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Abstract

In this paper, we propose a novel algorithm that infers
the 3D layout of building facades from a single 2D image of
an urban scene. Different from existing methods that only
yield coarse orientation labels or qualitative block approxi-
mations, our algorithm quantitatively reconstructs building
facades in 3D space using a set of planes mutually related
by 3D geometric constraints. Each plane is characterized
by a continuous orientation vector and a depth distribution.
An optimal solution is reached through inter-planar interac-
tions. Due to the quantitative and plane-based nature of our
geometric reasoning, our model is more expressive and in-
formative than existing approaches. Experiments show that
our method compares competitively with the state of the art
on both 2D and 3D measures, while yielding a richer inter-
pretation of the 3D scene behind the image.

1. Introduction
Given a single image of an urban scene, automatically

inferring the underlying 3D layout of building facades in
the scene would significantly benefit many tasks in fields
such as autonomous navigation and augmented reality. It
goes beyond depth map estimation [22, 23, 19, 15], because
it provides a richer understanding of the scene, such as cam-
era pose, locations of planes and blocks, and how they are
related with each other in 3D [6].

Nevertheless, recovering building facades in 3D space
is a particularly challenging task. The difficulty comes
from the fact that building facades could have highly flex-
ible combinations in 3D space, and therefore do not have
a definitive shape either in 2D image or 3D space. In fact,
they are “stuffs”rather than “objects”, and are thus unable to
be located by a single 3D coordinate. An example is shown
in Figure 1, where the facades do not even follow the Man-
hattan world assumption.

Although we cannot locate building facades in the same
way we locate objects, we observe that unlike other regions
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Figure 1. Our algorithm detects building facades in a single 2D im-
age, decomposes them into distinctive planes of different 3D ori-
entations, and infers their optimal depth in 3D space based on cues
from individual planes and 3D geometric constraints among them.
Left: Detected facade regions are covered by shades of different
colors, each color representing a distinctive facade plane. Mid-
dle/Right: Ground contact lines of building facades on the ground
plane before/after considering inter-planar geometric constraints.
The coarser grid spacing is 10m.

such as trees or sky, building facades are more structured,
and can be decomposed into a set of planes that can be
represented quantitatively. The orientations and locations
of those planes are mutually constrained by their 3D geo-
metric relationships derived from physical plausibility. In
this paper, we model building facades as a set of planes
with continuous orientations, and then quantitatively reason
over their 3D locations using inter-planar geometric con-
straints. This approach would produce a richer interpreta-
tion of the facade scene than existing pixel/segment based
approaches [11, 12, 19] and block-based approaches [6].
More specifically, our approach is able to provide critical
scene understanding information (e.g. quantitative orienta-
tion, depth, and relationships of facade planes) that existing
algorithms do not provide.

The main contributions of this work are as follows. 1)
We propose a plane-based fully quantitative model to in-
fer the 3D layout of building facades, where each plane is
represented by a continuous orientation vector and a distri-
bution of depth values. 2) In such a model, multiple cues,
such as semantic segmentation, surface layout, and vanish-
ing lines, are utilized to detect and decompose the building
region into distinctive planes. 3) The quality of an indi-
vidual candidate plane is determined by its compatibility
with both 2D evidence from image features and 3D evi-
dence such as camera and building height. 4) We model
different types of 3D geometric relationships among candi-



date planes, and apply a CRF to both determine their va-
lidity and infer their optimal depths. 5) We do not assume
ground is horizontal or buildings are vertical with respect to
the camera, nor do we take the Manhattan world assump-
tion.

2. Related works
Pioneering works on modeling facade geometries, such

as Geometric Context proposed by Hoiem et al., focus on
classifying super-pixels into different orientation labels (e.g.
planar left, planar center, or planar right) [11, 14, 12, 5].
While this approach does not produce higher-level concepts
such as planes and blocks, it generates useful cues of coarse
surface orientations. Using such cues, Gupta et al. as-
semble blocks from two adjacent segments with different
orientation labels, and locate those blocks by fitting their
ground and sky contact lines [6]. This method generates
a rich high-level interpretation of the scene, yet the inter-
pretation is qualitative both in facade orientation and depth.
Besides, approximating building facades by blocks cannot
model more complex cases such as the one shown in Fig-
ure 1.

