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Abstract

This paper investigates the problem of registering a

scanned scene, represented by 3D Euclidean point coordi-

nates, and two or more uncalibrated cameras. An unknown

subset of the scanned points have their image projections

detected and matched across images. The proposed ap-

proach assumes the cameras only known in some arbitrary

projective frame and no calibration or autocalibration is

required. The devised solution is based on a Linear Matrix

Inequality (LMI) framework that allows simultaneously es-

timating the projective transformation relating the cameras

to the scene and establishing 2D-3D correspondences with-

out triangulating image points. The proposed LMI frame-

work allows both deriving triangulation-free LMI cheirality

conditions and establishing putative correspondences be-

tween 3D volumes (boxes) and 2D pixel coordinates. Two

registration algorithms, one exploiting the scene’s structure

and the other concerned with robustness, are presented.

Both algorithms employ the Branch-and-Prune paradigm

and guarantee convergence to a global solution under mild

initial bound conditions. The results of our experiments are

presented and compared against other approaches.

1. Introduction

With the ongoing surge in affordable high quality 3D and

2D capture sensors, the two modalities are increasingly of-

ten jointly used in vision-based systems. Using informa-

tion from both 2D and 3D sensors, such as a laser scan-

ner or RGB-D camera, provides several advantages rang-

ing from texture mapping to scene understanding. It, how-

ever, may also come with its share of difficulties and chal-

lenges. When the 3D sensor and 2D cameras are rigidly

attached, the system can be calibrated at once. If the two

sensor modalities are free, many such systems require the

2D cameras to be internally calibrated and registered with

the 3D sensor at all time. Camera calibration can be carried

out either by using a dedicated pattern in the scene or via

autocalibration. The registration of the 2D cameras and the

3D sensor is generally achieved by establishing correspon-

dences in two ways: (i) between scanned 3D data and 2D

features; (ii) between scanned 3D points and 3D triangu-

lated points from calibrated cameras.

The problem of establishing correspondences between

3D data and 2D features has been tackled in [23] for

points, [5] for lines, [12] using planes, [22] using skylines

and [13] by relying on scene constraints. The success of

such methods is often undermined by the absence of re-

liable 3D descriptors and their lack of compatibility with

2D descriptors. They may also be undermined by the like-

wise unreliable descriptors for certain image features such

as lines. Other registration methods are based on mutual

information [29] and region segmentation [27] but suffer

from similar drawbacks. Establishing correspondences be-

tween scanned and triangulated 3D points is often carried

out using the Iterative Closest Point (ICP) algorithm. The

image-induced scene may however be reconstructed only up

to a scale ambiguity making the problem particularly diffi-

cult to solve. In [6], this ambiguity is handled by an ex-

tension of the 4-points congruent sets algorithm [1]. Other

scale-invariant registration methods perform registration ei-

ther by a voting approach [19] or performing mean-shift in

the scale invariant space [20]. None of these methods guar-

antees convergence to a globally optimal solution. The re-

cent Go-ICP method, proposed in [30], is a globally opti-

mal method for registering 3D point clouds with the same

scale. The scale of the image-induced 3D scene can only be

corrected with additional knowledge. However, using any

of [6, 19, 20, 30] requires the cameras to be calibrated.



This paper investigates the problem of registering a

scanned scene, represented by Euclidean 3D point coor-

dinates, and two or more uncalibrated cameras. An un-

known subset of the scanned points have their image pro-

jections detected and matched across images. The pro-

posed approach assumes camera matrices to be calculated

in some arbitrarily chosen projective frame and no cali-

bration or autocalibration is required. We argue here that

camera calibration may turn out to be impractical due to

possible changes in the cameras’ internal geometry when

zooming and focusing. As for camera autocalibration, al-

though globally convergent methods [8, 3, 4, 9] do exist,

the process fails for numerous critical motions of the cam-

eras and is generally sensitive to 2D pixel localization er-

rors. When cameras are uncalibrated, the transformation

relating the cameras to the scene is projective. Our pro-

posed registration solution is based on a Linear Matrix In-

equality (LMI) framework that allows simultaneously esti-

mating this unknown projective transformation and estab-

lishing 2D-3D correspondences without triangulating im-

age points. The proposed LMI framework allows both de-

riving triangulation-free LMI cheirality conditions and es-

tablishing putative correspondences between 3D volumes

(boxes) and 2D pixel coordinates. Directly using raw 2D

points in lieu of triangulated 3D points is believed to yield

more accurate motion computation [24]. In practice, trian-

gulation results are rather uncertain in the depth direction.

Using a small set of such reconstructed points for alignment

may have a devastating effect on the results [17].

Two registration algorithms, one exploiting the scene’s

structure and the other concerned with robustness, are pre-

sented. Both algorithms employ the Branch-and-Prune

paradigm and guarantee convergence to a global solution

under some mild initial bounding conditions. Our algo-

rithms require initial box-2D correspondences with 5 non-

overlapping boxes to guarantee convergence to a global so-

lution. Alternatively, non-overlapping bounds on camera

centers can also be used. Finding initial bounds on cam-

era positions is relatively easy as far as hand-held or GPS-

equipped cameras are concerned. The results of our experi-

ments, on both simulated and real data, are also presented.

