lens blur. Camera-target alignment was per-
formed as explained in Sec. 3.1. The checkerboard pattern
and the white and black patterns Fig. 2(a) were used in the
alignment, and 5 different Bernoulli noise patterns (L = 5)
were used in the PSF estimation. The image acquisition
was done in RAW format, so that PSF measurement was
performed for each of the 4 different color channels that
exist in the Bayer’s grid. This avoids demosaicing, white-
balancing, and any other post/pre-processing typically done
in cameras. It is critical not to estimate a single PSF for all
the 4 channels as this results in chromatic aberrations once
used in a deconvolution [10]. Since the PSFs vary spatially
in the camera space, PSF estimation was carried out on non-
overlapping blocks of 128 x 128. The distance between the
camera and the display was set to maintain a 1:2 ratio be-
tween the camera pixels and the screen pixels (S in Eq. (1)
and (2)). Note that the screen may not cover the whole
camera grid (e.g. Fig. 2(b)). Therefore, the whole process
should be performed for various placements of the display
until the PSFs are estimated for the entire camera grid. For
both cameras, the screen needed to be shifted to 9 different
locations in order to cover the whole camera grid. A to-
tal of 136 PSFs per channel were estimated for the Ximea
camera. PSFs of all channels are overlaid and illustrated
in Fig. 6. In a similar way, the process on the Blackberry
phone’s camera generated 117 PSFs shown in Fig. 1.

The measured PSFs along with sample images captured

with these cameras were passed to a deconvolution algo-
rithm. We applied Heide et al.’s deconvolution algorithm
[10] as it handles chromatic artifacts successfully by em-
ploying a cross-channel prior. Fig. 7 shows the deconvolu-
tion results using the measured PSFs applied on the images
captured by the Ximea and the Blackberry cameras. These
results demonstrate how the measured lens PSFs are used to
significantly enhance the quality of the images captured by
the cameras.
Limitations Since lens PSF vary with depth, PSF estima-
tion needs to be performed for different depths. In case of
close-up PSF estimation, in order to avoid pixelation ef-
fects, a screen with high pixel density (PPI) is required.
Moreover, to reduce the unwanted blur caused by the warp-
ing procedure, inverse mapping should be included in the
warping function.

5. Conclusions

We proposed a new framework to estimate intrinsic cam-
era lens blur. The proposed camera-scene alignment bene-
fits from a high-resolution display to expose the calibration
patterns. The fixed setup between the camera and the dis-
play allows us to switch different patterns and capture their
images in a fixed geometric alignment. Hence, the calibra-
tion pattern can be separated from the pattern used in the

. . " - " . . . . " 5 . . . . . .

Figure 6. Lens PSFs measured for the Ximea camera.

PSF estimation. As a result, there is more flexibility to pro-
vide a large number of feature points in the calibration pat-
tern and to guide the alignment more precisely. The warping
procedure is reduced to a simple texture mapping due to ap-
propriate number of feature points. Also, this fixed camera-
scene alignment is used to produce intensity reference im-
ages to have pixel to pixel color correction in generating the
sharp correspondence of the target image. Our PSF estima-
tion method benefits from the frequency specifications of
Bernoulli noise patterns to introduce a SDF constraint for
the PSF. It is then used jointly with regularization terms in
a non-negative constrained linear system to generate accu-
rate lens PSFs. Experimental results show that our method
is robust against noise, and therefore suitable for mobile de-
vices. Our technique achieves better performance than the
existing non-blind PSF estimation approaches.
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