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Abstract

The camera response function (CRF) relates quantised

image pixel values with physical incoming light. This paper

describes a method to estimate the CRF from a single im-

age of a general two-coloured surface for which the albedo

ratio between the coloured regions is known a priori. While

other radiometric calibration methods either use multiple

frames or require the light to be infinitely distant, the algo-

rithm herein proposed makes no assumptions about lighting

conditions and can handle cameras with strong vignetting.

Although the approach is generic, in the sense that can be

applied to any camera system, the method is particularly

well suited for determining the CRF of near-lighting endo-

scopes in the operating room. This is a very pertinent prob-

lem for which no practical, effective solutions have been

proposed. The robustness, repeatability, and accuracy of

the algorithm is experimentally validated in real images ac-

quired with different endoscopic set-ups.

1. Introduction

In minimally invasive procedures the doctor executes the

clinical action of surgery or diagnosis based exclusively in

the video acquired by a small endoscopic camera that is in-

serted in the targeted anatomical cavity. Such procedures

are prone to errors and very difficulty to execute, with the

surgeons having to undergo a long training period till mas-

tering the surgical technique. In this context, improving vi-

sualization conditions and developing systems for assisting

the doctor during the procedures is of paramount impor-

tance to decrease clinical errors and to reduce the surgeon

learning curve.

It is well known that, in most cameras, the relation be-

tween incident light and the image digitized values is non-
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linear. Endoscopic cameras are no exception with such non-

linearity being either due to limitations in camera/optics

manufacturing, or intentionally used for compressing the

dynamic range of the sensors or adapting the visualization

to a particular display technology. The camera response

function (CRF) models this non-linear relation by describ-

ing how (physically meaningful) incoming light is mapped

to quantised image brightness values. Calibration of the

CRF can be useful in many ways in the context of clini-

cal endoscopy. Since the color of organs and tissues is a

primary cue in many diagnosis procedures, fidelity in color

visualization is of key importance. Thus, the CRF can be

used in an image post-processing stage for the purpose of

color constancy and white-balance [9], i.e., invariance of

color to different illumination, lenses, and cameras. The

CRF estimation is a crucial step for deblurring as described

in [18] and is an important first step for the application of

photometric vision algorithms for the purpose of develop-

ing systems of computer-aided surgery (CAS). Reconstruc-

tion methods like shape-from-shading [20, 6] or photomet-

ric stereo [3] assume a linear (or affine) mapping between

physical scene radiance and image brightness, and such

techniques are becoming increasingly popular in CAS as

a way of performing 3D modelling of deformable surfaces

[12].

Radiometric calibration is a classical problem in com-

puter vision with several different methods described in the

literature [4, 15, 5, 8, 10, 16, 13, 19]. However, and as dis-

cussed in the subsequent section, the estimation of the CRF

of medical endoscopes poses specific challenges that are not

properly addressed by the current state-of-the-art. First, the

anatomical cavity is illuminated via a light guide that runs

along the endoscope, which means that we can neither con-

sider a far light source, nor a light source coincident with

the optical center [17]. It is a situation of near-light source

[20] for which the vast majority of radiometric calibration

methods are not applicable. Moreover, and as pointed out
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Figure 1: The calibration grid imaged with an endoscopic

camera (a) and photograph of the endoscope tip with the

light on (b).

by Collins and Bartoli [3], the light source can hardly be

considered punctual or isotropic (see figure 1). As a bottom

line, and since the shape and format of the distal tip of the

light guide varies across endoscopes, it is highly desirable

to carry the CRF estimation without making assumptions

about illumination conditions. Second, since in endoscopy

the lens scope is mounted on the camera-head immediately

before starting the intervention, the calibration procedure

must be fast, robust, and require minimal user intervention

in order to be carried by the surgeon in the operating room

(OR) without disturbing the existing clinical routine. Melo

et al. [14] have recently proposed a method for geometric

camera calibration in endoscopy that requires a single im-

age of a checkerboard pattern acquired from a generic pose

[2]. To the best of our knowledge, there is no similar solu-

tion for radiometric calibration that addresses this important

usability requirement (as discussed later, the single-image

methods of [10, 16, 19, 13] do not apply to medical endo-

scopes).

In this article, we describe a method for estimating the

CRF from a single image of a surface with regions of two

colors for which the albedo ratio is known in advance.