2. Background and notations

Consider a static scene consisting of m 3D points

{Xj}
m
j=1 observed by n ≥ 2 uncalibrated 2D pinhole cam-

eras {P i}ni=1. Scene points and cameras may be retrieved

from point correspondences across images up to an un-

known projective ambiguity. Let Pi be the 3 × 4 matrix

representation of P i and Xj the homogeneous coordinate

vector of Xj , all expressed in a common projective frame.

The special point Ci, with coordinates Ci in this frame sat-

isfying PiCi = 0 (0 is the null-vector), is the optical center

of camera P i. The 2D pixel projection xi
j of a scene point

Xj onto camera P i is given by xij ∼ PiXj where ∼ refers

to the equality up to an unknown scale.

Triangulation: Any point Xj can be triangulated in a 3D

coordinate frame given camera matrices and 2D pixel cor-

respondences {xi
j}

n
i=1 across images. So long as at least

two 2D points are matched in at least two images, if a xij
is unknown in one given image (no corresponding feature

point detected and/or matched in that image), it can safely

be replaced by the null vector without prejudice for what

follows. Let Sj be the 3n× 3n block-diagonal matrix

Sj = diag([ x1j ]×, [ x
2
j ]×, [ x

3
j ]×, . . . [ x

n
j ]×) (1)

with matrices [ xij ]×, i = 1 . . . n, on the diagonal blocks and

zeros elsewhere. [ xij ]× denotes the 3× 3 skew-symmetric

matrix associated with the cross-product and constructed

using the projection xij of Xj on camera P i. Let M be the

3n× 4 matrix obtained by stacking all camera matrices:

M⊺ = [ P1⊺ P2⊺ P3⊺ . . . Pn⊺]. (2)

The coordinate vector of Xj can then be obtained by solving

SjMXj = 0. Note that matrix SjM must be of rank-3, or

else assumed to be enforced as such throughout this paper.

Cheirality: As far as the true Euclidean camera matrices

and 3D points are concerned, the depth of any scene point,

relative to a camera in which it is visible, must be posi-

tive. The sign of this depth is referred to as the cheirality

of the point with respect to the considered camera [11, 10].

However, in addition to the projective ambiguity, projective

points and cameras are each retrieved up to a different un-

known scale generally not preserving cheirality. It is possi-

ble though to assign signatures ζi = ±1 to cameras and sig-

natures ηj = ±1 to points to ensure that: (i) each point has

a consistent cheirality with respect to all cameras in which

it is visible, and (ii) all points have a consistent cheirality

with respect to any one camera in which they are visible.

Camera signatures: Let X be a point visible in camera P .

The cheirality of X with respect to any camera P i in which

it is also visible must be identical to that of its cheirality

with respect to P . This can be enforced by considering the

signatures ζ and ζi of, respectively, P and P i such that

(ζPX)3(ζiP
iX)3 > 0 for X visible in P and P i. (3)

Note that (3) can be used to deduce the signature of one

camera given the signature of the other. Indeed, this can be

done by initially assigning an arbitrarily chosen signature ζ
to one given camera P and iteratively assigning signatures

to all cameras observing X . Every P i with assigned sig-

nature can in turn be used to deduce signatures of cameras

sharing visible points with it. A robust version of such al-

gorithm may be found in [16].

Point signatures: Correcting the signatures of cameras suf-

fices to enforce identical cheirality for any given point in all



the views in which it is visible. It, however, remains that any

two points X and Xj , visible in the same camera P , may

have different cheiralities, (PX)3(PXj)3 < 0, with respect

to that camera. To make such points share the same cheiral-

ity relative to one such camera, one seeks the signatures η
and ηj of these points such that

(ηPX)3(ηjPXj)3 > 0 for X and Xj visible in P. (4)

Using (4), one may arbitrarily assign a signature η to one

of the points X and recover the signatures of the remaining

visible points. Once a signature is assigned to a point, it can

be used to assign signatures to points visible in other views.
Cheirality inequalities: Note that (3) allows to assign sig-
natures to cameras independently from the homogeneous
representation of the considered visible points. Likewise,
signatures are assigned to points through (4) independently
from the camera signatures. However, this suffices to guar-
antee that the cheirality of any point to be identical with
respect to all cameras in which it is visible. It also guar-
antees that all points visible by one camera carry the same
cheirality with respect to it. As in the Euclidean frame, once
signatures are assigned to cameras and points, the plane at
infinity Π∞ neither cuts through the convex hull of scene
points nor does it cut through the convex hull of camera
centers. The projective coordinates of Π∞ must satisfy:

ηjΠ
⊺

∞Xj > 0 for j = 1 . . .m, (5)

δζiΠ
⊺

∞Ci > 0 for i = 1 . . . n (6)

for some δ = ±1. Note that the coordinate vectors Ci re-

ferred to in (6) ought to be obtained exactly through the

identity C
⊺

i Π = det([Pi⊺ | Π]) for some 4-vector Π.

