
Computationally Bounded Retrieval

Mohammad Rastegari1, Cem Keskin2, Pushmeet Kohli2, Shahram Izadi2
1University of Maryland, 2Microsoft Research

mrastega@cs.umd.edu, cemke,pkohli,shahrami@microsoft.com

Abstract

The increase in size of large image databases makes the
problem of efficient retrieval extremely challenging. This is
especially true in the case of high dimensional data where
even operations like hashing become expensive because of
costly projection operators. Unlike most hashing meth-
ods that sacrifice accuracy for speed, we propose a novel
method that improves the speed of high dimensional image
retrieval by several orders of magnitude without any signif-
icant drop in performance. To do this, we propose to learn
computationally bounded sparse projections for the encod-
ing step. To further increase the accuracy of the method,
we add an orthogonality constraint on projections to reduce
bit correlation. We then introduce an iterative scheme that
jointly optimizes this objective, which helps us obtain fast
and efficient projections. We demonstrate this technique on
large retrieval databases, specifically ImageNET, GIST1M
and SUN-attribute for the task of nearest neighbor retrieval,
and show that our method achieves a speed-up of up to a
factor of 100 over state-of-the-art methods, while having
on-par and in some cases even better accuracy.

1. Introduction
Many computer vision problems can be formulated as a

nearest neighbor search in some large dataset. When the
data involved is high dimensional, doing this search ef-
ficiently becomes crucial but also extremely challenging.
This is especially the case for the task of content based im-
age retrieval, where efficiency is a requirement due to the
high dimensionality of the data and the increase in size and
availability of these databases.

The most common retrieval approaches are tree based
and hashing based methods. In tree based approaches, the
search space is embedded into a tree structure. At query
time, the tree is traversed until a leaf node is reached, which
points to a set of images that are similar to the query im-
age. Then a final search is conducted over this set of im-
ages to find the nearest neighbor. Decision trees [17] and
kd-trees[13, 12] are two such methods. When the number
of dimensions grows, these conventional approaches often
become less efficient, since the time or space requirements

Retrieval Time (second)
10

-2
10

0
10

2

A
U
C

0

0.05

0.1

0.15

0.2

0.25

0.3

SBE-opt-0.1
SBE-opt-0.01
SBE-opt-0.001
kd-tree

Figure 1: Comparison of the accuracy (area-under-the-
curve) and computational cost of the proposed algorithm
(SBE) with the kd-tree method for different sparsity val-
ues. The curves correspond to increasing code lengths for
SBE and decreasing bucket size for kd-tree. Our method
achieves the same accuracy as a kd-tree while being 100
times faster.

of these approaches often grows exponentially with the di-
mensionality.

Hashing based methods, on the other hand, reduce the
number of dimensions involved with projections. This in
turn removes the exponential dependence on dimensional-
ity that trees suffer from. For instance, Locality Sensitive
Hashing (LSH) uses random projections for the encoding
step [2]. The images are indexed by hash tables, and at test
time the query is encoded into an index that points to these
hash tables. Typically the encoding step is the bottleneck in
these image retrieval methods.

In this paper, we focus primarily on image retrieval using
binary codes [26]. In this approach, each image is encoded
into a binary code such that the nearest neighbors in the
corresponding Hamming space remain the same as the ac-
tual nearest neighbors in the original feature space. These
binary codes can be used as hash keys to construct a hash

1

table for real-time nearest neighbor search [15]. Calculat-
ing the binary code, i.e. encoding, is in this case evaluating
a mapping function f from some d-dimensional inputs to
k-dimensional outputs. However if d and k are large, com-
putational efficiency of f becomes a bottleneck at test time.
Since the output is binary, this can be treated as a linear
classification problem per bit. Even though there have been
several efforts on making non-linear classification more ef-
ficient [21, 11], none of these methods are faster than linear
classifiers, whereas making f more efficient would require
sub-linear time complexity classifiers.

Typically, a single bit in a binary code is obtained by a
dot product between the normal vector of a hyperplane and
the feature vector, which implies O(dk) time complexity.
In [5] a bilinear projection is employed to reduce the time
complexity to O(d

√
k). Recently, [25] proposed to use the

columns of a circulant matrix as linear projections. This en-
ables faster projection to generate k-bits (k > 1) by Fast
Fourier Transform (FFT) which is O(d log(d)). In this pa-
per, we propose an optimization that learns a sparse projec-
tion to binary codes with a constraint on the computational
budget.

We propose to find a mapping f that quantizes the data
into binary values while: 1-minimizing the quantization er-
ror, and 2-minimizing the computational cost of f . We in-
troduce two optimizations that employ `1-norm to constrain
the computational operations in f based on the given spar-
sity rate α. In the first case we assume the binary codes are
given and we only optimize for the mapping function f . In
the second case we jointly optimize for binary codes and
f . The joint optimization also introduces a new framework
for learning binary codes, where the linear mapping func-
tion can be replaced by any arbitrary function (e.g. Neural
Networks).

