
Modeling Local and Global Deformations in Deep Learning: Epitomic

Convolution, Multiple Instance Learning, and Sliding Window Detection

George Papandreou

Google

gpapan@google.com

Iasonas Kokkinos and Pierre-André Savalle

CentraleSupélec and INRIA

[iasonas.kokkinos,pierre-andre.savalle]@ecp.fr

Abstract

Deep Convolutional Neural Networks (DCNNs) achieve

invariance to domain transformations (deformations) by

using multiple ‘max-pooling’ (MP) layers. In this work

we show that alternative methods of modeling deforma-

tions can improve the accuracy and efficiency of DCNNs.

First, we introduce epitomic convolution as an alterna-

tive to the common convolution-MP cascade of DCNNs,

that comes with the same computational cost but favorable

learning properties. Second, we introduce a Multiple In-

stance Learning algorithm to accommodate global transla-

tion and scaling in image classification, yielding an efficient

algorithm that trains and tests a DCNN in a consistent man-

ner. Third we develop a DCNN sliding window detector that

explicitly, but efficiently, searches over the object’s position,

scale, and aspect ratio.

We provide competitive image classification and local-

ization results on the ImageNet dataset and object detection

results on Pascal VOC2007.

1. Introduction

Over the last few years Deep Learning has been the

method of choice for image classification [24, 26, 40, 41],

attaining even super-human performance levels [16, 20],

while a host of other works have shown that the features

learned by deep neural networks can be successfully em-

ployed in other tasks [4, 11, 31, 37, 39, 45]. The key build-

ing blocks of deep neural networks for images have been

around for many years [25]: (1) Deep Convolutional Neu-

ral Networks (DCNNs) with small receptive fields that spa-

tially share parameters within each layer, and (2) gradual

abstraction and spatial resolution reduction along the net-

work hierarchy, typically via max-pooling [21, 38]. The re-

cent success of DCNNs can be mostly attributed to large

datasets, GPU computing and well-engineered choices.

In this work we aim at enriching the set of tools used

to model deformations in DCNNs, by exploiting estab-

Figure 1. Image deformations can challenge high-level vision, but

modeling their effects can lead to simple and accurate recognition

algorithms. Here we show how our object detection system per-

forms scale, position and aspect ratio search: scaled and squeezed

versions of an image are fed to a fully convolutional DCNN, until

at some point the object can be contained in a square of fixed size.

At that point the detector’s score (shown on the right) is maxi-

mized, providing a tight bounding box around the object. Our

detector only has to consider normalized object instances.

lished computer vision techniques, such as image epitomes,

multi-scale pyramids and Procrustes analysis. We combine

these techniques with ideas from machine learning (back-

propagation, multiple-instance learning), object recognition

(image patchworks, sliding window detection), and signal

processing (the à trous algorithm) and develop algorithms

of higher accuracy and/or efficiency than the ones obtained

using more standard deformation modeling tools.

In Section 2 we deal with the modeling of local defor-

mations in image classification. For this we introduce

the epitomic image representation [23] into the setting of

DCNNs. While originally developed for generative image

modeling, we show here that the epitome data structure can

be used to train DCCNs discrimatively; we show that while

coming at the exact same computation cost, epitomic con-

volution allows for faster convergence during training and

higher classification accuracy when compared to its max-

pooled counterpart.

In Section 3 we address to the modeling of global trans-

formations in image classification. Our goal is to ex-

plicitly deal with object scale and position when applying

DCNNs to image classification. While a standard practice

is to fuse classification results extracted from multiple im-

Figure 2. An epitome is a data structure to represent a set of small

images related to each other through translation and cropping.

age windows, we show that by using a principled Multi-

ple Instance Learning (MIL) framework we obtain substan-

tially larger gains. An algorithmic contribution is that we

show how MIL can be efficiently implemented for fully-

convolutional DCNNs by compacting an image pyramid

into the patchwork data structure of [9].

Finally, in Section 4 we turn to the modeling of global

transformations in object detection. Rather than using re-

gion proposals to come up with candidate object boxes, we

explicitly search over positions, scales, and aspect ratios, as

illustrated in Fig. 1; this can be understood as a variant of

Procrustes analysis used in AAMs [5], where global defor-

mations are first discarded before performing a finer defor-

mation modeling. We show that by performing this explicit

search over position, scale, and aspect ratios we can ob-

tain results that are comparable to the current-state-of-the-

art while being substantially simpler and easier to train, as

well as six times faster, thanks to the sharing of computation

during convolutions. An algorithmic contribution that we

introduce in this context is that we accelerate sliding win-

dow detection by using the à trous (with holes) algorithm

to reduce the effective size and receptive field of a DCNN

pre-trained on ImageNet.

Since these contributions are to some extent orthog-

onal, we describe prior work and provide experimen-

tal results separately within each section. We have

implemented the proposed methods using Caffe [22];

code and models are made publicly available from

http://cvn.ecp.fr/iasonas/deepdet.

2. Deep Epitomic Convolutional Networks

2.1. From flat to deep: Epitomic Convolution

Image epitomes The image epitome, illustrated in Fig. 2,

is a data structure introduced in [23] to learn translation-

aware image representations. An epitome is a single, large

image patch which can produce several small patches by

first picking an epitome position and then cropping a small

window; it can be understood as a ‘pallette’ of patches from

which we can pick a patch at will.