Upgrade: The plane at infinity plays a key role in upgrad-

ing a projective reconstruction to its Euclidean or affine

counterpart. For instance, the Euclidean coordinates XE
j of

points Xj and Euclidean camera matrices PEi of P i, satis-

fying xij ∼ PEiXE
j , are only a projective transformation, say

H , away from their projective counterparts: XE
j ∼ HXj and

PEi ∼ PiH−1. The full-rank 4 × 4 matrix H is the matrix

representation of H . Unless the cameras are calibrated and

their pose calculated, H is unknown. However, the last row

of H is the homogeneous coordinate vector Π∞ of the plane

at infinity in the projective frame. If the latter is known, for

arbitrarily chosen remaining rows of H, points at infinity in

the true scene are mapped back onto the canonical plane. In

this case, the scene and cameras are said to be reconstructed

in an affine frame. Π∞ being generally unknown, one may

use a surrogate plane, say Π̃∞ whose coordinate vector Π̃∞

in the projective frame satisfies (5) and (6). The resulting

reconstruction is then said to be quasi-affine with respect to

the considered points and camera centers.

LMIs and SDPs: When dealing with matrices, A > 0
(resp. A ≥ 0 ) means that the symmetric matrix A is

positive-definite (resp. positive semi-definite). A Linear

Matrix Inequality (LMI) is a constraint on a real-valued vec-

tor y = (y1, y2, . . .) such that A(y) > 0. The matrix

A(y) = A0 +
∑

i yiAi is an affine function of y involv-

ing symmetric matrices A0,A1,A2 . . .. A LMI feasibility

problem consists in finding y that satisfies the considered

LMI or determining that no solution exists. It is a convex

optimization problem that can be efficiently solved using

interior-point methods [2]. When a LMI A(y) > 0 arises

in homogeneous form, i.e. A(y) =
∑

i yiAi, it is replaced

by a non-homogeneous counetrpart A(y) ≥ I as to avoid

numerical issues since A(0) = 0. A Semidefinite program

(SDP) consists in minimizing or maximizing a linear ob-

jective subject to LMI constraints. A key ingredient in the

work presented in this paper is the following lemma:

Lemma 2.1 (Finsler’s) Let Y be a vector, Q a symmetric
matrix, B a rectangular matrix - all real-valued and of ap-
propriate dimensions - and γ a scalar. The following state-
ments are equivalent:

(i) Y
⊺
QY > 0 ∀Y 6= 0: BY = 0.

(ii) ∃ γ: Q+ γB⊺
B > 0.

Lemma 2.1 is due to Paul Finsler [7]. It allows to convert

the problem of checking the sign of a quadratic form over a

subspace into solving a LMI problem.

Further notations: Additional notations are used through-

out the paper: the canonical vectors are denoted ek, k =
1, 2, 3, such that e1 = (1 0 0)⊺, e2 = (0 1 0)⊺ and

e3 = (0 0 1)⊺. The superscript ⋆ refers to the symmet-

ric part of a square matrix. For example, the symmetric part

Q⋆ of a square matrix Q is given by Q⋆ = 1

2
(Q+ Q⊺).

3. LMI-based 2D-to-3D registration

In this section, we first introduce a set of LMI and

bounding conditions that constitute the backbone of our 2D-

3D registration algorithms. The proposed algorithms are

also presented in this section. We consider the scene im-

aged by a sequence of uncalibrated cameras and scanned

by a 3D sensor. In addition to 2D point correspondences

across images, the scanned scene points are given by their

Euclidean coordinates XE
j , j = 1 . . .m. In the absence

of Euclidean-to-projective (3D-3D) point correspondences

and Euclidean-to-image (3D-2D) point correspondences,

the scanned points are an unknown projective transforma-

tion away, XE
j ∼ HXj , from the image-induced 3D points

Xj . Note that H can be linearly calculated if 3D-3D point

correspondences are available. It can also be estimated from

3D-2D point correspondences via xij ∼ PiH−1XE
j . It goes

without saying that, if H is known, then the correspondences

can be established. However, when neither H nor 3D-3D or

3D-2D correspondences are known, the problem is particu-

larly challenging and difficult to solve. Our goal is precisely

to simultaneously establish such unknown correspondences



and estimate H while using only 2D pixel coordinates and

the Euclidean coordinates of the scanned points: i.e. with-

out triangulating image points in 3-space. Once the corre-

spondences established and H estimated, the Euclidean ma-

trices PEi, camera pose and internal calibration parameters

can be extracted. Our proposed solution heavily depends

upon finding a surrogate plane at infinity Π̃∞ that wouldn’t

cross the scene and cameras. This however traditionally re-

quires the so-called cheirality inequalities involving image

points to be triangulated. Therefore, prior to presenting our

registration conditions and methods, we first provide a LMI

formulation of the cheirality inequalities for obtaining such

“quasi-affine” plane without triangulating image points.