We demonstrate our method in several image retrieval
datasets (ImageNet, GIST, SUN) for nearest neighbor
search. Our method achieves a high accuracy while having
orders of magnitude less operations in comparison with the
state-of-the-art methods on fast binary embedding. Surpris-
ingly, our joint optimization even outperforms the baseline
iterative quantization (ITQ) method [6] in terms of accuracy
for some values of α. α provides a way of controlling the
trade-off between speed and accuracy. Figure 1 shows that
we achieve comparable accuracies to the kd-tree method us-
ing our algorithm, which requires only a fraction of the time
a kd-tree requires.

2. Background and Related Work
Most binary coding methods generate binary codes by

projecting the data on linear hyperplanes that is followed by
a binarization step (e.g. sign function). Given a data point
x ∈ Rd, a k-bit binary code is generated by a hash function
h(x) ∈ {+1,−1}k

h(x) = sign(WTx); (1)

where W ∈ Rd×k .There are two common approaches for
generating the projection matrix W; 1- Random projec-
tion: Elements of W are randomly chosen from a Gaussian
distribution. This approach has been referred to as LSH in
literature[2, 1, 10]. 2-Data dependent: The matrix W is
learned from a set of training data to be optimized for a
particular task (e.g. nearest neighbour retrieval or semantic
search). There are many works on data dependent hashing
[23, 6, 14, 22, 20, 24]. ITQ [6] is one of the popular meth-
ods that shows high accuracy in retrieval. It minimizes the
quantization error over the training data after the dimension-
ality is reduced by PCA. In order to have uncorrelated bits
in ITQ, the projection matrix is constrained to be a rotation
matrix.

Q(R,B) = min‖RPX−B‖ s.t. RRT = I (2)

where P ∈ Rk×d is the projection matrix from PCA and
X ∈ Rd×n is the data matrix, such that each column in X
is a d dimensional feature vector. B ∈ {+1,−1}k×n is
the data in quantized form, and R ∈ Rk×k is the rotation
matrix. The optimization is an iterative process over two
steps; 1- fix R and solve for B, and 2- fix B and solve for
R.

When x is a high dimensional vector, the computation
time for this projection is prohibitive, since the computa-
tional complexity is O(dk). As discussed earlier, the com-
putation cost for the binary projections can be very crucial
in many applications. To overcome this cost [5] presents
bilinear projection (BITQ) as an efficient way of generating
binary codes.

h(x) = sign(RT
1 ZR2) (3)

where Z ∈ R
√
d×
√
d is the reshaped version of data vector

x (vec(Z) = x) and R1,R2 ∈ R
√
d×
√
k are forced to be

rotation matrices. This can be reformulated as follow:

h(x) = sign((RT
1 ⊗R2)x) (4)

where⊗ is the tensor product. The computational complex-
ity of bilinear projection in Equation 3 is O(d

√
k +
√
dk).

Since d >> k, the dominant part of complexity would be
O(d
√
k). Similar to ITQ, there is an iterative process which

can find the optimal R1,R2 to minimize quantization error.
In [25] Circulant Binary Embedding (CBE) is proposed

for fast projection. The hashing function in CBE is in this
form:

h(x) = sign(CDx) (5)

where C ∈ Rd×d is a circulant matrix where the elements
of the ith column of C can be generated by one circular shift
of (i− 1)

th column. and D is a diagonal matrix. The oper-
ation in Equation 5 can be implemented efficiently via Fast
Fourier Transform (FFT) and the computational complexity
of Equation 5 will be O(d log(d)).

In order to achieve faster projection in both BITQ and
CBE, the projection matrix is forced to have a certain struc-
ture. In BITQ the projection has to come from a tensor
product of two smaller rotation matrices and in CBE the
projection matrix has to be a circulant matrix. These limi-
tations on the structure of projection matrix can be seen as
a type of regularization. In this work, we present a method
that learns a sparse projection matrix W by directly regu-
larizing the projection matrix using `1-norm. We can obtain
very sparse projection matrices with this method, with spar-
sity rates of 0.1, 0.01 or even 0.001, which enables fast and
accurate binary projection. Our results shows that we can
reach comparable accuracies in retrieval with a sparsity rate
of 0.01.

Figure 2 illustrates the computational cost of complex-
ities dk, d log(d), d

√
k and αdk with respect to the num-

ber of bits (k), where α is the sparsity rate of our proposed
method. Evidently, αdk is more efficient with growing d.

Number of dimensions
10

3
10

4
10

5

N
u
m
b
er

of
op

er
at
io
n
s ×10

6

0.5

1

1.5

2

k=16 bits

0.1dk
0.01dk
0.001dk
d log(d)

d
√

k

dk

Number of dimensions
10

3
10

4
10

5

N
u
m
b
er

of
op

er
at
io
n
s ×10

6

0.5

1

1.5

2

k=32 bits

0.1dk
0.01dk
0.001dk
d log(d)

d
√

k

dk

Number of dimensions
10

3
10

4
10

5

N
u
m
b
er

of
op

er
at
io
n
s ×10

6

0.5

1

1.5

2

k=64 bits

0.1dk
0.01dk
0.001dk
d log(d)