Epitomic Convolution We propose to use epitomes as an

efficient method for parameter sharing and local deforma-

���

���

(a) (b)
Figure 3. (a) Max-pooled convolution: For each filter we look for

its best match within a small window in the data layer. (b) Pro-

posed epitomic convolution: For input data patches sparsely sam-

pled on a regular grid we look for their best match in each epitome.

tion modeling in Deep Learning. In particular, we introduce

Epitomic Convolution as a new module in multi-layered

architectures. It acts as an alternative and has the same

complexity as a consecutive pair of convolution and max-

pooling layers. Its main asset is that, by virtue of relying

on the epitome data structure, it allows us to share parame-

ters across the different patch models, thereby allowing for

faster convergence and better generalization.

Epitomic Convolution and its relationship to max-pooled

convolution are illustrated in Fig. 3. In max-pooling we

search in the input image for the strongest response of a

filter. Instead, in Epitomic Convolution we search across

the set of smaller filters encapsuled in an epitome for the

strongest response to an image patch.

In more detail, in standard max-pooled convolution we

have a dictionary of K filters of spatial size W ×W pix-

els spanning C channels, which we represent as real-valued

vectors {wk}Kk=1
with W ·W ·C elements. We apply each

of them in a convolutional fashion to every W ×W input

patch {xi} densely extracted from each position in the in-

put layer which also has C channels. A reduced resolu-

tion output map is produced by computing the maximum

response within a small D×D window of displacements

p ∈ Ninput around positions i in the input map which are

D pixels apart from each other. The output map {zi,k} of

max-pooled convolution has spatial resolution reduced by a

factor of D across each dimension and consists of K chan-

nels, one for each of the K filters. Specifically:

(zi,k, pi,k)← max
p∈Nimage

x
T
i+pwk (1)

where pi,k points to the input layer position where the max-

imum is attained (argmax).

In the proposed epitomic convolution scheme we replace

the filters with mini-epitomes {vk}
K
k=1

of spatial size V×V
pixels, where V = W+D−1. Each mini-epitome contains

D2 filters {wk,p}Kk=1
of size W ×W , one for each of the

D×D displacements p ∈ Nepit in the epitome. We sparsely

extract patches {xi} from the input layer on a regular grid

with stride D pixels. In the proposed epitomic convolution

model we reverse the role of filters and input layer patches,

computing the maximum response over epitomic positions

http://cvn.ecp.fr/iasonas/deepdet

rather than input layer positions:

(yi,k, pi,k)← max
p∈Nepitome

x
T
i wk,p (2)

where pi,k now points to the position in the epitome where

the maximum is attained. Since the input position is fixed,

we can think of epitomic matching as an input-centered dual

alternative to the filter-centered standard max-pooling.

Similarly to max-pooled convolution, the epitomic con-

volution output map {yi,k} has K channels and is subsam-

pled by a factor of D across each spatial dimension. Epit-

omic convolution has the same computational cost as max-

pooled convolution. For each output map value, they both

require computing D2 inner products followed by finding

the maximum response. Epitomic convolution requires D2

times more work per input patch, but this is exactly com-

pensated by the fact that we extract input patches sparsely

with a stride of D pixels.

Epitomic DCNNs To build a deep epitomic model, we

stack multiple epitomic convolution layers on top of each

other. The output of each layer passes through a rectified

linear activation unit yi,k ← max(yi,k+βk, 0) and fed as in-

put to the subsequent layer, where βk is the bias. We learn

the model parameters (epitomic weights and biases for each

layer) in a supervised fashion by error back propagation.

We detail our model architecture and training methodology

in the experimental section.

Related work Our model builds on the epitomic image

representation [23], which was initially geared towards im-

age and video modeling tasks. Single-level dictionaries of

image epitomes learned in an unsupervised fashion for im-

age denoising have been explored in [1,3]. Recently, single-

level mini-epitomes learned by a variant of K-means have

been proposed as an alternative to SIFT for image classi-

fication [35]. To our knowledge, epitomes have not been

studied before in conjunction with deep models or learned

to optimize a supervised objective.

Computing the maximum response over filters rather

than image positions, as we do in Eq. 2 resembles the max-

out scheme of [14]. Similarly to epitomic matching, the

response of a maxout layer is the maximum across filter

responses. But, the epitomic layer is hard-wired to model

position invariance, since filters extracted from an epitome

share values in their area of overlap. This parameter shar-

ing significantly reduces the number of free parameters that

need to be learned. Maxout is typically used in conjunction

with max-pooling [14], while epitomes fully substitute it.

2.2. Image Classification Experiments

Image classification tasks We quantitatively evaluate the

proposed deep epitomic models in image classification ex-

Layer 1 2 3 4 5 6 7 8 Out

Type conv + conv + conv conv conv conv + full + full + full

lrn + max lrn + max max dropout dropout

Output size 96 192 256 384 512 512 4096 4096 1000

Filter size 8x8 6x6 3x3 3x3 3x3 3x3 - - -

Input stride 2x2 1x1 1x1 1x1 1x1 1x1 - - -

Pooling size 3x3 2x2 - - - 3x3 - - -

Table 1. Architecture of the baseline Max-Pool DCNN (Class-A).