3.1. Cheirality LMIs

Consider a point X visible in camera P . The signa-

ture ζ of P and that of any camera P i in which X is also

visible must satisfy (3). Note that (3) can be rewritten as

ζζiX
⊺P⊺e3e

⊺

3P
iX > 0. One can only notice that the lat-

ter inequality is equivalent to ζζiX
⊺(P⊺e3e

⊺

3P
i)⋆X > 0

when employing the symmetric part of the involved matrix.

Finsler’s lemma can then be used to deduce the LMI

∃γ : ζζi(P
⊺e3e

⊺

3P
i)⋆ + γi(SM)⊺SM > 0 (7)

for X visible in P and P i. In (7), γi is a scalar and matrices

S and M are constructed as in (1) and (2) from the image

projections of point X and camera matrices. Note that LMI

(7) is equivalent to (3). It allows to correct the signature

of a camera given the signature of another camera. Unlike

(3), LMI (7) does not require triangulating any point X . As

in (3), an arbitrary signature ζ can initially be assigned to

camera P and every matrix whose signature is recovered

can be used to deduce the signatures of other cameras.

An alternative to (4) would be to enforce that all points

Xj visible in some camera P i have positive cheirality, i.e.

ζiηje
⊺

3P
iXj > 0 as demanded when using the true Eu-

clidean points and cameras. From (5), one can deduce

that ηj and X
⊺

jΠ∞ must carry the same sign. Because Π∞

is homogeneous, we can choose the plane at infinity such

that ζiX
⊺

jΠ∞e
⊺

3P
iXj > 0. The latter inequality remains

true when considering the symmetric part of the matrix in-

volved: X
⊺

j (ζiΠ∞e
⊺

3P
i)⋆Xj > 0. Using Finsler’s lemma

and accounting for homogeneity, we deduce that LMI

(ζiΠ∞e
⊺

3P
i)⋆ + γi

j(SjM)⊺SjM > I (8)

must hold for any point Xj visible in P i for some scalar

γi
j and the true Π∞. Given the signatures of all cameras

obtained via (7), LMI (8) is an equivalent alternative to us-

ing (5) to calculate a “quasi-affine” plane Π̃∞, satisfying

(8), not cutting through the convex-hull of visible points.

Unlike (5), LMI (8) neither requires the calculation of point

signatures nor does it require the reconstruction of the ob-

served points in 3-space. A surrogate plane at infinity Π̃∞

can be obtained by solving the LMIs (8) along with inequal-

ities (6) (with δ = ±1) for all cameras and visible points.

3.2. Bounding LMIs

Definition 3.1 (Positive vs. negative sides of a plane)

Consider a plane Π with Euclidean coordinate vector

ΠE. We say that a point X with coordinates XE in this

frame lies on the positive side with respect to this plane

if and only if XE⊺ΠE
∞ΠE⊺XE > 0. The coordinate vector

ΠE
∞ = (0 0 0 1)⊺ is that of the plane at infinity in the

Euclidean frame. Points on the negative side with respect

Π satisfy XE⊺ΠE
∞ΠE⊺XE < 0.

Definition 3.2 (Boxing a point) Let B = {(Πk,Πk)}
3
k=1

be a set of three pairs of planes with Euclidean coordinate

vectors ΠE

k = (e⊺k − dk)
⊺ and Π

E

k = (e⊺k − dk)
⊺ such that

the signed distances dk and dk of the planes to the origin

of the frame satisfy dk < dk. Without loss of generality,

the normal vectors ek of the planes are assumed to be the

canonical basis vectors. We say that a point X is boxed by

B if for each pair (Πk,Πk), X is on the positive side with

respect to Πk and negative side with respect to Πk.

Let Sj be the matrix constructed as in (1) from 2D

matches. Let ME (resp. M) be, as in (2), the stack of Eu-

clidean (resp. projective) camera matrices PEi (resp. Pi) ,

i = 1 . . .m. Based on the above definitions, the following

corollary can be directly deduced from Finsler’s lemma.

Corollary 3.3 A point Xj projecting onto xi
j in cameras

{P i}ni=1 is boxed by Bj = {(Πk,Πk)}
3
k=1 if and only if

the following LMIs are simultaneously feasible for some
scalars γ

jk
and γjk:

(ΠE

∞Π
E⊺

k )⋆ + γ
jk
(SjM

E)⊺SjM
E
> 0 k = 1, 2, 3 (9)

γjk(SjM
E)⊺SjM

E − (ΠE

∞Π
E⊺

k )⋆ > 0 k = 1, 2, 3. (10)

Remark 3.4 Note that if any of LMIs (9) and (10) is fea-

sible for some γjk, then the same LMI is also feasible for

any γ > γjk. Hence, one can seek a single γ simultane-

ously satisfying (9) and (10) rather than six scalars γ
jk

,

γjk (k = 1, 2, 3) for each point. This also means that a sin-

gle γ can be sought for the LMIs induced by multiple points

Xj . We henceforth express all our LMIs using a common γ.