Quantitative modeling of surface orientation can be
found in many works of indoor scene understanding [17, 3,
25, 8, 7, 24], where surface orientation is determined by the
span of two orthogonal vanishing directions [1, 2, 4]. While
we also use vanishing directions to compute plane orienta-
tions, the methods developed for indoor scene understand-
ing cannot be applied directly to outdoor facade analysis.
This is because those methods typically simplify the room
as a box, and all the other vertical surfaces are confined
within the box and parallel to the box walls. By contrast,
building facades in outdoor scenes are located in an open
space and usually have more flexible structures. While the
algorithm in [18] does not simplify the room to a box, it
heavily relies on a common ceiling to define vertical walls.
This is not applicable to outdoor scenes either.

Instead of modeling surfaces, Ramalingam et al. con-
structs a wire frame model of building facades by lift-
ing vanishing lines into 3D space using orthogonality con-
straints derived from a strong Manhattan-world assump-
tion [21]. A limitation of this approach is that, even when
the Manhattan-world assumption holds true, all the build-
ing facades have to be connected in a single wire frame
model. In many cases, however, building facades occlude
each other and do not form a connected structure. This is
exemplified by the facades in red and green in Figure 1.

3. Plane-based 3D modeling of building facades
3.1. Problem formulation

Before formally stating the problem, we first define the
geometric variables involved in our work. The coordi-

nate systems we use are shown in Figure 2. Variables in
red letters are defined with respect to the camera coordi-
nate system {o, x, y, z} whose origin is at the camera cen-
ter. Variables in blue letters are defined with respect to the
ground coordinate system {O,X,Z}, whose origin is on
the ground plane. Variables in green letters are defined in
the image plane. Note that the camera and ground coordi-
nate systems are related in such a way that the Z axis of the
ground coordinate system lies at the intersection between
the ground plane and the plane spanned by ng and the z
axis of the camera coordinate system. The ground plane is
parameterized by the ground orientation ng and the ground
distance hg , and each facade plane involves the following
geometric variables: surface orientation ns, distance from
camera ds, ground contact line orientation n′s, ground con-
tact line distance d′s, 3D coordinates of the facade plane cor-
ners X(1)

s ∼ X
(4)
s and their projections on the image plane

x
(1)
s ∼ x

(4)
s , ground coordinates X

′(1)
s ,X

′(2)
s of the two

endpoints of the ground contact line, and real world height
Hf .

Our model addresses the problem of detecting a set of
distinctive facade planes and estimate their 3D orientations
and locations given a single 2D image of urban scene. Here,
a distinctive facade plane is defined as a facade plane whose
orientation is different from the orientations of its adjacent
facade planes; otherwise, two adjacent facade planes with
the same orientation will be merged. More formally, our
model infers the optimal 3D layout of building facades by
maximizing the following objective function:

V (o,ns,ds,xs|I, hg,ng, f,Hf )

=
∑
i∈P

ω(oi,nsi, dsi,xsi|I, hg,ng, f,Hf )

+
∑

(i,j)∈Pv

ϕv(oi, oj , dsi, dsj ,nsi,nsj,xsi,xsj|hg,ng, f)

+
∑

(i,j)∈Po

ϕo(oi, oj , dsi, dsj ,nsi,nsj,xsi,xsj|hg,ng, f)

+
∑

(i,j)∈Pa

ϕa(oi, oj , dsi, dsj ,nsi,nsj,xsi,xsj|hg,ng, f),

(1)
where o,ns,ds,xs are variables that characterize facade
planes: for each plane i, variables oi,nsi, dsi and xsi repre-
sent its validity (binary indicator), orientation (continuous
vector), distance from camera center (continuous scalar),
and spatial extent (continuous coordinates specifying the
corners of the plane in the image), respectively. Please see
Figure 2 for an illustration of some of those variables. The
optimization problem is conditioned upon image features I ,
ground distance hg from the camera center, ground orien-
tation ng with respect to the camera, focal length f , and
facade height Hf . In this work, Hf is obtained from the
prior knowledge of a typical range of facade heights, and



Figure 2. Geometric variables in the camera and ground coordinate
systems. Please zoom in for a better view.

hg is assumed to be 1.6m. ng, which gives rise to the hori-
zon line, is automatically computed from vanishing lines
using an approach similar to [16] except that we remove
their Manhattan world assumption, resulting in the output of
a vertical vanishing direction and multiple (could be more
than 2) horizontal vanishing directions. ng is then deter-
mined by the vertical vanishing direction, and f is estimated
by maximizing the orthogonality between the vertical and
horizontal vanishing directions.