The algorithm makes no assumptions about the illumination

conditions or the image vignetting. Although the shape of

the calibration surface is irrelevant for the CRF estimation,

all the experiments are carried using a planar checkerboard

target similar to the one described in [1]. The reasons are

twofold: the automatic segmentation and identification of

the two color regions is straightforward, and by combin-

ing our radiometric calibration method with the geometric

calibration approach proposed in [14] it is possible to fully

model the camera from a single calibration frame.

As a final remark, please note that knowing the two albe-

dos is only required to avoid the exponential ambiguity on

the CRF estimation.

1.1. Related work

CRF estimation is a mature topic with several meth-

ods described in the literature. However, the need for a

single-image approach allied to several technicalities to ac-

count for (near lightning, a strong vignetting effect, blur-

ring, chromatic aberrations) render current approaches in-

applicable to our set-up.

• Standard CRF estimation is done with a planar color

chart (e.g., classic 24-patch ColorChecker) of which

the albedos are known. This is not applicable in en-

doscopy set-ups, as it is only applicable when the light

is uniformly distributed in the chart and the vignetting

effect can be overlooked.

• Another class of approaches involves the use of multi-

ple registered images of the same scene, either photo

collections [5, 8] or images with different exposures

[4, 15]. The CRF estimation is carried from pixel

correspondences across multiple frames of the same

scene. This is a plausible approach for our application,

but a controlled multiple-image calibration procedure

cannot be imposed on a surgeon in the OR.

• A few single-image CRF estimation have been pro-

posed.

Lin and Yamazaki [10] have proposed a method where

they explore the non-linearity of the transitions be-

tween two albedos of a generic image to estimate

the CRF. The method lies on the assumption that vi-

gnetting and light do not change across these edges

and that demosaicing, blur, and chromatic aberrations

do not occur. Most of these assumptions do not hold in

endoscopic rigs.

Ng et al. [16] identify points where the irradiance can

be locally approximated by a plane. The authors show

that on such points there is a relationship between the

derivatives of the measured pixel values and the CRF

with no unknowns other than the CRF itself. This rela-

tionship is used to estimate the CRF. The method tends

to use edges that suffer from chromatic aberrations, de-

mosaicing inaccuracies, and blurring.

Matsushita and Lin [13] propose the use of noise dis-

tributions to find the CRF. However it showed to not be

applicable in low-light conditions. It is highly depen-

dent on having multiple noise readings of the full spec-

trum of intensities, and on being able to detect uniform

regions (which is not doable in our case due to strong

vignetting and the near lighting conditions).

Wilburn et al. [19] propose two approaches for single-

image CRF estimation: one that uses an uncalibrated

monitor and a controled camera shutter speed (the two

must be synchronized); the second uses motion blur in

a similar way to [10]. The first approach is not applica-

ble with strong vignetting and the white balance could



not be performed on the same image. The second ap-

proach suffers from the same problems as [10] with the

additional issue of the need of acquiring an image with

motion blur.

• On applications to medical endoscopy we have the

work of Collins and Bartoli [3], where the radiometric

calibration is said to be performed a priori, and thus

we can only assume it is done off-line using conven-

tional techniques and, as such, it does not meet the us-

ability constraints. Wu et al. [20] propose a method

valid for near-lighting and strong vignetting condi-

tions. The calibration involves the acquisition of an

image for each color patch (of the classic 24-patch Col-

orChecker) with the same relative camera pose. The

idea is that a pixel across different patch images is af-

fected by the same amount of vignetting and light, the

only change the albedo. This allows a system of equa-

tions to be built where the only unknown is the CRF.

The calibration is troublesome and time consuming,

not being suited to be carried by a surgeon in the OR.

Nevertheless, it is the closest related work and we will

use it as benchmark.

Our approach follows a similar reasoning as the one pro-

posed by Wu et al. in [20]. But, instead of acquiring mul-

tiple images to be able to construct equations invariant to

lighting and vignetting, we will find points where this in-

variance holds on a single image.

1.2. Notation

Matrices are represented by symbols in a sans serif font,

e.g.,A. Vectors and vector functions are represented by bold

symbols, and scalars are denoted by plain font letters, e.g.,

x = (x, y)
T

and f(x) = (fx(x), fy(x))
T

. Sets are denoted

by upper-case calligraphic letters, e.g., L.