Corollary 3.3 allows to express the correspondence be-

tween a box in 3D and 2D point matches. It basically states

that if the 3D point Xj was to be triangulated from 2D cor-

respondences {xi
j}

m
i=1, then it would be within the box Bj

if LMIs (9) and (10) were feasible and outside this box oth-

erwise. However, LMIs (9) and (10) depend upon the un-

known Euclidean camera matrices and the true plane at in-

finity. Let us now consider the block-diagonal matrix

Bj = diag(B1
j ,B

2
j ,B

3
j ,B

1

j ,B
2

j ,B
3

j ) (11)



whose blocks Bk
j = (Π̃∞Π

E⊺

k H)⋆+γ(SjM)⊺SjM and B
k

j =

γ(SjM)⊺SjM−(Π̃∞Π
E⊺

k H)⋆ are expressed using projective

camera matrices, an unknown 4 × 4 transformation matrix

H, and the surrogate plane at infinity Π̃∞ (calculated as in

Section 3.1). The following holds for visible scene points:

Proposition 3.5 Let Sx = {(Xj ,Bj)}
m
j=1 be a set of puta-

tive point-to-box correspondences (i.e. each point Xj , pro-

jecting onto image points {xi
j}

n
i=1, is assigned to a box Bj).

If Sx’s correspondences are correct then LMIs

Bj ≥ I, j = 1 . . .m (12)

must be simultaneously feasible for a scalar γ and at least

the true transformation matrix H satisfying XE
j ∼ HXj .

Proof The proof relies on Corollary 3.3. Recall that ME ∼
MH−1 and Π∞ = H⊺ΠE

∞. It is well-known that congru-

ence transformations preserve definiteness. Hence, pre- and

post-multiplying the left-hand side of each of LMIs (9) and

(10) by H and H⊺, these can be respectively rewritten as

(Π∞Π
E⊺

k H)⋆ + γ(SjM)⊺SjM > 0 and γ(SjM)⊺SjM −

(Π∞Π
E⊺

k H)⋆ > 0. As per Remark 3.4, a common γ is used.

Because X
⊺

jΠ∞Π̃⊺

∞Xj carry the same sign for all points Xj ,

one can replace Π∞ by Π̃∞ thus leading to all Bk
j and B

k

j

being simultaneously either positive or negative definite.

Since H is unknown, one may choose to enforce positive

rather than negative definiteness. Bj > 0 then arises nat-

urally since a block-diagonal matrix is positive-definite if

and only if each of its diagonal blocks is positive-definite.

Because Bj > 0 is homogeneous, it is replaced by (12).

Similarly, consider the matrix

Di = diag(D1
i ,D

2
i ,D

3
i ,D

1

i ,D
2

i ,D
3

i ) (13)

with blocks Dk
i = δ(Π̃∞Π

E⊺

k H)⋆ + γPi⊺Pi and D
k

i =

γPi⊺Pi − δ(Π̃∞Π
E⊺

k H)⋆. Given Π̃∞ and δ, both obtained

by solving (6) and cheirality LMIs (8), the following holds:

Proposition 3.6 Let Sc = {(Ci, Ci)}
n
i=1 be a set of puta-

tive camera-to-box correspondences (i.e. each camera cen-

ter Ci is assigned to a box Ci). If Sc’s correspondences are

correct, then LMIs

Di ≥ I, i = 1 . . . n (14)

must be simultaneously feasible for a scalar γ and at least

the true transformation matrix H satisfying XE
j ∼ HXj .

Proof The proof, omitted here, is along the lines of that of

Proposition 3.5. It employs Finsler’s lemma while relying

on the fact that PiCi = 0 and that δC⊺

i Π∞Π̃⊺

∞Ci > 0.

When a set of points and/or camera centers are putatively

assigned to bounding boxes Bj and/or Ci, LMIs (12) and

(14) can be simultaneously tested for feasibility. Should

they be infeasible, one is guaranteed that at least one point

or one camera center has wrongly been assigned to a box.

Alternatively to assigning multiple points to boxes, one may

use bounds on the entries of the sought matrix H to check

whether or not a single point (or camera center)-to-box

hypothesis is viable. Assuming the origin of the projec-

tive scene/cameras frame coincides with the centroid of the

camera centers and SfM-deduced points, δ and (H)44 can

both be set to 1 (the last row of H being the plane at infinity

- see [11] p. 526). The following corollary can be deduced:

Corollary 3.7 Let H and H be the 4×4 matrices whose en-

tries are valid, respectively, lower and upper bounds on the

entries of the sought matrix H. If a point X (resp. camera

center C) is boxed by B (resp. C), the LMI problem

B > 0 (resp. D > 0), (H)44 = 1

(H)kℓ < (H)kℓ < (H)kℓ k, ℓ = 1, 2 . . . 4
(15)

is feasible for a scalar γ and the true matrix H.