The first term in the objective function is a unary po-
tential for each individual plane, and it is summed over all
candidate planes P. The remaining three terms are pairwise
potentials for planes with mutual constraints, and they are
summed over a subset (i.e. Pv, Po, or Pa) of candidate
planes involved in those constraints. We will describe these
potentials in more detail in the remainder of this section.

As directly optimizing the objectivie function in Equa-
tion 1 is intractable, we first generate a set of candidate
facade planes using the quadrilateral-based sampling algo-
rithm described in Section 4, where each candidate facade
plane has a fixed normal nsi and boundary xsi. With given
nsi and xsi, we only need to optimize over the validity oi
and depth dsi of each candidate facade plane. The total
number of valid facade planes, which is unknown in ad-
vance, will also be obtained in this process.

3.2. Individual compatibility

The unary potential ω is based on the product of two
scores. The first score is the image feature compatibility
score, measuring how well the 2D location of a facade plane
in the image agrees with image features:

Sr(nsi,xsi|I) =
1

N(Q)

∑
p∈Q

(s(bldg)p +gp(nsi)+ < nsi,vp >),

(2)
where Q is the image region of the facade plane defined by
its corners xsi, and N is the number of pixels within Q. We
consider three sources of information. 1) s(bldg)p is the se-
mantic label score of pixel p belonging to “building”region.

Figure 3. Image features utilized by our method. Top row from left
to right: 1) vanishing lines and horizon line, where the thick yel-
low line is the horizon line, and the thiner lines in different colors
represent vanishing lines belonging to different vanishing direc-
tions, 2) orientation map from the line-sweeping algorithm where
each color represents an orientation corresponding to a specific
horizontal vanishing direction, 3) semantic segmentation score for
the “building”region. Bottom row from left to right: surface orien-
tation scores for “planar left”, “planar center”, and “planar right”.

We use Stacked Hierarchical Labeling proposed by Munoz
et al. [20] to perform semantic segmentation. 2) gp(nsi)
is the orientation label score of pixel p having an orienta-
tion label consistent with the orientation nsi of the plane.
Orientation labels are obtained from the surface layout al-
gorithm proposed by Hoiem et al. [11]. The orientation la-
bels of interest here include “planar left”, “planar center”,
and “planar right”. Plane orientation nsi is quantized into
one of these three labels before computing the score gp us-
ing the orientation label distribution of pixel p produced by
Hoiem’s surface layout algorithm. 3) < nsi,vp > com-
putes the inner product between the plane orientation nsi

and the orientation vector vp at pixel p derived from van-
ishing lines using the line-sweeping algorithm proposed by
Lee et al. [18]. An example of the image features we use
are shown in Figure 3 ∗. Note that the three terms in the
right-hand side of Equation 2 are comparable because they
all range from 0 (totally implausible) to 1 (totally plausible).

The intuition behind Equation 2 is that if an image re-
gion indeed belongs to a building facade, then it should
1) be supported by the semantic cue that it belongs to the
“building”region, 2) be supported by the surface layout cue
that its orientation agrees with the dominant orientation la-
bel within it, and 3) be supported by the vanishing line cue
that its orientation is consistent with the dominant horizon-
tal vanishing direction within it.

The second score is the geometric compatibility score.
Although the facade detection algorithm to be described in
Section 4 returns the image region occupied by a facade
plane, its ground contact line is often occluded (e.g. by cars
parked along the road). As a result, the bottom boundary
of the facade plane in the image is usually invisible and is

∗Here we do not limit the line-sweeping region to be contained within
the “building”semantic region.