d
√

k

dk

Number of dimensions
10

3
10

4
10

5

N
u
m
b
er

of
op

er
at
io
n
s ×10

6

0.5

1

1.5

2

k=128 bits

0.1dk
0.01dk
0.001dk
d log(d)

d
√

k

dk

Figure 2: Complexity growth as a function of dimensions

3. Learning Computationally Constrained Bi-
nary Codes

Most machine learning problems can be formulated as
learning of a prediction function fw : X → Y which
is a many-one mapping between some input space X and
an output space Y that is parameterized by a parameter
vector w. Given a set of n training input-output pairs
{(xi,yi)}ni=1, the conventional empirical risk minimization
approach for learning the optimal parameter vector w∗ in-
volves solving the following optimization problem:

w∗ = argmin
w

n∑
i=1

`(yi, fw(xi)). (6)

where `(y, ŷ) is a loss function that measures the discrep-
ancy between the prediction ŷ and the ground truth output
y.

The choice of the representation of the prediction func-
tion fw and the loss function ` results in different learning

algorithms. For instance, a simple but popular represen-
tation for the prediction function for binary classification
problems is:

fw(x) = sign(wTx) , (7)

where sign is element wise sign function {sign : R 7→
{+1,−1}}. In many large-scale computer vision and ma-
chine learning tasks, such as image labeling or classifica-
tion, the inputs are high-dimensional, i.e. d is large. Many
tasks also require multiple computations of the prediction
function for a single input. For instance, this is the case for
the problem of foreground-background segmentation where
the task is to assign each pixel the foreground or background
label by computing the predictor in a sliding window fash-
ion. Furthermore, one may need this computation to work
in real time: more than 20 frame per second. In these case,
even computing the simple linear mapping defined in Equa-
tion 7 may become computationally expensive because of
the large number of multiplication required to compute the
dot-product between w and x.

In the case of binary codes learning the parameter vec-
tor w is replaced by a parameter matrix W. In this paper,
we focus on binary code predictors that tie themselves to a
fixed computational budget. Specifically, we consider the
case where there is a limit on the number of arithmetic op-
erations that can be performed at test time. More formally,
we want to solve the computation-bounded risk minimiza-
tion problem that is defined as:

argmin
W,b

∑n
i=1 `(bi, fw(xi)) (8)

st. τ(fw) ≤ l (9)

where bi ∈ {−1, 1}k is the desired binary code for xi and τ
measures the computation complexity of evaluating the pre-
diction and l is the required computational bound. For the
case of predictor defined in Equation 7, the above problem
translates to

argmin
W,b

∑n
i=1 `(bi, sign(W

Txi)) (10)

st. ‖w‖0 ≤ l (11)

where ‖w‖0 denotes the `0 norm that counts the number of
non-zero components of W since only these many multi-
plications are needed to evaluate the function.

In contrast to the classification problem, there are no
ground truth labels for our task of binary code learning. In
fact, the classifier and the labels should both be estimated,
which is a complicated task. In the next subsection we
explain how to learn an optimal computationally bounded
function when the desired binary codes are given. In sub-
section 3.2, we propose a joint optimization that solves for
both binary codes and the mapping function jointly.

3.1. Sparse Projection When Binary Codes Are
Given

To improve the computation cost of f , a relatively
straightforward idea is to make the matrix W sparse. When
‖W‖0 ≤ l, i.e. when number of non-zero entries of W is
at most l, then clearly f can be computed in O(l). How-
ever, directly solving for `0-norm is intractable. Therefore,
sparsity is often incorporated by introducing an `1 penalty
on the parameter matrix W followed by thresholding.

In our approach we minimize the quantization error in
the original feature space, which is in essence similar to ITQ
which minimizes the quantization error in the PCA space.
However, we force the W to be a sparse matrix.

W∗ = argmin
W
{‖WTX−B‖F + λ|W|`1} (12)

Here |.|`1 operator on a matrix is equivalent to sum of the
absolute values of the elements in that matrix. We assume
that the binary codes B are computed as a part of training
via one of the best binary coding methods (e.g. ITQ). It can
be shown that the optimal solution for W can be computed
independently for each column of W. Given the matrix B
from the output of ITQ (Equation 2), we can rewrite Equa-
tion 12 as follows:

W∗ = argmin
W
{

k∑
i=1

‖wiTX− bi‖`2 + λ|wi|`1} (13)

where wi and bi are ith row of WT and B respectively,
and λ is a trade-off parameter. Equation 13 is a minimiza-
tion over sum of k positive elements such that the parame-
ters in each element is independent. Therefore, the global
minimum is equivalent to the sum of the minimum values
in each element:

W∗ = argmin
W
{

k∑
i=1

min
wi
{‖wiTX− bi‖`2 + λ|wi|`1}} (14)

w∗i = argmin
wi

{‖wiTX− bi‖`2 + λ|wi|`1} (15)

W∗ =
[
w∗1 w∗2 . . . w∗k

]
(16)

Intuitively, elements in each row of B can be considered
a binary class label for the columns of X. Similarly, each
column of W can be considered a classifier that predicts the
binary labels. Therefore, we can reformulate the optimiza-
tion for ith column of W as a max-margin `1 regularized
linear classifier:

argmin
wi

|wi|`1 + C

n∑
j=1

ξj

subject to bi(j)(wiTxj) ≥ 1− ξj , j = 1, . . . , n.