3.3. Registration

We have devised two algorithms for registering 2D cor-

responding points across images with their 3D scanned

counterparts. The first algorithm, named here SSR (Scene

Structure Registration), is based on Propositions 3.5 and

3.6 and exploits the scene’s structure. SSR is relatively

fast, considering the problem at hand, but requires that

matched 2D features have their corresponding 3D points

scanned. This requirement is relaxed in our second registra-

tion method, named RR (Robust Registration), that allows

a predefined number of 2D matches not to have scanned 3D

counterparts. RR is based on Corollary 3.7 and considers

each point-to-box assignment independently from the oth-

ers. Both algorithms exploit the Branch-and-Prune (BnP)

paradigm but explore different spaces. On the one hand,

SSR subdivides non-empty bounding boxes to which points

are assigned in order to iteratively obtain tighter boxes. This

algorithm exploits the fact that scanned scenes consist of

surface points and much of the explored space is void. A

point that can only be assigned to an empty box indicates

that the correspondence hypotheses for such assignment are

surely incorrect. On the other hand, RR subdivides the

space of parameters defined by the 15 bounded entries of

the sought transformation matrix in order to obtain tighter

bounds on this matrix while guaranteeing that at least a pre-

defined number of points are assigned to non-empty boxes.

Initialization: In both SSR and RR algorithms, all scanned

points are initially assigned to the scene’s bounding box.

Some applications and/or setups may allow to assign some



of the points to smaller boxes. Camera centers are initially

assigned to bounding boxes obtained either from GPS in-

formation or a good guess (possibly application-specific).

Because estimating H requires 5 pairs of 3D-3D corre-

spondences (no 4 points on one plane), 5 distinct non-

overlapping bounding boxes in general position are required

for the boundedness of the optimization problems at hand.

These could be non-overlapping boxes on 4 cameras in ad-

dition to the scene’s bounding box, or boxes around 3 cam-

eras and 2 boxes in the scene, etc. Such assumption is con-

sidered satisfied throughout. Based on Corollary 3.7, the

initial bounds on the entries of H can be obtained by solv-

ing a series of SDPs. That is, for each entry (H)kℓ, solve

max
H,γ

/min
H,γ

(H)kℓ s.t.Bj > 0, Di > 0, (H)44 = 1. (16)

SSR: At any given iteration of the SSR algorithm, one

is given the sets Sx = {(Xj ,Bj)}
m
j=1 and Sc =

{(Ci, Ci)}
n
i=1 of respectively point-to-box and camera-to-

box assignments. The set Sx ∪ Sc defines a node in a

dynamically-built search tree. The point or camera-to-box

assignments therein have feasible H and γ simultaneously

satisfying their corresponding LMIs (12) and (14). Algo-

rithm 1, that requires solving Problem 1 below, is used to

reassess the boxes of all points and camera centers such

that smaller boxes contribute to shrinking larger ones and

all boxes best fit the scanned points within. If any box as-

signed to a point turns out to be empty, the branch is marked

for dismissal and the hypothetical assignments are dropped.

If a branch is not dismissed, then the feasible H for LMIs

(12) and (14) is used to initialize a projective ICP-like re-

finement (discussed below). The branch with the lowest

cost (19) is processed first. The box in Sx with the longest

edge is subdivided (along the latter edge) into two boxes

resulting in two new branches to be explored.

Algorithm 1 [Sx,Sc] = SSR-NodeProcessing(Sx,Sc)

for each a ∈ Sx ∪ Sc do

(a ∈ Sx ∪ Sc consists in a tuple (a.X, a.B))
Refine a.B by solving Problem 1

if a ∈ Sx (i.e. a.X is a point) then

if refined a.B is empty (i.e. no scanned points) then

Sx← ∅; Sc← ∅ (branch to dismiss)

else

Shrink a.B to best fit scanned points within

Update a in Sx
end if

else

Update a in Sc
end if

end for

return [Sx, Sc]

Problem 1: Let Sx = {(Xj ,Bj)}
m
j=1 and Sc =

{(Ci, Ci)}
n
i=1 be sets of putative, respectively, point-to-box

and camera-to-box assignments. Let X ∈ {Xj}
m
j=1 be

boxed by B = {(Πk,Πk)}
3
k=1 ∈ {Bj}

m
j=1 for which a pos-

sibly tighter box may exist. Recalling that ΠE

k = (e⊺k −dk)
⊺

and Π
E

k = (e⊺k −dk)
⊺, a new upper bound dk for some fixed

k can be obtained by solving

max
H,γ,dk

dk

s.t. (Π̃∞(e⊺k − dk)H)
⋆ + γ(SM)⊺SM > I,

Bj ≥ I j = 1 . . .m, Di ≥ I i = 1 . . . n.