2. Formulation and Overview

The radiometric image formation model can be written

as

d(x) = f(αe(x)) (1)

where d is the map of imaged/stored values (i.e., the actual

image), x is a scene point, and e is the sensor/image irradi-

ance. f is the CRF, a monotonically increasing curve, and α
is the exposure, a combination of sensor gains, shutter time,

and aperture. The sensor irradiance is given by

e(x) = m(x)l(x) (2)

with m being the vignetting (natural, optical, mechanical,

and pixel vignetting) and other spatial attenuation effects,

and l the scene radiance.

A generic model of the scene radiance can be written as

l(x) = ρ(x)q(n(x), i(x)) (3)

where ρ is the albedo and q is the light intensity on the scene

as a function of the scene normals n and the vector i from

the scene point x to a light. For multiple/extended lights

there will be multiple light vectors, and function q is, in

general, a sum/integral of the light functions. This is not

relevant for our approach, as it is independent of the light

effect on the scene as well as of the vignetting.

Since f is invertible, to facilitate the estimation, we

rewrite the above equations as

f−1(d(x)) = αρ(x)m(x)q(n(x), i(x)) (4)

giving the irradiance as a function of the image.

As mentioned in the previous section, we will look for

pixels, on a single image, where equations can be written

with invariance to the vignetting and the light behaviour.

As in [20], we will look for pairs of pixels with different

albedos for which we know that both the vignetting and the

light effect can be cancelled. On their approach, both the vi-

gnetting and the light effect remain constant between albe-

dos (different ColorChecker patch images). On a single-

image approach, one cannot expect to find regions where

both are constant without modelling them. However, in fact,

we do not need to be invariant to both effects, only to their

joint effect. In this way, we are able to build a system of

equations where the only unknowns are the CRF and the

albedos, without making assumptions about the vignetting

or the light behaviour. This is of crucial importance for our

set-up, since the vignetting is not always central (as with

most set-ups) and the lights are at close range, are typically

not punctual, and may not be isotropic [3].

More specifically, let the sensor irradiance be written as

f−1(d(x)) = ρ(x)u(x) (5)

where u(x) is composed of exposure, vignetting, and the

light effect on the scene. Throughout the paper we will call

this function the irradiance normalized by albedo (INA). On

the ith isovalue line of the INA

u(xj) = κi =
f−1(d(xj))

ρ(xj)
(6)

∀j ∈ Li, where Li is the set of pixels crossed by isovalue

line i and κi is a constant. Thus, if a line i passes through

multiple albedos (ρ1 and ρ2 as an example), one will have

f−1(d(xj))

ρ1
=

f−1(d(xk))

ρ2
(7)

∀j ∈ Li ∩ Aρ1
, ∀k ∈ Li ∩ Aρ2

, with an equation for each

pair of albedos on each isoline. Aρn
is the set of points with



a specific albedo ρ(x) = ρn. This last equation will then be

used for the single-image CRF estimation.

Please note that this approach is scalable. Additional im-

ages with the same set-up would provide additional equa-

tions that can be grouped together to improve the estima-

tion. Even with different exposures, different poses, and

changes in the vignetting (due to changes of zoom and/or

aperture).

2.1. Assumptions and Ambiguities

The proposed approach lies on the following assump-

tions: that we have a scene of a two-color (at least) lam-

bertian surface; and that we know the albedo ratio between

the regions, which can be estimated off-line with a radio-

metrically calibrated camera. In addition, to perform white

balance with the same frame one of the colors must be

white/gray.

In the present work, we have used a planar two-color

CALTag grid [1] (see figure 2) geometrically calibrated with

the method proposed in [14]. In fact, we do not need it to be

planar nor a grid for the framework to succeed. However,

we have chosen this grid to be able to perform both the ge-

ometric and radiometric calibrations with a single image.

We have chosen to use a white and light gray grid instead

of the usual black, so that we have an higher signal-to-noise

ratio on the darker regions. This is specially important for

poorly lit scenes and for the calibration of the lower bright-

ness spectrum of the CRF.

The fact that we determine the albedo ratio ρ1/ρ2 before-

hand removes problems of exponential ambiguities present

otherwise. This happens because, if the albedo ratio is not

known and we include its estimation on the solver, from

equation 7,

(

f−1(d(xj))
)γ

=

(

ρ1
ρ2

f−1(d(xk))

)γ

, (8)

∀j ∈ Li ∩Aρ1
, ∀k ∈ Li ∩Aρ2

, which gives valid solutions

independently of γ. Instead of being determining the CRF

up-to-scale, we would also be doing it up to an exponential

ambiguity. Similarly to what is described in [11].