(17)

Here xj is the jth column of X. We solve this optimization
efficiently by using LibLinear [4]. After obtaining the op-
timized w, we zero out the dimensions with small absolute

values to reach the sparsity rate of α. This is done simply
by sorting the absolute values in w and pick a threshold
based on the given sparsity rate (e.g. if the sparsity rate is
0.1, we zero out 90% of the smallest values). Computa-
tional complexity of obtaining a binary code for a point x
is O(αdk) where α is the sparsity rate of W. Our exper-
imental results show that even for very sparse projections
with α = 0.01, the accuracy drop is insignificant. As dis-
cussed earlier, for high dimensional data, generating short
binary codes will lead to much less number of operations
than BITQ and CBE as explained on Figure 2. In the next
subsection we discuss a case, where the binary codes are
not given during the training phase and we should optimize
for both B and W.

3.2. Joint Optimization
So far, binary codes were supplied in the training phase.

These binary codes could be obtained from the output of
any compelling binary coding method (e.g. ITQ). As there
is no guarantee that the exact codes can be reconstructed
by sparse mapping, we need to incorporate the search for
binary codes into the main objective. Similar to the Equa-
tion 12, we aim to minimize the quantization error while
maintaining the low `1-norm. In contrast to Equation 12, B
is an unknown variable.

(W∗,B∗) = argmin
W,B

{‖WTX−B‖F + λ|W|`1} (18)

To solve this optimization problem, one might consider an
EM like iterative update of variables; 1- fix B and solve for
W as described in Section 3.1, 2- fix W and solve for B
which is B = sign(WTX). However, solving this opti-
mization does not entail a desirable solution. The reason is,
there is no control over dependency of bits of binary codes,
i.e. there is no constraint on B. Usually, low correlation
can be achieved by an orthogonality constraint over the pa-
rameters of the mapping function. In our case, it would
be equivalent to have WTW = I as a constraint in the
objective. However, having this constraint along with the
`1 penalty complicates the optimization problem, since or-
thogonality and sparsity of the mapping function are two
competing constraints on minimizing the quantization er-
ror. Therefore we employ the iterative optimization proce-
dure explained above, but this time considering only one of
the constraints at each step.

To solve the optimization of Equation 18, we replace the
matrix B with an explicit sign function of an orthogonal
projection of the data as follows:

(W∗,P∗) =argmin
W,P

{‖WTX− sign(PTX)‖F + λ|W|`1}

s.t. PTP = I
(19)

where P ∈ Rd×k is an orthogonal matrix. This orthogonal
projection ensures the low correlation between the bits, and

also in contrast to Equation 18, it provides an update for
binary codes which is not directly dependent on W. Again,
we employ the iterative two steps block-coordinate descend
technique, where we iterate between solving for W and P.
When P is fixed, the problem would be the same as what we
had in Section 3.1; the optimal W can be obtained via linear
`1-SVMs. When W is fixed, the remaining optimization is
as follows (let M = WTX):

P∗ =argmin
P
{‖M− sign(PTX)‖F }

s.t. PTP = I
(20)

The optimized solution for P in Equation 20 is not unique.
Let’s define P as the optimal solution set for P∗. Solving
this optimization is intractable due to the non-linearity of
the sign function. Instead of solving 20, we claim that using
the following optimization gives an optimal P:

P∗∗ =argmin
P
{‖ sign(M)−PTX‖F }

s.t. PTP = I
(21)

The above optimization(21) is an orthogonal procrustes
problem and has a closed form solution. P∗∗ = V(1:k,:)

TU

where (U,D,V) = svd(sign(M)XT) 1. It can be shown
that P∗∗ ∈ P . Lets consider a single element in M as
M(i,j). In 20 we would have :

P∗(:,i) =argmin
P(:,i)

{‖M(i,j) − sign(P(:,i)
TX(:,j))‖}

s.t. P(:,i)
TP(:,i) = 1

(22)

if M(i,j) ≥ 0, the optimal solution set

P(:,i) = {∀p ∈ Rd| pTX(:,j) ≥ 0, pTp = 1} (23)

The optimal solution from Equation 21 is P∗∗(:,i) =

sign(M(i,j))
X(:,j)

‖X(:,j)‖
. Replacing P∗∗(:,i) with p in Equa-

tion 23 proves that P∗∗(:,i) ∈ P(:,i). Analogously, we can
prove the same solution when M(i,j) < 0. Therefore, an
optimal solution for 21 would also be an optimal solution
for Equation 20.

In Algorithm 1 we show all the steps in our joint opti-
mization for binary code learning. The joint optimization
has an advantage over original ITQ formulation: in con-
trast to ITQ, the mapping function is directly learned over
the original feature space, not on the PCA reduced space.
Our experiments verify that the proposed method can out-
perform ITQ while being at least ten times faster.

In the next section we show an extensive set of experi-
ments to evaluate all the parts of our proposed method in
comparison to the other state-of-the-art methods.