Figure 4. Illustration of the situation when computing the geomet-
ric compatibility score Sd. The yellow line is the horizon line. The
left image show the relevant regions we consider. The right image
shows the ground contact lines when the plane is hypothetically
placed at different depths.

therefore flexible, as is shown in the right image of Figure 4.
When we place the facade plane (with a fixed orientation
nsi returned by the facade detection algorithm in Section 4)
at different depths, it would result in a series of ground con-
tact lines sweeping the blue and green regions illustrated in
the left image of Figure 4. Not all depths are equally plau-
sible. For example, if the facade plane is placed too close to
the camera, the ground contact line would be the blue line in
the right image of Figure 4. Such a depth is geometrically
implausible because there exists ground region above the
ground contact line. On the other hand, if the ground plane
is placed too far away from the camera, the ground contact
line would be the green line in the right image of Figure 4.
Such a depth is also geometrically implausible because the
resulting 3D height of the facade would be unreasonably
large. Based on these intuitions, we compute the geometric
compatibility score of a facade plane with orientation nsi

placed at a certain depth dsi by checking if the ground con-
tact line of the facade plane in the image is both above the
ground region and below the building region. In addition, it
checks if the distance between the ground contact line and
the horizon line in the image yields a reasonable 3D height
of the facade:

Sd(nsi, dsi,xsi|I, hg,ng, f,Hf ) =

min{1− 1

N(A)

∑
p∈A

s(gnd)p , 1− 1

N(B)

∑
p∈B

s(bldg)p ,

Hf (
‖xst − xsb‖
‖xsm − xsb‖

· hg))}, (3)

where A is the region between the ground contact line and
the horizon line as is illustrated by the green region in Fig-
ure 4. This regions is not supposed to contain ground pix-
els. B is the region between the ground contact line and
the bottom of the image as is illustrated by the blue re-
gion in Figure 4. This region is not supposed to contain
building pixels. hg , ng, and f are used to project the 3D
ground contact line of the facade plane with orientation nsi

at depth dsi to the 2D ground contact line in the image.
xsi defines the boundaries of the facade plane in the im-
age. As Figure 4 illustrates, xst,xsb and xsm are where

Figure 5. Facade planes that are adjacent in the image and form
a convex corner in 3D must connect with each other along the
convex fold.

the left boundary intersects with the top boundary, the (pro-
jected) ground contact line, and the horizon line, respec-
tively. ‖xst − xsb‖/‖xsm − xsb‖ · hg is an estimate of the
facade height in 3D. It should be within a reasonable range
Hf of typical facade heights. Note that the three terms in
the right-hand side of Equation 3 are comparable because
they all range from 0 (totally implausible) to 1 (totally plau-
sible).

After the two scores Sr and Sd are obtained, the unary
potential ω is defined as

ω(oi,nsi, dsi,xsi) ={
Sr(nsi,xsi) · Sd(nsi, dsi,xsi)− 0.25 if oi = 1

0 if oi = 0
(4)

Here, the conditioning variables are ommitted for the sake
of clarity. The product of Sr and Sd is subtracted by 0.25
because the neutral values of both Sr and Sd are 0.5. When
Sr · Sd < 0.25, the unary potential penalizes the objective
function if oi = 1, indicating the candidate plane is unlikely
to be valid based on its individual compatibility cues.

3.3. Mutual compatibility

As building facades are structured, geometric constraints
exist among facade planes. The first type of constraints we
consider is convex-corner constraint: if two facade planes
are adjacent in the image and their orientations form a con-
vex corner in 3D, then their depths should be such that they
connect in 3D along the convex fold [6], as is illustrated in
Figure 5. As a result, all the facade planes connected by
convex corners (such as the red, magenta, and cyan planes
in Figure 1) could only move in space as a whole. To en-
force such a constraint, the pairwise potential ϕv is defined
as
ϕv(oi, oj , dsi, dsj ,nsi,nsj,xsi,xsj|hg,ng, f) ={
−∞ if oi · oj 6= 0 and xsi|xsj and nsi ∨ nsj and dsi Y dsj
0 otherwise

(5)where xsi|xsj means facade planes i and j are adjacent in
the image, nsi∨nsj means the orientations of facade planes
i and j form a convex corner, and dsi Y dsj denotes the
situation in which the depths of the two planes are such that
they fail to connect along the convex fold in 3D. Negative
infinity penalty is applied if this situation happens. In other



Figure 6. Three cases for determining the occlusion ordering be-
tween two facade planes that are adjacent in the image and form a
concave corner in 3D. Please see text for details.

words, the convex-corner constraint is a hard constraint, so
that physical plausibility is always strictly maintained.