(17)

This can be solved by binary search over dk in the range

[dk, dk]. Intuitively, this is equivalent to pushing ΠE

k to-

wards Π
E

k until either the two planes coincide (no smaller

bound on dk) or X cannot be mapped on the positive side

of (e⊺k − dk)
⊺. This latter case means that X can only be

mapped on the negative side of (e⊺k −dk)
⊺ thus making the

resulting dk the new upper bound dk. A new lower bound

dk can be obtained by solving a similar problem to (17) by

minimizing dk while γ(SjM)⊺SjM− (Π̃∞(e⊺k −dk)H)
⋆ >

I and subjected to points and cameras’ bounding LMIs.

RR: At any given iteration of the RR algorithm, one is given

bounds on the 15 entries of H (given (H)44 = 1) and a set

Sx of point-to-box putative assignments. The set Sx and

H’s bounds define a node in a dynamically-built search tree.

Algorithm 2 refines the box assigned to each point based

on the bounds on H it has been provided. This algorithm

returns a new set Sx with updated boxes and, more im-

portantly, empty box assignments taken away. The cardi-

nality of Sx hence provides the number of points actually

assigned to non-empty boxes. The node is dropped if the

number of such point-to-box assignments is below a prede-

fined threshold or LMIs (15) are infeasible when considered

simultaneously for all assignments in the refined Sx. Other-

wise, the feasible H satisfying LMIs (15) due to Sx is used

to initialize the projective ICP-like refinement. The branch

with the lowest cost (19) is processed first. In this case, H

is branched along its longest edge thus creating two new

branches (inheriting the refined Sx) to explore.

Algorithm 2 Sx = RR-NodeProcessing(Sx,H,H)

for each a ∈ Sx do

Refine a.B by solving Problem 2

if a.B is empty (i.e. no scanned points) then

Remove a from Sx
else

Update a in Sx
end if

end for

return Sx

Problem 2: Now consider bounds on H are given and B =
{(Πk,Πk)}

3
k=1 be the box to which X is assigned. With

tighter bounds on H one can obtain new tighter bounds on



X . A new upper bound dk can be obtained by solving

max
H,γ,dk

dk

s.t. (Π̃∞(e⊺k − dk)H)
⋆ + γ(SM)⊺SM > 0,

(H)kℓ < (H)kℓ < (H)kℓ k, ℓ = 1, 2 . . . 4,
(H)44 = 1

(18)

assuming the SfM-scene and cameras centered at the origin

of the projective frame. As in (17), this can be solved by

binary search over dk in the range [dk, dk]. The largest dk
is the new dk. A lower bound dk can very much be obtained

in the same manner as discussed for Problem 1.

Termination: Both SSR and RR algorithms terminate

when the cost of the projective ICP-like refinement reaches

a predefined objective or when all branches have been pro-

cessed (up to bound gap in the branching parameters). In

the latter case the best solution is returned.

Projective ICP-like refinement: Let Xj be the set of

scanned 3D points boxed by some box Bj . Given initial-

ization on H, it can be refined by minimizing the cost,

∁(H) =

n∑

i=1

m∑

j=1

min
X∈Xj

d(xij ,P
iH−1XE)2 (19)

where d(., .) is the Euclidean distance. This is carried out

by alternating matching 3D scanned points in bounding

boxes and 2D points (based on re-projection error) and re-

estimating H.

4. Experiments

We tested the proposed methods using synthetic and real

images. Projective reconstruction was obtained using [18]

and refined via Bundle Adjustment [28] in [14] using

Rabauds SfM Toolbox [21]. The algorithms were imple-

mented in MATLAB2012a and the LMI problems were

solved using the LMI Control Toolbox. All experiments

were carried out on a Pentium i7/2.50GHz with 8GB RAM.

Synthetic data: We generated a set of 800 random 3D

points scattered on the surface of four faces of a 20m ×
20m × 20m scene box. The cameras were placed about

20 ± 2m away from the scene’s centroid with randomly

generated rotations while looking towards the scene. 800

additional points were also generated on the surface of a

hemisphere placed at a corner of the box. Of these points,

1000 were randomly selected and projected onto 512× 512
images with zero-skew, 200 pix. focal length and an image-

centered principal point. The projected points were im-

posed 0.0 to 2.0 pixels random noise (with a step of 0.4).

Only 20 image points were assumed to be matched across

the image sequence. The SSR method was tested by chang-

ing various parameters while conducting 50 experiments for

each setup. The number of views was varied from 5 to 15

(with a step of 2) while bounding camera centers inside cu-

bic bounding boxes (denoted Bbx) of different sizes (sides

of 20cm, 2m, and 4m), with no constraints on the scene

points. The number of branching was allowed to be no more

than 50 to restrict the maximum processing time. The 2D

projection error threshold was set to 10−2.