Layer 1 2 3 4 5 6 7 8 Out

Type epit-conv epit-conv conv conv conv epit-conv full + full + full

+ lrn + lrn dropout dropout

Output size 96 192 256 384 512 512 4096 4096 1000

Epitome size 12x12 8x8 - - - 5x5 - - -

Filter size 8x8 6x6 3x3 3x3 3x3 3x3 - - -

Input stride 4x4 3x3 1x1 1x1 1x1 3x3 - - -

Epitome stride 2x2 1x1 - - - 1x1 - - -

Table 2. Architecture of the proposed Epitomic DCNN (Class-A).

periments on the Imagenet ILSVRC-2012 large-scale im-

age classification task [7]. This dataset contains more than

1.2 million training images, 50,000 validation images, and

100,000 test images. Each image is assigned to one out of

1,000 possible object categories. Performance is evaluated

using the top-5 classification error.

Network architecture and training methodology For

our Imagenet experiments, we compare the proposed deep

epitomic networks with deep max-pooled convolutional

networks. We use as similar architectures as possible, in-

volving in both cases six convolutional layers, followed by

two fully-connected layers and a 1000-way softmax layer.

We use rectified linear activation units throughout the net-

work. Similarly to [24], we apply local response normal-

ization (LRN) to the output of the first two convolutional

layers and dropout to the output of the two fully-connected

layers. We refer to these as Class-A models.

The architecture of our baseline Max-Pool network is

specified on Table 1. It employs max-pooling in the con-

volutional layers 1, 2, and 6. To accelerate computation,

it uses an image stride equal to 2 pixels in the first layer.

It has a similar structure with the Overfeat model [39], yet

significantly fewer neurons in the convolutional layers 2 to

6. Another difference with [39] is the use of LRN, which to

our experience facilitates training.

The architecture of the proposed Epitomic network is

specified on Table 2. It has exactly the same number of neu-

rons at each layer as the Max-Pool model but it uses mini-

epitomes in place of convolution + max pooling at layers

1, 2, and 6. It uses the same filter sizes with the Max-Pool

model and the mini-epitome sizes have been selected so as

to allow the same extent of translation invariance as the cor-

responding layers in the baseline model. We use input im-

age stride equal to 4 pixels and further perform epitomic

search with stride equal to 2 pixels in the first layer to also

(a) (b)

Figure 4. Filters at the first convolutional layer of: (a) Proposed

Epitomic model with 96 mini-epitomes, each having size 12×12.

(b) Baseline Max-Pool model with 96 filters of size 8×8 each.

accelerate computation.

We have also tried variants of the two models above

where we mean- and contrast- normalize the filters in lay-

ers 1, 2, and 6 of the networks before computing the neuron

responses, similarly to [45]. We refer to the supplementary

material for more details.

We closely follow the methodology of [24] in training

our models, in terms of weight initialization, learning rate,

weight decay, and momentum parameter selection. Train-

ing each of the three models takes two weeks using a single

NVIDIA Titan GPU. Similarly to [4], we resize the training

images to have small dimension equal to 256 pixels while

preserving their aspect ratio. We also subtract for each

image pixel the global mean RGB color values computed

over the whole Imagenet training set. During training, we

present the networks with 220×220 crops randomly sam-

pled from the resized image area, flipped left-to-right with

probability 0.5, also injecting global color noise exactly as

in [24]. During evaluation, we present the networks with 10

regularly sampled image crops (center + 4 corners, as well

as their left-to-right flipped versions).

Weight visualization We visualize in Fig. 4 the layer

weights at the first layer of the networks above. The net-

works learn receptive fields sensitive to edge, blob, texture,

and color patterns.

Classification results We report at Table 3 our results on

the Imagenet ILSVRC-2012 benchmark, also including re-

sults previously reported in the literature [24,39,45]. These

all refer to the top-5 error on the validation set and are ob-

tained with a single network. Our best result at 13.6% with

the proposed Epitomic-Norm network is 0.6% better than

the baseline Max-Pool result at 14.2% error. The improved

performance that we got with the Max-Pool baseline net-

work compared to Overfeat [39] is most likely due to our

use of LRN and aspect ratio preserving image resizing.

Previous literature Class-A Class-B Class-C

Model Krizhevsky Zeiler-Fergus Overfeat Max-Pool Max-Pool Epitomic Epitomic Epitomic Epitomic

[24] [45] [39] + norm + norm +norm +norm

Top-5 Error 18.2% 16.0% 14.7% 14.2% 14.4% 13.7% 13.6% 11.9% 10.0%

Table 3. Imagenet ILSVRC-2012 top-5 error on validation set. All

performance figures are obtained with a single network, averaging

classification probabilities over 10 image crops (center + 4 corners,

as well as their left-to-right flipped versions). Classes B and C

refer to respectively larger and deeper models.

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 10 20 30 40 50 60 70 80 90

T
O

P
-5

 A
C

C
U

R
A

C
Y

EPOCH

EPITOMIC-NORM

MAX-POOL-NORM

TOPOGRAPHIC-NORM

EPITOMIC

MAX-POOL

KRIZHEVSKY

Figure 5. Top-5 validation set accuracy (center non-flipped crop

only) for different models and normalization.

We show in Fig. 5 how the top-5 validation error im-

proves as learning progresses for the different models we

tested, with or without mean+contrast normalization. For

reference, we also include a corresponding plot we re-

produced for the original model of Krizhevsky et al. [24].

We observe that mean+contrast normalization significantly

accelerates convergence of both epitomic and max-pooled

models, without however significantly influencing the final

model quality. The epitomic models converge faster and are

stabler during learning compared to the max-pooled base-

lines, whose performance fluctuates more.

In [34] we report further successful experiments with

deep epitomic networks on the Caltech-101, MNIST, and

CIFAR-10 datasets. Finally, we discuss another deep epit-

omic network variant built on top of large epitomes which

learns topographically organized features.