The second type of constraints is occlusion constraint.
If two facade planes are adjacent in the image and their ori-
entations form a concave corner, we check if one of them is
occluded by the other. Figure 6 illustrates three cases when
two facade planes form a concave corner (other cases are
symmetrical to one of these three cases). In the left case,
it can be immediately determined that the blue plane is oc-
cluded by the red one. In the center case, we cannot say for
sure which plane is occluded. In the right case where the
blue plane does not extend beyond the red one, we check
the vanishing lines and orientation map within a small re-
gion (outlined by the black lines in Figure 6) right next to
the blue plane. If the region has the same orientation as
the blue plane, then it becomes the left case; otherwise it
becomes the center case. Although we cannot unambigu-
ously determine the occlusion ordering for the center case,
we could still reasonably assume that the plane whose ori-
entation is more frontal is usually occluded, such as the red-
green facade plane pair in Figure 1. While such an assump-
tion could be violated, it holds true for most of the outdoor
urban scenarios we have encountered. Also, as we will see
in the equation below, the occlusion constraint is a soft con-
straint, meaning it could be overridden by other stronger
evidence. Without loss of generality, let’s suppose facade
plane i is occluded by facade plane j. Then the pairwise
potential ϕo related to occlusion ordering is defined as

ϕo(oi, oj , dsi, dsj ,nsi,nsj,xsi,xsj|hg,ng, f) ={
−max{0,d′j1,d

′
j2}

2

2σ2
1

if oi · oj 6= 0 and xsi|xsj and nsi ∧ nsj

0 otherwise
(6)

Here, nsi∧nsj means the orientations of facade planes i and
j form a concave corner. d′j1 and d′j2 are defined in Figure 7,
where the solid blue and red lines are the ground contact
lines of facade planes i and j, respectively, in the ground
coordinate system. According to equation 6, the pairwise
potential ϕo is 0 (i.e., no penalty) when facade plane i is
totally behind facade plane j; otherwise, a soft penalty is
applied depending on the degree of violation. The soft con-
straint here serves to handle noise in the estimation of oc-
clusion ordering.

The third type of constraints is alignment constraint:
a pair of nearby facade planes are encouraged to reside in

Figure 7. Computing the pairwise potential ϕo related to occlusion
ordering. The solid red and blue lines are the ground contact lines
of the two facade planes in the ground coordinate system. d′j1 and
d′j2 are signed distances from the two endpoints of the red line to
the blue line.

Figure 8. Illustration of the alignment constraint. The configura-
tion on the right is preferred over the one on the left. Note that
facade planes 2 and 4 are not encouraged to be aligned because
there exists facade plane 3 that results in the violation of the non-
occlusion criterion.

a common plane if they have the same orientation, except
when there exists a third facade plane that is 1) connected
to the closer plane in the pair through convex corners, and
2) occludes the farther plane in the pair. Please see Figure 8
for illustration. Such a constraint is based on the obser-
vation that street-facing facades of different buildings are
usually aligned along the street. If facade planes i and j sat-
isfy both the same-orientation and non-occlusion criteria,
the pairwise potential ϕa encoding the alignment constraint
between them is defined as

ϕa(oi, oj , dsi, dsj ,nsi,nsj,xsi,xsj|hg,ng, f) ={
− (d′i−d

′
j)

2

2σ2
2

if oi · oj 6= 0 and nsi = nsj and Qs(i, j) = 0

0 otherwise
(7)

where Qs(i, j) = 0 means the two facade planes satisfy the
non-occlusion criterion. d′i and d′j are the distances from the
ground origin to the ground contact lines of facade planes i
and j, respectively, as is illustrated in Figure 7. The align-
ment constraint is also a soft constraint since we are just
encouraging eligible planes to be aligned; other strong evi-
dence could override such an encouragement.