1The (:) notation is the same as being used in MATLAB

Algorithm 1: Sparse Binary Embedding
Input: X ∈ Rd×n, k(number of bits), λ, α, niter.
Output: W ∈ Rd×k, B ∈ {1,−1}k×n.
1: P← random orthogonal matrixd×k

2: repeat
3: L← sign(PTX)
4: W← `1 − LinSVMs(train data = X, train labels =

L, hyperparameter = 1− λ)
5: M←WTX
6: (U,D,V)← svd(sign(M)XT)

7: P← V(1:k,:)
TU

8: Objective← ‖M− L‖
9: until convergence on Objective

10: W← zero out values in columns ofW to reach the sparsity rate α
11: B← sign(WTX)

4. Experiments
In this section, we measure the accuracy and computa-

tional cost of our method on different datasets for image
retrieval. The sparsity of our mapping function also proves
to be beneficial when the data is noisy. Therefore, we also
present an evaluation on retrieval from noisy data.

4.1. Experimental Setting

Datasets: We consider three datasets in our experiments;
ImageNet[3], GIST-1M[7], and SUN14k[16]. Each dataset
is randomly partitioned into three sets: train, query and
base. The parameters (mapping functions) are trained on
the training set and we use each sample in the query set
to find its nearest neighbor in the base set. ImageNet in-
cludes 1000 categories of images and has 1281167 images
in total. We specifically used the ISLVRC2012 benchmark
dataset. 100K, 1K, 1180K samples were picked for train-
ing, query and base respectively. We used CNN features
extracted by Caffe [8] with 4096 dimensions. Gist1M [7]
contains 1M images and their 960 dimensional GIST fea-
tures. This dataset has frequently been used for approxi-
mate nearest neighbor search in the computer vision com-
munity. It has a standard partitioning of training(500K),
query(100) and base(1M) sets. SUN14K[16] is a dataset
of 700 categories of images, which is mainly used for scene
recognition. We used this dataset because of its high dimen-
sional features (19080 dimensions). This dataset has been
used for attribute based recognition and dual-view hashing
by Patterson and Hays [16] and Rastegari et al. [18]. It
has 14K images and the visual features extracted by Pat-
terson and Hays [16], which is a concatenation of GIST,
PHOG and BoW. The reason that we chose these datasets
are: ImageNet: to evaluate our method on the state-of-the-
art ConvNet (CNN) features that showed great potential for
recognition[9], GIST1M: to evaluate the accuracy of our
method on a standard image retrieval dataset, and SUN14K:
because of its feature set that allows us to evaluate the effi-
ciency of our method on very high dimensional spaces. In
order to have a fair comparison with other baselines, it is

very important to pre-process the data by mean centering
and normalizing them to unit hyper-sphere [25, 19].

Methods: To best of our knowledge, there are two other
works that focus on fast binary embedding [25, 5]. Simi-
lar to [25], we use ITQ [6] as a baseline method which is
not an efficient method but it gives the best accuracy among
other binary embedding techniques [19]. Circulant Binary
Embedding (CBE)[25] and Bilinear Iterative Quantization
(BITQ) are used as competitor methods in terms of effi-
ciency and accuracy. These methods have two versions:
one with random paramaters (CBE-rand, BITQ-rand) and
another one with optimized parameters (CBE-opt, BITQ-
opt). Here we only use the optimized versions for com-
parison. Our method is abbreviated by (SBE) which stands
for Sparse Binary Embedding. We distinguish between the
optimization in Section 3.1 by (SBE-B) and the joint opti-
mization in Section 3.2 by (SBE-opt). In most experiments,
we measure our method with a sparsity rate of α = 0.01,
however, we also explore the sparsity rates 0.1 and 0.001 in
Section 4.4. For these comparisons, we used the ITQ, BITQ
and CBE software that is available online.

4.2. Nearest Neighbor Retrieval

In this section, we demonstrate the accuracy of the near-
est neighbor retrieval task on the benchmark datasets. We
present both recall rate and precision in the form of area-
under-curve (AUC) (Subsection 4.4). Similar to [25], the
steps of this experiment for each method is as follows: 1-
Learn a model using the training set. 2- Create the binary
codes for all the samples in the base set. 3-Pick one sam-
ple from query set and find its K-nearest neighbors in the
base set by using Euclidean distance in the original features
space and consider this as ground-truth nearest neighbor set.
4- Generate the binary code for the query sample and re-
trieve N nearest neighbors from base set by calculating the
Hamming distances on the binary codes. 5- Compare the
retrieval from binary codes with the ground-truth retrieval
and measure the recall rates. This process is repeated over
all samples in the query set and the average recall rate is
computed. By varying N at K = 100, we measure recall
rate at different amount of retrieval tasks and plot a curve
using these values. Figure 4, 5 and 6 show the recall rate as
we change the number of retrieval in different code length
(bit). The curve of SBE-opt is on top of all the competi-
tor methods most of the times. It even out-performs the
method ITQ, which is the most accurate out of all the base-
line methods.