Experiments with larger and deeper epitomic networks

We have also experimented with larger (Class-B) and very

deep (Class-C) versions of the proposed deep epitomic net-

works. The large Class-B network has the same number

of levels but more neurons per layer than the networks in

Class-A. It achieves an error rate of 11.9%.

Inspired by the success of the top-performing methods

in this year’s Imagenet competition, we have also very re-

cently experimented with a very deep network having 13

convolutional and 3 fully connected layers, which roughly

follows the architecture of the 16 layer net in [40]. Our

Class-C deep epitomic network achieves 10.0% error rate

in the Imagenet task. The state-of-art 16 layer net in

[40] (without multi-scale training/testing) achieves an even

lower 9.0% error rate, but using a more sophisticated proce-

dure for aggregating the results of multiple image crops (in

place of our simple 10-view testing procedure). Using our

current methodology, we were able to train a model similar

to that of [40] which could only achieve a 10.8% error rate.

As extra evidence to the improved robustness of training

our deep epitomic networks, we mention that we managed

to train our very deep epitomic net starting from a random

initialization, while [40] had to bootstrap their very deep

networks from shallower ones.

3. Scale and Position Search in Classification

When used in alternation with feature downsampling

(‘striding’, or ‘decimation’) a cascade of Max-Pooling or

Epitomic Convolution layers can result in invariance to

increasingly large-scale signal transformations, eventually

dealing with global position and scale changes - achieving

‘invariance by a thousand cuts’.

We argue that a better treatment of deformations can be

achieved by factoring deformations into local (non-rigid)

and global (translation/scale) changes. We can then explic-

itly simulate the effect of the global changes during training

and testing, by transforming the input images, while cast-

ing model training from weak annotations as a Multiple In-

stance Learning (MIL) problem.

MIL-based training of DCNNs Considering a binary

classification problem with N image-label pairs S =
{(Xi, yi)}, i = 1, . . . , N , training aims at minimizing:

C(f,S) =
N∑

i=1

l(yi, f(Xi)) +R(f), (3)

where f is the classifier, l(y, f(X)) is the loss function and

R is a regularizer. Our goal is to deal with the effects of

deformations of the inputs Xi during training and testing.

Dataset augmentation amounts to turning an image Xi

into a set of images Xi = {X1
i , . . . , X

K
i } by transform-

ing Xi synthetically; e.g. considering T translations and

S scalings yields a set with K = TS elements. The most

common approach to using dataset augmentation consists

in treating each element of Xi as a new training sample, i.e.

substituting the loss l(y, f(Xi)) in Eq. 3 by the sum of the

classifier’s loss on all images:

L(yi,Xi)
.
=

K∑

k=1

l(yi, f(X
k
i)). (4)

This corresponds to the dataset augmentation technique

used e.g. in [18]. A recently introduced alternative is the

‘sum-pooling’ technique used in [40], which can be under-

stood as using the following loss:

L(yi,Xi) = l(yi,
1

K

K∑

k=1

f(Xk
i)), (5)

which averages the classifier’s score over translated ver-

sions of the input image. The summation used in both of

these approaches favors classifiers that consistently score

highly on positive samples, irrespective of the object’s posi-

tion and scale - because this is when the loss is minimized.

As such, these classifiers pursue the invariance of f .

There is however a tradeoff between invariance and clas-

sification accuracy [43]. Even though pursuing invariance

accounts for the effects of transformations, it does not make

the classification task any easier: the training objective aims

at a classifier that would allow all transformed images to

make it through its ‘sieve’. By contrast, classifying objects

at only a fixed scale can result in higher accuracy, since we

have lower intra-class variability and can devote all mod-

elling resources to the treatment of local deformations.

To achieve this, we let our classifier ‘choose’ a preferred

transformation, and define the loss function to be:

L(yi,Xi) = l(yi,max
k

f(Xk
i)), (6)

which amounts to letting the classifier choose the transfor-

mation that maximizes its response on a per-sample basis,

and then accordingly penalizing that response. In particu-

lar the loss function requires the classifier’s response to be

large on at least one position for a positive sample - and

small everywhere for a negative. This criterion allows us to

train a more ‘picky’ classifier, with a response that decays

as the object deviates from a desired scale.

This idea amounts to the simplest case of Multiple In-

stance Learning [8]: Xi can be seen as a bag of features

and the individual elements of Xi can be seen as instances.

For the particular case of the hinge loss function, this would

lead us to latent-SVM training [2, 10]. There exist a broad

variety of MIL alternatives, that can potentially achieve

higher robustness by using more than the max-scoring vari-

ables [17, 19, 36] - but the one we propose here is very easy

to implement with DCNNs, as we will describe below.

Using this loss function during training amounts to treat-

ing the object’s position and scale as a latent variable,

and performing alternating optimization over the classifier’s

score function. During testing we perform a search over

transformations and keep the best classifier score, which can

be understood as maximizing over the latent transformation

variables. The resulting score F (Xi) = maxk f(X
k
i) is

transformation-invariant, but is built on top of a classifier

tuned for a single scale- and translation- combination.

Apart from allowing us to train a more ‘picky’ classi-

fier, it is equally important that the MIL setting allows us

Model Epitomic Epitomic

(Class-B) (patchwork)

Top-5 Error 11.9% 10.0%
Table 4. Imagenet ILSVRC-2012 top-5 error on validation set. We

compare the Class-B mean and contrast normalized deep epitomic

network of Table 3 with its Patchwork fine-tuned version that also

includes scale and position search.