The benefit of incorporating geometric constraints
among facade planes is evident in Figure 1. After inter-
planar geometric constraints are imposed, planes that form
convex corners are correctly connected together, and planes
in the background are correctly pushed backward.



4. Implementation details

Optimizing the objective function in Equation 1 is chal-
lenging, because it is generally non-convex and involves bi-
nary, discrete and continuous variables, resulting in a huge
search space. In addition, how do we acquire the candidate
facade planes in the first place? In this section, we describe
a quadrilateral-based sampling algorithm that detects a set
of candidate facade planes, each of which comes with a 3D
orientation nsi and corner coordinates xsi. Using the out-
put of this algorithm, we are able to optimize Equation 1 in
a tractable way.

4.1. Quadrilateral-based sampling algorithm

We detect candidate facade planes via a sequential sam-
pling of “quadrilaterals”. A sample of a quadrilateral is
formed by a random pair of vertical vanishing lines and
a random pair of horizontal vanishing lines in the image
(please see Figure 9 for examples). The 3D orientation of
a quad (short for quadrilateral) is equal to the cross-product
of the vertical and horizontal vanishing directions. A quad
itself could be a facade plane, or multiple adjacent quads
with the same orientation could merge and form a larger
facade plane.

In the quadrilateral-based sampling algorithm, the pool
of selected quads is first initialized as an empty set. To add
a new quad to the pool, we sample a large number of quads
and evaluate each sample using the image feature compat-
ibility score Sr by Equation 2. The top k quads, which
come with known orientation nsi and spatial extent xsi, are
selected and further evaluated by computing the maximum
geometric compatibility score Ŝd over a set of quantized
hypothetical depth dsi using Equation 3. The quad with the
highest hybrid score Sr · Ŝd is added to the pool of selected
quads, and the region occupied by the quad is no longer
available for subsequent sampling. This process is repeated
until the hybrid score of the best available quad is below
0.5. We finally merge those adjacent quads with the same
orientation into a single distinctive candidate facade plane.
An example of the quadrilateral-based sampling process is
shown in Figure 9.

Note that the purpose of keeping the top k (more than
one) quads after evaluating Sr scores is to reduce the risk
of being trapped in local extrema while reducing compu-
tational complexity. Empirically, we found that when the
search width k is greater than or equal to 4, performing
multiple starts does not bring additional improvement over
a single start.

4.2. Tractable inference

In our approach, the key to make the inference tractable
is to decouple ns,xs from o,ds in Equation 1. When the
quadrilateral-based sampling process is completed, we al-

Figure 9. When detecting candidate facade planes using the
quadrilateral-based sampling algorithm, the best quads are se-
lected and added to the candidate pool one by one. From left to
right, the four images show the first three selected quads, as well
as all the selected quads when the search process is completed,
respectively. Quads belonging to the same candidate distinctive
facade plane share the same color.

ready have a set of candidate facade planes with known ori-
entation nsi and spatial extent xsi. The only variables that
remain to be inferred are the validity indicator oi and depth
dsi. The objective function in Equation 1 is therefore re-
duced to

V (o,ds) =
∑
i∈P

ω(oi, dsi) +
∑

(i,j)∈Pv

ϕv(oi, oj , dsi, dsj)

+
∑

(i,j)∈Po

ϕo(oi, oj , dsi, dsj)+
∑

(i,j)∈Pa

ϕa(oi, oj , dsi, dsj),

(8)

where we have omitted the conditioning variables for the
sake of clarity. Suppose we have quantized depth dsi into
M bins, then the number of possible states over oi and dsi
is only M + 1. This is significantly more tractable than the
original optimization problem. We construct a CRF to en-
code all the individual and mutual compatibilities according
to Equations 4, 5, 6, and 7, and perform max-product belief
propagation [9] to obtain the validity of each candidate fa-
cade plane and the optimal depth of each valid plane, as
well as a MAP distribution over its possible depths.

5. Experiments
We evaluate the performance of our facade reasoning al-

gorithm on three challenging datasets. All the parameters of
our algorithm are fixed throughout our experiments, where
the camera height hg is assumed to be 1.6m, σ1 = 0.5 in
Equation 6, σ2 = 50 in Equation 7, the number of random
quad samples in Section 4.1 is 2000, the number k of top
quads in Section 4.1 is set as 4, and the reasonable range of
building height Hf is assumed to be between 5m and 30m,
with a standard deviation of 1m on the lower end, and 10m
on the higher end. On average, it takes about 20 minutes to
process a 800-by-600 image with Matlab code.