The scale ambiguity is not a problem because, for a color

image, a white balance method can be used to establish the

relative scale of the channels. The scale ambiguity of a

grayscale image, or the global scale of color image, will

simply give more or less brightness and more or less sat-

uration to the image. It is the equivalent to the exposure

constant α and can be set to match the brightness of the

original image and/or to minimize the saturated pixels.

3. Detailed Algorithm

In this section we will describe in detail the algorithm

used for the single-image CRF estimation. This framework

(a) (b)

Figure 2: The calibration grid (a) and its segmentation into

the two albedos (b): in white are the patches with lighter

albedo and in gray are the patches with darker albedo.

can be conceptually divided into three steps. The segmenta-

tion of the two albedos, the detection of INA isovalue lines,

and the actual CRF estimation and parametrization.

3.1. Segmentation

Having used the method proposed in [14] using CALTag

grids, the segmentation is straightforward. Since the posi-

tions on the scene plane of every fiducial marker and grid

corner are known or can be easily estimated, using the geo-

metric calibration information, we can warp the grid to the

image plane. This warped image is itself our segmentation.

To avoid regions of blurring, a morphological erosion is per-

formed to both regions. Figure 2 shows a CALTag grid and

its segmentation.

3.2. Isoline detection

Since u(x) is not known, we need to evaluate how its

isolines behave on the image d(x). By rewriting (6) as

d(xj) = f(ρ(xj)κi) (9)

∀j ∈ Li, it is shown that, for a given albedo, an isoline in

the sensor irradiance is also an isoline in the image d(x).
In addition, along an isoline of u(x), Li, the image values

form a piecewise constant function (with a different con-

stant value for each albedo). Figure 3 shows each image

component individually. Specifically, this behaviour can be

seen in figure 3b, where we show each image component on

an isoline of u(x).
In the image space we have a set of isolines for each

albedo. However, the isolines of d(x) for each albedo are

the same, and equal to the isolines of u(x), except for its

value (figure 3b).

To find the isolines of u(x), let us model the image along

one albedo ρn as a generic model hn where the isolines are

known. We can write for two albedos on the image space

d(xj) = h1(xj) (10a)

d(xk) = h2(xk) (10b)
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Figure 3: Values (arbitrary units) of each image component showing the formation process of an image of a checkerboard

along (a) a horizontal line and (b) an isoline of the irradiance normalized by albedo.

∀j ∈ Aρ1
, ∀k ∈ Aρ2

. From before, we know that the iso-

lines of h1(x) and h2(x) will have the same shape as the

ones in u(x) but with different values. The shape of the sur-

faces represented by the models are different, since the step

between isolines varies from one formulation to the other,

but the isolines are the same. If we consider one of the albe-

dos, let us say ρ1, as a reference we can show that the two

models are related by

h1(xk) = f

(

ρ1
ρ2

f−1(h2(xk))

)

= g(h2(xk)) (11)

∀k ∈ Aρ2
, where g is a positive and monotonically increas-

ing function that is used to transform the model h2 into the

model h1. This function g is the equivalent of having a gain

for each isoline for the points of the albedo ρ2, to be able

to use only the model h1 (relative to the albedo ρ1) for both

albedos.

More specifically, we have used a polynomial model

for h1(x) = Bp, where p are the polynomial co-

efficients and B = (b1,b2, · · · )
T

, with bn =
(

1, xn, yn, x
2

n, y
2

n, xnyn, · · ·
)T

. x and y are the image co-

ordinates, i.e., x = (x, y)
T

. This way we get

bT

j p = d(xj) (12a)

bT

kp = g(d(xk)). (12b)

The isovalue lines will then be extracted as the level sets of

the polynomial. As for the linear system of equation to be

solved, it is defined as
[

bT

j 0T

bT

k −sT(d(xk))

] [

p

g

]

=

[

d(xj)
0

]

(13)

∀j ∈ Aρ1
, ∀k ∈ Aρ2

, where g is a discrete array version of

the function g and s(n) is sparse vector with a single value

of 1 on the element n.

(a) (b)

Figure 4: A depiction of (a) the estimated h1 (a surface with

the same isolines as the irradiance normalized by albedo)

and (b) the calibration grid image superposed with some of

the isolines.

An example of the determined isolines can be observed

in figure 4.