Figure 6. We use image patchworks to efficiently implement scale

and position search in DCNN training: an image pyramid is un-

folded into a image ‘patchwork’, where sliding a fixed-size win-

dow amounts to search over multiple positions and scales. The

maximum classifier score on all such windows is efficiently gath-

ered by max-pooling the DCNN’s top-layer responses, accommo-

dating scale and position changes during both training and testing.

to train and test our classifiers consistently, using the same

set of image translations and scalings during both phases.

This is in contrast to the use of ad-hoc image scaling during

training and multiple views during testing which is com-

monplace in current classification practice.

Efficient Implementation with Fully Convolutional DC-

NNs and Patchworks We now turn to practical aspects

of integrating MIL into DCNN training. DCNNs are com-

monly trained with input images of a fixed size, q × q.

For an arbitrarily-sized input image I , if we denote by

I(x, y, s) its image pyramid, naively computing the maxi-

mization in Eq. 6 would require cropping many q× q boxes

from I(x, y, s), evaluating f on them, yielding f(x, y, s),
and then penalizing l(y,maxx,y,s f(x, y, s)) during train-

ing (we ignore downsampling and boundary effects for sim-

plicity). Doing this would require a large amount of GPU

memory, communication and computation time. Instead,

by properly modifying the input and architecture of our net-

work we can share computation to efficently implement ex-

haustive search during training and testing.

For this, we first draw inspiration from the ‘image patch-

work’ technique introduced in [9] and exploited in DCNNs

by [12]. The technique consists in embedding a whole im-

age pyramid I(x, y, s), into a single, larger, patchwork im-

age P (x′, y′); any position (x′, y′) in P corresponds to a

(x, y, s) combination in I . This was originally conceived as

a means of accelerating multi-scale FFT-based convolutions

in [9] and convolutional feature extraction in [12]. Instead

we view it a stepping stone to implementing scale and posi-

tion search during DCNN training.

In particular, as in [27, 29, 39], we transform our DCNN

into a fully-convolutional network and treat the last fully-

connected layers as 1 × 1 convolution kernels. We can

thus obtain the f(x, y, s) score described above by provid-

ing P as input to our network, since the output of our net-

work’s final layer at any position (x′, y′) will correspond to

the output corresponding to a q × q square cropped around

(x, y, s). This allows us to incorporate the max operation

used in MIL’s training criterion, Eq. 6 as an additional max-

pooling layer situated on top of the network’s original score

function, conveniently incorporating global scale and posi-

tion search in DCNN training. Namely, we can now back-

propagate the error message from the classification loss to

the units that resulted in the winning scale and position

combination.

Image Classification Results We have experimented

with the scheme outlined above in combination with our

Deep Epitomic Network (Class-B variant) presented in the

previous Section. We use a 720×720 patchwork formed

from 6 different image scales (square boxes with size 400,

300, 220, 160, 120, and 90 pixels). We have resized all

train/test images to square size, changing their aspect ra-

tio if needed. We initialized this scale/position search net

with the parameters of our standard Class-B epitomic net

and fine-tuned the network parameters for about an epoch

on the Imagenet train set.

We have obtained a substantial decrease in the testing er-

ror rates, cutting the top-5 error rate from 11.9% down to

10.0%, as shown in Table 4. This reduction in error rate

is competitive with the best reduction obtained by more

complicated techniques involving many views for evalua-

tion [40, 40], while also allowing for consistent end-to-end

training and testing.

Object Localization Results The network outlined above

also provides cues for the scale and position of the domi-

nant object in the image. A simple fixed mapping of the

“argmax” patchwork position in the last max-pooling layer

(computed by averaging the bounding box positions in the

training set) yields a 48.3% error rate in the Imagenet 2012

localization task without incurring any extra computation.

We note that a similar object localization idea is also pro-

posed in [29] for unsupervised object discovery, but without

the maximization over scales.

4. Scale, Position and Ratio Search in Detection

Sliding windows vs. region proposals Sliding window

detectors are known to deliver excellent results for ob-

jects such as pedestrians, e.g. [32], however, recent works

on combining convolutional networks [39], or sliding win-

dow detectors with CNN features [13, 33, 44] still lag

substantially behind the current state-of-the-art techniques

[11, 15, 30] that use region proposals delivered, e.g. by se-

lective search [42].

Such approaches deliver compelling detection results:

in [11] combining RCNNs with the VGG network of [40]

pushed the mean AP (mAP) performance on Pascal VOC

2007 to 62.2% (66% with bounding box regression). How-

ever, such techniques come with a high cost, requiring sep-

arate feature extraction per region - e.g the system of [11]

requires 60-70 seconds per image, making it impractical for

real-time applications.

Sliding window classifiers seem can turn out to be more

efficient in the setting of DCNNs, since computation is nat-

urally shared across different positions through convolu-

tions. Apart from speed, another advantage of sliding win-

dow detection is simplicity, as it does not involve a segmen-

tation front-end. Still the performance gap between sliding

window classifiers and region proposal algorithm is present,

so one would need to sacrifice accuracy for speed; we now

turn to how one can avoid this.

Aspect ratio variability and search Sliding window de-

tectors have typically substantially lower performance than

region-based systems, even when trained with CNN fea-

tures [13,33,44]; e.g. in [33], when training a DPM with the

same features as an RCNN system we obtained lower mAP

scores, while using apparently more powerful classifiers.