5.1. 3D facade layout

The key strength of our approach is that it is able to pro-
duce a richer interpretation of a facade scene – a 3D layout
of facade planes with continuous orientations. We apply our
facade reasoning algorithm on the LabelMe dataset [13]. As
the dataset does not provide the ground truth for a plane-
wise decomposition of building facades or their 3D layout,



Figure 10. 3D facade layout estimation by our method on images
from the LabelMe dataset [13]. Left to right: 1) Original image
overlaid with color shades representing quads from distinctive fa-
cade planes. Quads from the same distinctive facade plane share
the same color. 2) Depth distribution of candidate distinctive fa-
cade planes before running the CRF inference. 3) Best locations of
candidate distinctive facade planes before running the CRF infer-
ence. 4) Optimal locations of valid distinctive facade planes after
running the CRF inference. The viewing boundary is marked with
black lines, and the coarser grid spacing is 10m.

we evaluate our approach qualitatively. Typical examples of
success cases are shown in Figures 10. Comparing columns
3 and 4, we can see that imposing inter-planar geometric
constraints significantly regulates the depths of distinctive
facade planes and results in a meaningful interpretation.

In the LabelMe dataset [13], many complex facade struc-
tures can be found – many building facades are occluded by
other objects or mutually occluded, and in some cases they
are not Manhattan (e.g. row 1 in Figure 10 and Figure 1). As
our method makes no assumption on those conditions, they
do not pose a problem. We also do not assume all build-
ing facades are inter-connected as [21] does. Therefore,
many street scenes where adjacent buildings are separated
by streets can be modeled by our approach (e.g. rows 1 3,
and 4 in Figure 10). In row 6 of Figure 10, we could also see

Figure 11. Major failure cases by our method during 3D facade
layout estimation on the LabelMe dataset [13]. The conventions
in this figure are the same as in Figure 10, except that the top
and bottom images in column 2 are detected vanishing lines and
semantic segmentation, respectively.

that distinct facade planes having the same orientation (the
red and magenta planes) are aligned after CRF inference.
However, when other stronger evidence is present as is the
case in row 5 of Figure 10, they are not blindly aligned. Fig-
ure 11 shows examples when major failures occur. In the
first row, the farther left-facing facade is not detected due to
lack of vanishing lines. In the second row, severe mistakes
in semantic segmentation result in false facade planes being
detected. These failures can be mitigated when vanishing
line detection and semantic segmentation are improved.

5.2. Surface layout estimation

To our knowledge, our algorithm is among the first to
be able to generate a 3D layout of building facades consist-
ing of mutually-constrained planes with continuous orien-
tations. While our algorithm allows for a greater flexibility
and produces a richer interpretation than existing methods,
does it negatively affect existing quantitative measures in
the literature?

To answer this question, we first evaluate our algo-
rithm in estimating surface layout on the Geometric Context
dataset [11]. Among the 250 test images, 55 of them contain
building facades. Therefore, we perform evaluation only on
those 55 images. As the dataset does not provide ground
truth for semantic segmentation, we train the Stacked Hier-
archical Labeling model [20] on the Stanford Background
Dataset [5] and use the resulting model to compute soft se-
mantic labels. We also use the publicly available pre-trained
Geometric Context classifier [10] to obtain the soft surface
layout labels.

The dataset comes with the ground truth of seven sur-
face layout labels (“support”, “sky”, “planar left”, “planar
center”, “planar right”, “non-planar porous”, “non-planar
solid”). We compare our method with the block-based ap-
proach proposed by Gupta et al. [6] and the segment-based
approach proposed by Hoiem et al. [12] on surface layout
accuracy. To generate surface layout labels from the output
of our algorithm, we quantize our continuous 3D orienta-
tion of facade planes into soft labels of “planar left”, “pla-



Figure 12. Comparison of surface layout accuracy. The methods
from left to right are the algorithm from Hoiem et al. [12], Gupta
et al. [6], our algorithm, our algorithm without CRF inference, and
orientation map from the line-sweeping algorithm [18].