The median time taken for various experiments against

the number of bounded cameras and image noise are shown

in Figure 1. Similarly, Figure 2 shows the success count

over 50 experiments. 2D-to-3D registration accuracy was

measured by computing the 3D registration error of all 1000

reconstructed points to the scene. Measured 3D RMS reg-

istration error is shown in Figure 3. An experiment is as-

sumed to be successful if it produces less than 0.1 3D er-

ror. The estimated camera intrinsics and pose were com-

pared against that of ground truth. The Euclidean projec-

tion matrix of the first camera was recovered using PE1 =
K1[R1 t1] = P1H−1. For the evaluation, error measurement

metrics for N number of experiments are defined as follows

∆f =

√
N∑

i=1

(α1

i
−α)2+(β1

i
−β)2

N(α2+β2) , ∆R =

√
N∑

i=1

||r1
i
−r||2

3N ,

∆uv =

√
N∑

i=1

(u1

i
−u)2+(v1

i
−v)2

N(u2+v2) , ∆t =

√
N∑

i=1

||t1
i
−t||2

N(||t||2) ,

where α1, β1 represent two focal lengths, and (u1, v1) is the

principal point. r1 is a vector obtained by stacking three ro-

tation angles in degrees. These angles are obtained from R1

after enforcing its orthogonality. The corresponding vari-

ables without subscript represent the ground truth. The er-

rors in camera intrinsics and pose are shown in Figure 4.

The success, speed, and accuracy improve with the increase

in number of views and decrease in the box size.
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Figure 1: Time vs. number of views and noise.
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Figure 2: Success count vs. number of views and noise.



Sequence Method
Points Bbx. Cameras Bbx.

Time (sec) ∆f ∆uv ∆R ∆t 3D Error
Num. Size (m) Num. Size (m)

Fountain

SSR
0/36 - 11 2.00 78.423 0.0162 0.0275 0.2471 0.0196 0.0164

18/36 2.00 11 2.00 3.912 0.0162 0.0275 0.2471 0.0196 0.0164

RR 10/36 1.00 11 1.00 52.796 0.0162 0.0275 0.2471 0.0196 0.0164

RISAG -/4601 - 11 - 805.680 - - 8.6825 0.1408 0.3275

Go-ICP -/4601 - 11 - 529.415 - - 0.7225 0.0163 0.0348

Herz-Jesu

SSR
0/29 - 8 2.00 57.442 0.0207 0.0280 0.1441 0.0137 0.0221

18/29 2.00 8 2.00 3.999 0.0207 0.0280 0.1441 0.0137 0.0221

RR 5/29 1.00 8 1.00 8.212 0.0039 0.0089 0.3223 0.0061 0.0019

RISAG -/4024 - 8 - 160.064 - - 17.6378 0.0570 0.1830

Go-ICP -/4024 - 8 - 31.254 - - 3.2618 0.169 0.0725

Table 1: Four different methods with real data. Points Bbx. p/q means p number of points are bounded out of q sought.
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Figure 3: Registration error vs. number of views and noise.
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Figure 4: Intrinsic and pose errors vs. number of views.

Figure 5: Fountain: (left) 11 cameras 2m Bbx and scene,

(right) estimated cameras in textured scene using SSR.

Real data: We tested our method with two real datasets:

Fountain-P11 and Herz-Jesu-P8 (from [25]). These datasets

consist, respectively, of 11 and 8 images of size 3072×2048
captured by a moving camera of α = 2759.5, β = 2764.2,

u = 1520.7 and v = 1006.8, along with the laser scanned

Figure 6: Herz-Jesu: (left) matched 2D features with out-

liers in red, (right) texture-mapped scene using RR.

3D scenes. Our results were compared against two meth-

ods: RISAG [6] and Go-ICP [30]. RISAG requires met-

ric reconstruction, hence works only for the calibrated case.

Likewise, Go-ICP requires an Euclidean reconstruction,

which was obtained by upgrading the metric reconstruc-

tion using ground truth projection matrices. The metric re-

construction was obtained using openMVG [15]. The re-

sults obtained for all four methods are shown in Table 1.

For qualitative analysis, estimated projection matrices were

used for texture mapping. The obtained results using our

methods were very accurate. These are shown in Figures 5-

6 which also provide the results after further refinement us-

ing [29]. Note that a small error in pose can significantly

affect the texture mapping. For the Fountain sequence, both

SSR and RR converged to the same solution. RR, however,

converged to a better solution for Herz-Jesu.

5. Conclusion

We have presented a novel approach for registering two

or more uncalibrated cameras to a 3D scanned scene. The

proposed approach only assumes point correspondences

across images. Our solution allows estimating the unknown

projective transformation relating the cameras to the scene

and establishing 2D-3D correspondences. A LMI frame-

work was used to overcome the image-induced point trian-

gulation requirement. Using this framework, we have de-

rived triangulation-free LMI cheirality conditions and LMI

constraints for establishing putative correspondences be-

tween 3D boxes and 2D points. Two globally convergent al-

gorithms, one exploiting the scene’s structure and the other

concerned with robustness, have been presented.
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