Our starting point for this work is our understanding

from our results in [33] that this may be due to the DPM

using a mixure of ratio-tuned classifiers, which practically

splits the training set size by three per component - thereby

making overfitting easier. Instead, as illustrated in Fig. 1,

we propose to have a single classifier tuned to a fixed aspect

ratio (a square) and then let the image fit to the classifier.

This is similar to the approach we developed in Sec. 3 for

scale-invariance, but now applied to ‘squeeze’-invariance -

and is commonly used in AAM learning, under the name of

‘Procrustes analysis’ [6].

In particular, for any given image we consider 5 aspect

ratio transformations, spanning [1/3, 3] with a geometric

progression. For every transformed image we compute an

image pyramid, and apply our fully convolutional DCNN

to each level - which amounts to a joint search of scale, as-

pect ratio and position. This search over aspect ratios is five

times more demanding than a single pyramid evaluation -

but ends up requiring about 10 seconds on a Tesla K40 GPU

for an average Pascal VOC 2007 image, thanks to accelera-

tion techniques that we describe below. This is already six

times faster than the RCNN counterpart - while our method

can clearly work in 2 seconds if we work with objects of a

fixed aspect ratio, such as faces.

Re-purposing DCNN for efficient detection We have re-

purposed the publicly available state-of-art 16 layer clas-

sification network of [40] (VGG-16) into an efficient and

accurate sliding window detector. Our changes consist in

(a) reducing the number of network parameters (b) intro-

ducing the à trous algorithm to compute the DCNN scores

more densely and (c) fine-tuning the network with bounding

boxes that reflect its operation test-time.

Network simplification We have accelerated our network

by spatially subsampling the first fully-connected layer to

a 4× 4 spatial size, keeping only the interior part of the

fully connected nodes. This reduces the receptive field of

the network down to 128×128 pixels (rather than 224×224
required by the VGG network) and accelerates the compu-

tation time for the first FC layer by approximately 3 times.

We experimented with using such a smaller network within

the system of [11] and observed that performance falls only

moderately, from 62.2mAP down to 59.6mAP.

Dense feature extraction with the à trous algorithm

Direct evaluation of our network in a convolutional fashion

yields very sparsely computed detection scores, having a

stride of 32 pixels. In order to compute scores more densely

at a target stride of 8 pixels, we use the ‘hole algorithm’ (à

trous algorithm), first developed for efficient computation

of the undecimated wavelet transform, as described in [28].

The output y[i] of the à trous convolution of a 1-D input

signal x[i] with a filter w[i] of length K is defined as

y[i] =
K∑

k=1

x[i+ s · k] · w[k] (7)

Atrous convolution thus generalizes standard convolution

by introducing the input stride parameter s. This allows us

to compute DCNN network responses during testing at arbi-

trarily high resolution. For example, in order to double the

output density, it suffices to skip decimation after the last

max-pooling layer and use à trous convolution with input

stride s = 2 pixels in all subsequent convolutional layers.

DCNN finetuning for sliding window detection As in

[11] we adapt a network trained for Imagenet classifica-

tion to perform object detection on Pascal VOC. In [11],

the regions proposed by selective search generate positive

and negative training samples as follows: if a region has an

Intersection-over-Union (IoU) above .5 for any bounding

box of one of the 20 Pascal classes it is declared as being

a positive example, or else it is a negative example. These

examples are used in a network ‘fine-tuning’ stage, which

VOC 2007 test aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

Our work (VGG) 64.1 72.3 62.8 44.0 44.2 66.4 72.5 67.7 35.2 68.9 35.9 62.7 69.0 65.7 65.8 36.2 60.1 50.3 63.2 66.0 58.6

RCNN7 [11] (VGG) 71.6 73.5 58.1 42.2 39.4 70.7 76.0 74.5 38.7 71.0 56.9 74.5 67.9 69.6 59.3 35.7 62.1 64.0 66.5 71.2 62.2

RCNN7 [11] (UoT) 64.2 69.7 50.0 41.9 32.0 62.6 71.0 60.7 32.7 58.5 46.5 56.1 60.6 66.8 54.2 31.5 52.8 48.9 57.9 64.7 54.2

E2E-DPM [44] (NYU) 49.3 69.5 31.9 28.7 40.4 61.5 61.5 41.5 25.5 44.5 47.8 32.0 67.5 61.8 46.7 25.9 40.5 46.0 57.1 58.2 46.9

CNN-DPM [33] (UoT) 39.7 59.5 35.8 24.8 35.5 53.7 48.6 46.0 29.2 36.8 45.5 42.0 57.7 56.0 37.4 30.1 31.1 50.4 56.1 51.6 43.4

MP-DPM [13] (UoT) 44.6 65.3 32.7 24.7 35.1 54.3 56.5 40.4 26.3 49.4 43.2 41.0 61.0 55.7 53.7 25.5 47.0 39.8 47.9 59.2 45.2

Table 5. Detection mean Average Precision (%) on the PASCAL VOC 2007 test set, using the proposed CNN sliding window detector that

performs explicit position, scale, and aspect ratio search. We compare to the RCNN architecture of [11] End-to-End (E2E) trained DPMs

of [44], the DPM with CNN features (CNN-DPM) of [33] and the Max-Pooled (MP) DPM of [13]. In parenthesis we indicate the DCNN

used for detection: UoT is the University of Toronto DCNN [24], VGG is the DCNN of Oxford’s Visual Geometry Group [40], NYU is

the custom network of [44].

amounts to running back-propagation to correctly classify

these training samples. Once finetuning converges, the last

layer of the network is retrained separately with a different

SVM objective, and with a new definition of positives and

negatives, using different overlap thresholds - since a com-

mon set of IoU thresholds would deteriorate performance.