3.3. Estimation

Having the isolines, we estimate the CRF using (7). For

a given isoline i and albedo ρn we compute

d̃iρn
= median

j∈Li∩Aρn

d(xj) (14)

and rewrite (7) as

f−1(d̃iρ1
)−

ρ1
ρ2

f−1(d̃iρ2
) = 0. (15)

To find the CRF the following linear system is built

aTi vf−1 = 0 (16)

∀i, where

ai = s(d̃iρ1
)−

ρ1
ρ2

s(d̃iρ2
) (17)



and we will solve for vf−1 , the discrete array version of the

function f−1.

We also enforce monotonicity constraints to vf−1 and a

Tikhonov regularization of its second derivatives.

3.3.1 Parametrization

At this point, from the previous optimization step, we

have a sparse representation of the CRF that is defined by

d∗, the brightness values described in the equations, and

v∗
f−1,n, the corresponding optimized irradiance values (up-

to-scale). To interpolate and extrapolate to other values of

image brightness that were not covered by the equations in

the previous estimation step, we will parametrize our CRF

by fitting a well known model.

Among many possible parametric models that could

have been used, we have the EMoR [7] and the generalized

gamma curve model (GGCM) [16]. The following descrip-

tion will use the GGCM, but this parameterization could be

done with other models as well. For the inverse CRF, the

GGCM is defined as

f−1

GGCM(d, β) = d1/
∑N

n=0
βnd

n

(18)

where N is the order of the polynomial that defines the

model. As in Ng et al. [16], we have used N = 1.

The reason for not parametrizing directly in the previous

estimation step is simply the nonlinearity of the GGCM.

To have faster and more robust results we have decided to

parametrize the model in a post-processing stage.

We have added a shift variable δ0 and a scaling variable

δ1 because of sensor gains and shifts, thus

f−1

sGGCM(d, δ, β) = f−1

GGCM(δ1 (d+ δ0) , β). (19)

Let us define a vector f(d, δ, β) =
(

f−1

sGGCM(d1, δ, β), f
−1

sGGCM(d2, δ, β), · · ·
)T

. The GGCM

is then fitted to v∗
f−1 using least squares and subject to

monotonicity constraints. The parameters δ = (δ0, δ1)
T

are initialized with a fitting of a linear model (and thus

β = (β0, β1)
T

is initialized as β = (0, 1)
T

).

3.4. RGB Images and White Balance

For grayscale images, the above estimation procedure is

sufficient. Nevertheless, for displaying RGB images after

CRF correction there is still the need to perform white bal-

ance.

White balancing is the process through which three

gains are estimated, one for each channel, to make actual

white/gray points appear white/gray on the image. The CRF

estimation can be done independently for each channel (as

explained before) followed by a standard white balancing

step using white/gray points. However, using a few con-

straints on the solver, this can be performed directly in the

linear estimation.

Table 1: Description of the camera set-ups used on the ac-

quired datasets. Please see text for more details on each

component.

Camera Mount Lens Light

R1 Sentech no zoom arthroscope lens tip

R2 Sentech no zoom arthroscope lamp

R3 Flea zoom laparoscope lens tip

R4 Grasshopper - Stryker lamp

R5 Flea zoom arthroscope sunlight

R6 Flea zoom arthroscope lens tip

For the joint CRF estimation and white balance, we esti-

mate the 3 CRFs simultaneously and enforce white balance

constraints on the solver. To estimate the 3 CRFs, the linear

system becomes





AR 0 0

0 AG 0

0 0 AB











vf−1

R

vf−1

G

vf−1

B






= 0. (20)

Let pc be an array containing the histogram of

dc(xj∈W ), the measured values (of channel c ∈ {R,G,B})

of the pixels chosen for the white balance procedure. The

selected pixels follow 3 criteria: they belong to the white

patches, are above a certain threshold to avoid noise, and

are not saturated. The white balance equations are defined

as





pR
T −pG

T 0T

0T pG
T −pB

T

0T pG
T 0T











vf−1

R

vf−1

G

vf−1

B






=





0
0

∑

j∈W
dG(xj)



 .

(21)

The first two equations perform the white balance, the

third equation constrains the overall brightness of the CRF-

corrected image to be similar to the original image.

The general shape of the CRF can be assumed to be pre-

served between channels, thus the CRFs will be computed

as

f−1

sGGCM,c(dc, δ0, δc, β) = f−1

GGCM(δc (dc + δ0) , β) (22)

to account for the in-camera white balance parameters (δc
and δ0).