Figure 13. Qualitative comparisons of surface layout estimation.
From left to right: Ground truth; Hoiem et al. [12]; Gupta et al. [6];
Ours; Ours w/o CRF; Orientation map from the line-sweeping al-
gorithm [18]. Surface layout color code: Magenta – planar right;
Cyan – planar left; red – planar center; green – non-planar porous;
yellow – non-planar solid; blue – sky; grey – support.

nar center”, or “planar right”, and fuse them with the labels
returned by the original Geometric Context classifier.

The comparison results are listed in Figure 12. We can
see that our method achieves better accuracy than the state-
of-the-art block-based and segment-based approaches. We
also observe that if we remove the inter-planar geomet-
ric constraints from our algorithm, the accuracy drops as
is shown in the ’Ours w/o CRF’ column. Accuracy from
the orientation map generated by the line-sweeping algo-
rithm [18] is the lowest, as it is highly susceptible to noise
in vanishing lines. While our algorithm takes in the orien-
tation map as an important cue, the plane-level reasoning in
our algorithm reduces much noise.

We also show qualitative comparisons in Figure 13. The
ground-truth surface layout is shown in column 1. We can
see that in the first row, the segment-based approach (col-
umn 2) decomposes the facade into many unstructured ori-
entation segments, while the block-based approach (column
3) represents the entire facade as a block. Our plane-based
approach (column 4) approximates the true facade using a
set of mutually-constrained planes and therefore generates
a much better approximation. In row 2, our approach identi-
fies distinctive facades missed out by the other approaches.
In row 3 where a non-Manhattan facade exists, our approach
identifies it unambiguously. In row 4, an invalid plane la-
beled with “planar center”(red) in column 5 was removed
after the CRF inference.

5.3. Depth map estimation

Another existing quantitative measure in the literature is
recovering absolute depth values. To this end, we perform
evaluation on the Make3D dataset of Saxena et al. [23, 19]

Figure 14. Comparison of log depth error. The methods from left
to right are the algorithm from Liu et al. [19], our algorithm, and
our algorithm without CRF inference.

which provides ground truth in pixel-wise depth value. We
train the Stacked Hierarchical Labeling model [20] on the
400 training images of the dataset. As for the Geometric
Context classifier, we still use the publicly available pre-
trained one [10]. Among the 134 test images, 51 images
contain building facades and are used in evaluation.

We compare our method with the super-pixel based ap-
proach proposed by Liu et al. [19] on average log error of
pixel-wise depth values. For pixels located on trees and
foreground objects, our method is not intended to infer their
depths. However, for the sake of comparison, we roughly
estimate the depths of those pixels from the ground contact
point of the semantic region they reside in. Note that this
is a very rough estimation compared with the sophisticated
model in [19] specifically trained on 400 training images to
predict the depths of such pixels.

To make a fair comparison, we report results on the aver-
age log depth error of pixels over the entire image as well as
over the image regions excluding trees and foreground ob-
jects. The results are shown in Figure 14. We can see that
when evaluating on the entire image, Liu et al. achieves the
best performance. However, if we exclude the tree and fore-
ground regions, our method outperforms Liu’s super-pixel
based approach. Note that our method does not require any
training in terms of depth prediction. We can also see that,
again, removing the inter-planar geometric constraints from
our approach degrades performance.

While our approach achieves comparable performance
with the state of the art in terms of existing quantitative
measures, the output of our system is much richer than a
surface layout map or a depth map.

6. Conclusion

We propose a plane-based 3D facade reasoning system
that incorporates multiple image cues and geometric con-
straints into a probabilistic reasoning framework to achieve
a coherent reconstruction of building facades in 3D space
from a single 2D image of an urban scene. Our method
yields a more informative interpretation of building facades
while maintaining a competitive performance on several
quantitative measures. Compared with the block-based ap-
proach [6] that yields a coarse and qualitative reconstruc-
tion, our method returns a numeric parameterization of a set
of planes that compose facades. Compared with super-pixel
based approaches that return a depth map [19], our method
enables reasoning over planes and blocks and provides a
higher-level understanding of the scene.
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