We deviate from this training procedure in that we do

not rely on the Selective Search [42] region proposals to

gather training samples and do not use SVM training pos-

terior to finetuning. In particular when gathering training

samples for finetuning we keep track of all windows that

would be visited by our sliding window detector; given a

ground-truth bounding box, we randomly pick among them

at most 50 windows that have an IoU score above 0.7 with

it; we typically find so many windows, while gathering as

many positive windows would not be possible for selective

search windows, as they more sparsely cover the bounding

boxes of the objects. Furthermore, inspired from [13], for

every positive bounding box we sample 200 negative boxes

that have an IoU score between 0.2 and 0.5 - which seems

to be the hardest regime for sliding window detectors.

This denser sampling of candidate positions gave us sub-

stantially better localized sliding window scores than the

ones obtained with the -sparser- windows used for finetun-

ing in [11]. The score of our network trained with logis-

tic regression was sufficiently well localized, and we ob-

served that SVM retraining of the last layer using the system

of [11] did not improve performance.

Detection Results Detection results on the test set of Pas-

cal VOC 2007 are shown in Table 5. Aspect ratio search

yields a mean Average Precision score of 58.6%, and has

the highest mAP for 6 out of 20 categories.

Compared to the best sliding window detectors that em-

ploy CNN features (Rows 4-6), we have a substantially bet-

ter performance: we score 11.7 points higher than the best

mAP result of 46.9% reported in [44] - which can be at-

tributed to our explicit search over aspect ratios, and the

use of a more powerful DCNN classifier. The system of

[44] also integrates non-maximum suppression into train-

ing, which is an interesting direction to explore in order to

improve our detection.

Comparing to the RCNN system [11] with the VGG net-

work [40] we are only doing better on 6 out of 20 categories,

and our mAP is 3.6% below theirs. This is to some extent

anticipated, given the smaller network and image sizes used

by our system, in order to achieve our sixfold acceleration.

But when compared to RCNN using the network of [24] -

which takes the same amount of time as our system does-

our performance is 4.2mAP points higher.

Apart from the efficiency/accuracy gains, we consider

simplicity as a key advantage of our system, as (i) it does

not require a segmentation front-end (ii) only has a single

finetuning stage (iii) deploying the detector is as simple as

computing an image pyramid and providing the images as

inputs to a fully-convolutional DCNN with a few lines of

MATLAB code.

5. Conclusions

This paper examines multiple facets of invariance in the

context of deep convolutional networks for visual recog-

nition. First, we have proposed a new epitomic convolu-

tional layer which acts as a substitute to a pair of consec-

utive convolution and max-pooling layers, and shown that

it brings performance improvements and exhibits better be-

havior during training. Second, we have demonstrated that

treating scale and position as latent variables and optimizing

over them during both training and testing yields significant

image classification performance gains. Pushing scale and

position search further, we have shown that DCNNs can be

efficient and effective for dense sliding window detection.

Acknowledgments We gratefully acknowledge the sup-

port of NVIDIA Corporation with the donation of GPUs

used for this research. GP was with the Toyota Technolog-

ical Institute at Chicago when this work was initiated. This

work has been supported by EU Projects RECONFIG FP7-

ICT-600825 and MOBOT FP7-ICT-2011-600796.

References

[1] M. Aharon and M. Elad. Sparse and redundant

modeling of image content using an image-signature-

dictionary. SIAM J. Imaging Sci., 1(3):228–247, 2008.