4.3. Analysis of the objective in joint optimization

Here we present a comparison of the optimization func-
tions proposed in Section 3.2. We refer to Equation 18 as
the Naive Update. This optimization produces highly cor-
related bits which may have high quantization error. The
new formulation presented in Equation 19 that handles the
orthogonality constraints is referred to as Orthogonal Up-

K Retrievals
×10

4

0 1 2

R
ec
a
ll

0

0.2

0.4

0.6

0.8

1

Recall GIST1M bit =16

SBE-B

SBE-opt

ITQ

BITQ-opt

CBE-opt

K Retrievals
×10

4

0 1 2

R
ec
a
ll

0

0.2

0.4

0.6

0.8

1

Recall GIST1M bit =32

SBE-B

SBE-opt

ITQ

BITQ-opt

CBE-opt

K Retrievals
×10

4

0 1 2

R
ec
a
ll

0

0.2

0.4

0.6

0.8

1

Recall GIST1M bit =64

SBE-B

SBE-opt

ITQ

BITQ-opt

CBE-opt

K Retrievals
×10

4

0 1 2

R
ec
a
ll

0

0.2

0.4

0.6

0.8

1

Recall GIST1M bit =128

SBE-B

SBE-opt

ITQ

BITQ-opt

CBE-opt

Figure 4: Recall curves for GIST1M dataset

K Retrievals
0 5000 10000

R
ec
a
ll

0

0.2

0.4

0.6

0.8

1

Recall ImageNet bit =16

SBE-B

SBE-opt

ITQ

BITQ-opt

CBE-opt

K Retrievals
0 5000 10000

R
ec
a
ll

0

0.2

0.4

0.6

0.8

1

Recall ImageNet bit =32

SBE-B

SBE-opt

ITQ

BITQ-opt

CBE-opt

K Retrievals
0 5000 10000

R
ec
a
ll

0

0.2

0.4

0.6

0.8

1

Recall ImageNet bit =64

SBE-B

SBE-opt

ITQ

BITQ-opt

CBE-opt

K Retrievals
0 5000 10000

R
ec
a
ll

0

0.2

0.4

0.6

0.8

1

Recall ImageNet bit =128

SBE-B

SBE-opt

ITQ

BITQ-opt

CBE-opt

Figure 5: Recall curves ImgeNet dataset

date. In Figure 7, the first row demonstrates the correlation
between the bits of the binary codes generated from the two
optimization functions. As it can be seen, in contrast to
Orthogonal Update, the bits resulting from Naive Update
are highly correlated. In Figure 7, the second row shows
the quantization error after each iteration. The quantization
error, as expected, goes up for Naive Update but for the Or-
thogonal Update it goes down.

Another claim was that Naive Update should converge
much faster than the Orthogonal Update, since the latter has

NOP
10

0
10

2
10

4
10

6

A
U
C

0

0.05

0.1

0.15

0.2

0.25

0.3

GIST1M

SBE-B-0.1

SBE-B-0.01

SBE-B-0.001

SBE-opt-0.1

SBE-opt-0.01

SBE-opt-0.001

ITQ

BITQ-opt

CBE-opt

NOP
10

0
10

2
10

4
10

6

A
v
er
a
g
e
R
ec
a
ll
R
a
te

0.9

0.95

1

GIST1M

SBE-B-0.1

SBE-B-0.01

SBE-B-0.001

SBE-opt-0.1

SBE-opt-0.01

SBE-opt-0.001

ITQ

BITQ-opt

CBE-opt

NOP
10

0
10

2
10

4
10

6

A
U
C

0

0.1

0.2

0.3

0.4

0.5

0.6

ImageNet

SBE-B-0.1

SBE-B-0.01

SBE-B-0.001

SBE-opt-0.1

SBE-opt-0.01

SBE-opt-0.001

ITQ

BITQ-opt

CBE-opt

NOP
10

0
10

2
10

4
10

6
10

8

A
v
er
a
g
e
R
ec
a
ll
R
a
te

0.85

0.9

0.95

1

ImageNet

SBE-B-0.1

SBE-B-0.01

SBE-B-0.001

SBE-opt-0.1

SBE-opt-0.01

SBE-opt-0.001

ITQ

BITQ-opt

CBE-opt

NOP
10

2
10

4
10

6
10

8

A
U
C

0

0.2

0.4

0.6

0.8

SUN

SBE-B-0.1

SBE-B-0.01

SBE-B-0.001

SBE-opt-0.1

SBE-opt-0.01

SBE-opt-0.001

ITQ

BITQ-opt

CBE-opt

NOP
10

2
10

4
10

6
10

8

A
v
er
a
g
e
R
ec
a
ll
R
a
te

0.8

0.85

0.9

0.95

1

SUN

SBE-B-0.1

SBE-B-0.01

SBE-B-0.001

SBE-opt-0.1

SBE-opt-0.01

SBE-opt-0.001

ITQ

BITQ-opt

CBE-opt

Figure 3: Number of operations vs. Accuracy (AUC, Recall): In this plot each curve represents a method and each point
on the curve corresponds to a code length (number of bits) which change from left to right as follows: [16, 32 64, 128, 256]

two competing constraints. This is shown in Figure 7, third
row.