The sum along the three channels of the mean square er-

ror is minimized. As before, the parameters β = (β0, β1)
T

and δ = (δ0, δR, δG, δB)
T

are initialized with a fitting of a

linear model.

4. Experimental Validation

To validate the proposed method, we have compared it

to Wu et al. approach [20]. Six datasets were acquired with



different set-ups, described in table 1. The cameras used

were a Point Grey (Point Grey Research inc, BC, Canada)

Flea3 CMOS USB3 camera, a Point Grey Grasshopper2

CCD FireWire camera, and a Sentech (Sentech co. ltd,

Kanagawa Prefecture, Japan) HD203DV CMOS HDMI

camera. As for the lens, we have used a Smith & Nephew

(Smith & Nephew plc, London, UK) Dyonics laparoscopic

lens, a Smith & Nephew Dyonics arthroscopic lens, and a

Stryker (Stryker Corporation, MI, USA) arthroscopic lens.

We have used three different mount adaptors to couple the

lens to the cameras and three different light sources. The

gamma parameter intrinsic to the cameras was also altered

between datasets to cover a wider range of scenarios. The

albedo ratio necessary for our approach was previously de-

termined using a radiometrically calibrated Canon 600D

(Canon inc, Tokyo, Japan).

Each dataset is composed of five CALTag grid images

with different poses and one image of each of the 24 patches

of the ColorChecker, all with the same pose and exposure.

All CRF estimations, including the estimation from Wu et

al. approach, are defined up-to-scale and, therefore, are not

directly comparable. To be able to compare the CRFs we

perform a linear optimization for each individual scaling

factor (one for each estimation). Figure 5 shows the result-

ing CRFs for each dataset.

Our approach showed high repeatability and invariance

to the light source. On some cases, the extrapolation gives

erroneous estimations, which is an expected behaviour

when the range of values on the image is small. For these

cases, since the proposed method is scalable (as discussed

in section 2), a multiple image approach can be used.

Note that this single-image approach successfully cali-

brated the sunlight dataset (R5), showing that it does not

require both strong vignetting and near-lighting conditions.

In a few datasets, mainly R3 and R4, the estimation tends

to deviate from the Wu et al. approach. However it still

shows high repeatability.

Figure 6 demonstrates the color constancy properties of

the CRF correction and white balance procedures. Please

note that, since there is a scaling factor that is not be-

ing taken into account and there is still the presence of

vignetting and light components, the insets only need to

match the ground truth on the background in terms of color

and not overall brightness.

5. Conclusions

With this paper we have proposed a single-image ap-

proach for estimating the CRF for near-light and/or strong

vignetting conditions, for which a general image of a two

color albedo surface can be used.

Unlike other single-image calibration algorithms that re-

quire the detection of regions where light is constant on the

scene and no vignetting is present, our approach benefits

from the effects of near-lighting and vignetting to perform

the estimation.

Our approach is specially suited for calibration of en-

doscopic rigs which suffer in general from radial distortion

and, thus, we have proposed the use of CALTag grids so that

the geometric caliration, the CRF estimation, and the white

balance can be performed with a single frame.

Other applications include indoor calibration (when the

light incident on the scene cannot be considered as a dis-

tant light), the calibration of smartphone cameras with flash

at close range, and the calibration of generic cameras with

strong vignetting.

The method showed high repeatability and good results

when compared to the 24 same-pose image calibration pro-

cedure proposed in [20]. A practical limitation is that the

scene needs to be well lit for the equations to be able to de-

scribe the full color spectrum, i.e., to reduce extrapolation.

However, this is an issue common to all CRF estimation

techniques. This can be overcome using multiple images of

the calibration target, with the advantage that registration is

not required nor the images need to be at the same pose.

As future work, we want to eliminate the need for ac-

curately knowing the albedo ratio in advance, similarly to

what has been done in [15].
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Figure 5: Each column shows an example of a CALTag grid image acquired with the respective rig, and the resulting camera

response functions for the red, green, and blue channels (from top to bottom). Each plot shows the result for the Wu et al.

approach in color, and the results for five CALTag images using our approach. The dashed segment of the curves are the

extrapolated regions.
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Figure 6: Examples of the correction of the camera response function estimated with a single CALTag grid using rigs (a) R3

and (b) R6. Each rectangle has the background with the ground truth color from the ColorChecker and two insets with the

original image of the color patch (left) and its corrected version (right).
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