3

[2] S. Andrews, T. Hofmann, and I. Tsochantaridis. Sup-

port vector machines for multiple instance learning. In

NIPS, 2002. 5

[3] L. Benoı̂t, J. Mairal, F. Bach, and J. Ponce. Sparse

image representation with epitomes. In Proc. CVPR,

pages 2913–2920, 2011. 3

[4] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisser-

man. Return of the devil in the details: Delving deep

into convolutional nets. arXiv, 2014. 1, 4

[5] T. Cootes, G. Edwards, and C. Taylor. Active ap-

pearance models. IEEE Trans. PAMI, 23(6):681–685,

2001. 2

[6] T. Cootes and C. Taylor. Constrained active appear-

ance models. In Proc. ICCV, volume 1, pages 748–

754, 2001. 7

[7] J. Deng, W. Dong, R. Socher, L. Li-Jia, K. Li, and

L. Fei-Fei. Imagenet: A large-scale hierarchical image

database. In Proc. CVPR, 2009. 3

[8] T. G. Dietterich, R. H. Lathrop, and T. Lozano-

perez. Solving the multiple-instance problem with

axis-parallel rectangles. Artificial Intelligence, 89:31–

71, 1997. 5

[9] C. Dubout and F. Fleuret. Exact acceleration of lin-

ear object detectors. In Computer Vision–ECCV 2012,

pages 301–311. Springer Berlin Heidelberg, 2012. 2,

6

[10] P. Felzenszwalb, R. Girshick, D. McAllester, and

D. Ramanan. Object detection with discrimina-

tively trained part-based models. IEEE Trans. PAMI,

32(9):1627–1645, 2010. 5

[11] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich

feature hierarchies for accurate object detection and

semantic segmentation. In Proc. CVPR, 2014. 1, 7, 8

[12] R. Girshick, F. Iandola, T. Darrell, and J. Malik. De-

formable part models are convolutional neural net-

works. arXiv:1409.5403, 2014. 6

[13] R. B. Girshick, F. N. Iandola, T. Darrell, and J. Ma-

lik. Deformable part models are convolutional neural

networks. CoRR, abs/1409.5403, 2014. 7, 8

[14] I. Goodfellow, D. Warde-Farley, M. Mirza,

A. Courville, and Y. Bengio. Maxout networks.

In Proc. ICML, 2013. 3

[15] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyra-

mid pooling in deep convolutional networks for visual

recognition. In ECCV, 2014. 7

[16] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep

into rectifiers: Surpassing human-level performance

on imagenet classification. CoRR, abs/1502.01852,

2015. 1

[17] M. Hoai and A. Zisserman. Improving human action

recognition using score distribution and ranking. In

Asian Conference on Computer Vision, 2014. 5

[18] A. G. Howard. Some improvements on deep con-

volutional neural network based image classification,

2013. arXiv:1409.0575. 5

[19] Y. Hu, M. Li, and N. Yu. Multiple-instance ranking:

Learning to rank images for image retrieval. In Proc.

CVPR, 2008. 5

[20] S. Ioffe and C. Szegedy. Batch normalization: Ac-

celerating deep network training by reducing internal

covariate shift. CoRR, abs/1502.03167, 2015. 1

[21] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. Le-

Cun. What is the best multi-stage architecture for ob-

ject recognition? In Proc. ICCV, pages 2146–2153,

2009. 1

[22] Y. Jia. Caffe: An open source convolutional architec-

ture for fast feature embedding, 2013. 2

[23] N. Jojic, B. Frey, and A. Kannan. Epitomic analysis of

appearance and shape. In Proc. ICCV, pages 34–41,

2003. 1, 2, 3

[24] A. Krizhevsky, I. Sutskever, and G. Hinton. Ima-

geNet classification with deep convolutional neural

networks. In Proc. NIPS, 2013. 1, 3, 4, 8

[25] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.

Gradient-based learning applied to document recog-

nition. Proc. IEEE, 86(11):2278–2324, 1998. 1

[26] M. Lin, Q. Chen, and S. Yan. Network in network. In

ICLR, 2014. 1

[27] J. Long, E. Shelhamer, and T. Darrell. Fully convo-

lutional networks for semantic segmentation. CoRR,

abs/1411.4038, 2014. 6

[28] S. Mallat. A Wavelet Tour of Signal Processing. Acad.

Press, 2 edition, 1999. 7

[29] M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Weakly

supervised object recognition with convolutional neu-

ral networks. Technical Report HAL-01015140, IN-

RIA, 2014. 6

[30] W. Ouyang, P. Luo, X. Zeng, S. Qiu, Y. Tian,

H. Li, S. Yang, Z. Wang, Y. Xiong, C. Qian,

Z. Zhu, R. Wang, C. C. Loy, X. Wang, and X. Tang.

Deepid-net: multi-stage and deformable deep convo-

lutional neural networks for object detection. CoRR,

abs/1409.3505, 2014. 7

[31] W. Ouyang and X. Wang. Joint deep learning for

pedestrian detection. In Proc. ICCV, 2013. 1

[32] W. Ouyang and X. Wang. Joint deep learning for

pedestrian detection. In ICCV, 2013. 7

[33] P.-A. Savalle and S. Tsogkas and G. Papandreou and I.

Kokkinos. Deformable part models with cnn features.

In 3rd Parts and Attributes Workshop, ECCV., 2014.

7, 8

[34] G. Papandreou. Deep epitomic convolutional neural

networks. arXiv, 2014. 4

[35] G. Papandreou, L.-C. Chen, and A. Yuille. Model-

ing image patches with a generic dictionary of mini-

epitomes. In Proc. CVPR, 2014. 3

[36] S. Ray and M. Craven. Supervised versus multiple

instance learning: an empirical comparison. In Proc.

ICML, 2005. 5

[37] A. Razavian, H. Azizpour, J. Sullivan, and S. Carls-

son. CNN features off-the-shelf: An astounding base-

line for recognition. In Proc. CVPR Workshop, 2014.

1

[38] M. Riesenhuber and T. Poggio. Hierarchical models

of object recognition in cortex. Nature neuroscience,

2(11):1019–1025, 1999. 1

[39] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fer-

gus, and Y. LeCun. Overfeat: Integrated recogni-

tion, localization and detection using convolutional

networks. 2014. 1, 3, 4, 6, 7

[40] K. Simonyan and A. Zisserman. Very deep convo-

lutional networks for large-scale image recognition,

2014. http://arxiv.org/abs/1409.1556/. 1, 4, 5, 6, 7,

8

[41] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Ra-

binovich. Going deeper with convolutions. CoRR,

abs/1409.4842, 2014. 1

[42] J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers,

and A. W. M. Smeulders. Selective search for object

recognition. 2013. 7, 8

[43] M. Varma and D. Ray. Learning the discriminative

power-invariance trade-off. In ICCV, 2007. 5

[44] L. Wan, D. Eigen, and R. Fergus. End-to-end inte-

gration of a convolutional network, deformable parts

model and non-maximum suppression. arXiv, 2014.

7, 8

[45] M. Zeiler and R. Fergus. Visualizing and understand-

ing convolutional networks. arXiv, 2013. 1, 4