4.4. Coding Efficiency vs. Accuracy
In this section we compare the efficiency of our method

with other competitor methods. In order to present a fair
comparison, instead of reporting the running time, we report
the number of arithmetic operations (NOP) used for each
method. Figure 3 shows an evaluation over NOP and ac-
curacy which is measured by AUC and average recall rate.
Each curve in Figure 3 depict one method and each point
on the curve corresponds to a code length (number of bits)

which is in the range of [16, 32, 64, 128, 256]. Evidently, in
ImageNet SBE can achieve comparable accuracy with 128
bits while being 1000 times faster than other methods. The
dark green curve corresponds to CBE is growing vertically
in the plot. This is because the complexity of CBE d log(d)
is independent of the number of bits and only depends on
the number of dimensions in the original feature space.

4.5. Retrieval Running Time Analysis
Since the main application for our fast binary encoding

method is retrieval, we compared it with kd-tree as a base-
line for a nearest neighbor retrieval task. We used multiple

K Retrievals
0 1000 2000 3000

R
ec
a
ll

0

0.2

0.4

0.6

0.8

1

Recall SUN bit =16

SBE-B

SBE-opt

ITQ

BITQ-opt

CBE-opt

K Retrievals
0 1000 2000 3000

R
ec
a
ll

0

0.2

0.4

0.6

0.8

1

Recall SUN bit =32

SBE-B

SBE-opt

ITQ

BITQ-opt

CBE-opt

K Retrievals
0 1000 2000 3000

R
ec
a
ll

0

0.2

0.4

0.6

0.8

1

Recall SUN bit =64

SBE-B

SBE-opt

ITQ

BITQ-opt

CBE-opt

K Retrievals
0 1000 2000 3000

R
ec
a
ll

0

0.2

0.4

0.6

0.8

1

Recall SUN bit =128

SBE-B

SBE-opt

ITQ

BITQ-opt

CBE-opt

Figure 6: Recall curves for SUN dataset

Naive Update

10 20 30

5

10

15

20

25

30

-0.5

0

0.5

1

Orthogonal Update

10 20 30

5

10

15

20

25

30
-0.2

0

0.2

0.4

0.6

0.8

1

Iteration
20 40 60 80 100

Q
u
a
n
ti
za
ti
o
n
E
rr
o
r

3400

3600

3800

4000

4200

Naive Update

Iteration
20 40 60 80 100

Q
u
a
n
ti
za
ti
o
n
E
rr
o
r

3000

3100

3200

3300

3400

3500

Orthogonal Update

Iteration
20 40 60 80 100

O
b
je
ct
iv
e

×10
4

1.45

1.5

1.55

1.6

1.65

Naive Update

Iteration
20 40 60 80 100

O
b
je
ct
iv
e

×10
4

1.45

1.5

1.55

1.6

1.65

Orthogonal Update

Figure 7: Analysis on the optimization of the objective
function on sparse binary coding

index hashing as a retrieval technique on top of our binary
codes. For each eight consequent bits, we generate a hash
table to index the samples in the database. At query time,
we perform b

8 look-ups. b is the number of bits in our bi-

nary code. We score the collected indexes by counting the
number of time that they have been retrieved from the hash
tables. Then, we pick the k indices with the highest score
as the k nearest neighbors. We vary the number bits by
[16, 32, 64, 128, 256] and compute the AUC and running
time. In kd-tree we vary the bucket size by [22, 24, 28, 210,
212] and compute the AUC and running time. The results
on GIST1M are depicted in Figure 1. We used the built in
kd-tree toolbox in MATLAB for this comparison.

4.6. Retrieval from Noisy Data

The sparsity of the projection matrix in our method
makes it possible to have accurate retrieval with noisy data.
In Figure 8 we show the performance of our method in com-
parison with others on the noisy data in ImageNet. Noisy
data is created by randomly selecting some dimensions of
each sample and change their values to either 0 , 1 or -1. As
it can be seen our method can reach higher accuracy com-
pared to ITQ with high noise ratio.

Noise Ratio (in percent)
0 50 100

A
U
C

0

0.2

0.4

0.6

0.8

Retrieval with noisy data 128 bit

SBE-opt
SBE-B
ITQ
CBE-opt
BITQ-opt

Figure 8: Retrieval with noisy feature on ImageNet

5. Conclusion

We proposed a fast technique for binary encoding that
can be used for efficient high dimensional image retrieval
tasks. Our method uses a fixed computational budget to
learn a projection matrix that generates binary codes. We
proposed a novel joint optimization and presented a proof
of convergence. We evaluated our technique for image re-
trieval tasks using three different datasets and compared the
results with the state-of-the-art methods. Our method con-
sistently shows on-par or higher accuracy, and much faster
running time than other methods. We also compared our
method with the well-known kd-tree algorithm for an im-
age retrieval task.

As future work, we will focus on conditioning our sparse
hash functions on each other in the form of a tree to reduce
the complexity of the classification problem at each step.

References
[1] A. Andoni and P. Indyk. Near-optimal hashing algorithms for

approximate nearest neighbor in high dimensions. In Foun-
dations of Computer Science, 2006. FOCS’06. 47th Annual
IEEE Symposium on, pages 459–468. IEEE, 2006. 2

[2] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni.
Locality-sensitive hashing scheme based on p-stable distri-
butions. In Proceedings of the Twentieth Annual Symposium
on Computational Geometry, SCG ’04, 2004. 1, 2

[3] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei. Imagenet: A large-scale hierarchical image database.
In Computer Vision and Pattern Recognition, 2009. CVPR
2009. IEEE Conference on, pages 248–255. IEEE, 2009. 5

[4] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J.
Lin. Liblinear: A library for large linear classification. The
Journal of Machine Learning Research, 9:1871–1874, 2008.
4

[5] Y. Gong, S. Kumar, H. A. Rowley, and S. Lazebnik. Learning
binary codes for high-dimensional data using bilinear projec-
tions. In Computer Vision and Pattern Recognition (CVPR),
2013 IEEE Conference on, pages 484–491. IEEE, 2013. 2, 6

[6] Y. Gong and S. Lazebnik. Iterative quantization: A pro-
crustean approach to learning binary codes. In Proceedings
of the 2011 IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR ’11, 2011. 2, 6

[7] H. Jégou, M. Douze, C. Schmid, et al. Searching with quan-
tization: approximate nearest neighbor search using short
codes and distance estimators. 2009. 5

[8] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell. Caffe: Convolutional
architecture for fast feature embedding. In Proceedings of
the ACM International Conference on Multimedia, pages
675–678. ACM, 2014. 5

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
Advances in neural information processing systems, pages
1097–1105, 2012. 5

[10] B. Kulis and K. Grauman. Kernelized locality-sensitive
hashing for scalable image search. In Computer Vision, 2009
IEEE 12th International Conference on, pages 2130–2137.
IEEE, 2009. 2

[11] S. Maji, A. C. Berg, and J. Malik. Efficient classification
for additive kernel svms. IEEE Trans. Pattern Anal. Mach.
Intell., 2013. 2

[12] M. Muja and D. G. Lowe. Fast matching of binary features.
In Computer and Robot Vision (CRV), pages 404–410, 2012.
1

[13] M. Muja and D. G. Lowe. Scalable nearest neighbor algo-
rithms for high dimensional data. Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on, 36, 2014. 1

[14] M. Norouzi and D. J. Fleet. Minimal loss hashing for com-
pact binary codes. In Proceedings of the 28th International
Conference on Machine Learning, ICML 2011, Bellevue,
Washington, USA, June 28 - July 2, 2011, 2011. 2

[15] M. Norouzi and A. Pournaji. Fast search in hamming space
with multi-index hashing. In Proceedings of the 2012 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), CVPR ’12, 2012. 2

[16] G. Patterson and J. Hays. Sun attribute database: Discover-
ing, annotating, and recognizing scene attributes. In Com-
puter Vision and Pattern Recognition (CVPR), 2012 IEEE
Conference on, pages 2751–2758. IEEE, 2012. 5

[17] J. R. Quinlan. Induction of decision trees. Mach. Learn.,
1986. 1

[18] M. Rastegari, J. Choi, S. Fakhraei, D. Hal, and L. Davis. Pre-
dictable dual-view hashing. In Proceedings of The 30th In-
ternational Conference on Machine Learning, pages 1328–
1336, 2013. 5

[19] M. Rastegari, S. Fakhraei, J. Choi, D. W. Jacobs, and L. S.
Davis. Comparing apples to apples in the evaluation of bi-
nary coding methods. CoRR, 2014. 6

[20] M. Rastegari, A. Farhadi, and D. A. Forsyth. Attribute dis-
covery via predictable discriminative binary codes. In ECCV
(6), 2012. 2

[21] A. Vedaldi and A. Zisserman. Efficient additive kernels via
explicit feature maps. Pattern Analysis and Machine Intellin-
gence, 34(3), 2011. 2

[22] J. Wang, S. Kumar, and S.-F. Chang. Semi-supervised hash-
ing for scalable image retrieval. In Computer Vision and Pat-
tern Recognition (CVPR), 2010 IEEE Conference on, pages
3424–3431. IEEE, 2010. 2

[23] Y. Weiss, R. Fergus, and A. Torralba. Multidimensional
spectral hashing. In Computer Vision - ECCV 2012 - 12th
European Conference on Computer Vision, Florence, Italy,
October 7-13, 2012, Proceedings, Part V, 2012. 2

[24] Y. Weiss, R. Fergus, and A. Torralba. Multidimensional
spectral hashing. In Computer Vision–ECCV 2012, pages
340–353. Springer, 2012. 2

[25] F. X. Yu, S. Kumar, Y. Gong, and S.-F. Chang. Circulant
binary embedding. arXiv preprint arXiv:1405.3162, 2014.
2, 6

[26] L. Zheng, S. Wang, and Q. Tian. Coupled binary embed-
ding for large-scale image retrieval. Image Processing, IEEE
Transactions on, 2014. 1

