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Abstract

Part-based models are one of the leading paradigms in
visual recognition. In the absence of costly part annota-
tions, associating and aligning different training instances
of a part classifier and finding characteristic negatives is
challenging and computationally demanding. To avoid this
costly mining of training samples, we estimate separate
generative models for negatives and positives and integrate
them into a max-margin exemplar-based model. The gen-
erative model and a sparsity constraint on the correlation
between spatially neighboring feature dimensions regular-
ize the part filters during learning and improve their gener-
alization to similar instances. To suppress inappropriate
positive part samples, we project the classifier back into
the image domain and penalize against deviations from the
original exemplar image patch. The part filter is then opti-
mized to i) discriminate against clutter, to ii) generalize to
similar instances of the part, and iii) to yield a good recon-
struction of the original image patch. Moreover, we propose
an approximation for estimating the geometric margin so
that learning large numbers of parts becomes feasible. Ex-
periments show improved part localization, object recogni-
tion, and part-based reconstruction performance compared
to popular exemplar-based approaches on PASCAL VOC.

1. Introduction
The large intra-class variability of real world object cat-

egories is one of the primary challenges of visual recogni-
tion. Part-based models are presently the most popular and
powerful paradigm to learn representations that character-
ize all instances of a category despite their variation in ap-
pearance, articulation, occlusion, etc. In contrast to holistic,
rigid templates [19, 4] and pooling strategies that provide
some local shift invariance [17], explicitly modeling object
parts [9, 20, 26] not only can explain away object deforma-
tion and missing parts. It also provides an explicit parsing
of objects (e.g. [11, 23, 3, 24, 6]) and reasoning about their
pose and articulation.

Learning part-based models benefits from intensive su-
pervision [3, 11]. Manual labeling and aligning of all in-
stances of a part is, however, very laborious and becomes
prohibitive when dealing with large numbers of categories
and training samples. Therefore, a common strategy is to
automatically learn a small number of parts within object
bounding boxes [9]. However, without part annotations,
alignment of all training instances of a part is challenging,
so that the variability of training samples for a part ham-
pers learning the part representation. A recent solution to
this problem are exemplar-based approaches [21] where a
classifier is trained with only a single positive sample for
a part and a large corpus of negatives. To achieve op-
timal performance, this exemplar-SVM approach requires
several rounds of computationally demanding hard-negative
mining, where a set of characteristic negatives are selected
based on the single positive. [14] circumvent this mining by
employing Linear Discriminant Analysis (LDA) as a very
efficient training method for exemplar classifiers at the cost
of significantly lower performance. A main limitation of
LDA is the implicit assumption that the positive and nega-
tive classes share the same covariance. Typically the nega-
tive distribution is also utilized for the positive class (a very
crude simplification).

Our goal is to avoid negative mining, while retaining
the discriminative performance of the part classifier and
improving its ability to generalize to other part instances,
which are related to the original exemplar. Rather than se-
lecting hard negatives, we represent the negative by a gen-
erative model and we learn another generative model for
features from within object bounding boxes of a category.
The distribution of positives couples spatially neighboring
feature dimensions (e.g. HoG cells) and thus reduces its
degrees of freedom. When adding further part instances
from other training images to the original exemplar patch,
we need to prevent the classifier from drifting away from
the original exemplar part due to badly aligned samples and
clutter. Otherwise we would end up with a representation
corresponding to an uninformative, averaged patch. There-
fore, we propose a perceptual regularization that projects
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the part classifier back onto a wavelet representation of the
image patch corresponding to the part. Then we penalize
against distortions from the original exemplar patch in the
(wavelet representation of the) image domain. We suggest a
optimization strategy as a sequence of Second Order Cone
problems. Additionally we propose a sub-optimal approx-
imation that speeds-up the training process significantly
(faster than popular ESVM [21] or DPM[9]) while retain-
ing the object recognition performance. Figure 1 shows a
scheme of the approach.

The result of our learning process is a set of exemplar
part detectors that trade-off specificity against generaliza-
tion and that directly correspond to object image regions.
Their localization performance and recall is boosted signif-
icantly by the addition of the generative model as well as
additional positive instances. Since our approach does not
require positive or hard negative mining, training is fast (a
few seconds per part). Thus part models with large num-
bers of parts become feasible. We evaluate the improvement
of part localization as well as of object recognition perfor-
mance on the challenging PASCAL VOC data-set. More-
over, our model provides part-based reconstructions of ob-
jects. Here qualitative and quantitative comparisons illus-
trate the robustness of our method against part misalign-
ment.

2. Related Work
Middle-level representations based on classifiers trained

on localized parts have recently experimented an increase
of popularity due to their simplicity and competitive perfor-
mance applied to a large variety of problems. In [1] exem-
plar parts are used to represent 3D objects and to align them
with their 2D correspondences, while in [6] object detection
is performed by pooling the filter responses of a large set of
exemplar classifiers.

There has been several recent works [16, 5, 8] aiming
for improving the generalization of those weak classifiers
by means of gathering additional training parts and there-
fore, moving from exemplar towards multiple-positive part
classifiers. In both [16] and [8] parts are refined incremen-
tally starting from a single exemplar after filtering the addi-
tional candidates using validation data. The approach of [5]
looks for discriminative modes on a density representation
of the training data to then draw candidate parts from those
modes.

In a slightly different avenue of research, there are meth-
ods that include generative models in their formulation in
order to improve the classifiers regarding efficiency or ac-
curacy. In [14], a generative representation of the negative
data distribution is proposed to train exemplar classifiers
very efficiently, by simply decorrelating HoG features. The
follow-up work [13] uses this same technique to accelerate
the training of DPM. Other approaches such as [10] propose

instead to learn a generative model of the positive class to
perform transfer learning and train classifiers from few ex-
amples. In [7] covariance features inspired in such genera-
tive models are used to determine good filters and improve
the ranking of parts.

3. Method

Opposite to the approaches that focus on obtaining a con-
sistent set of candidates to avoid hampering the classifier,
we aim to directly improve the generalization performance
of exemplar parts while retaining their specificity. We pro-
pose a discriminative learning framework that includes a
generative model to represent the distribution of the posi-
tive and negative categories. Contrarily to LDA our model
allows for distinct covariances for each positive and nega-
tive class. The negative distribution allows for fast train-
ing by avoiding mining hard-negatives. The positive dis-
tribution serves to reduce the classifier degrees of freedom,
imposing a category-specific structured prior that assures
the quality of the filters (Sect. 3.1). We also propose a
novel perceptual regularizer that prevents the classifier from
changing the concept represented by its original exemplar,
when training with multiple positive instances. Addition-
ally, this regularization term links our model to the image
domain, thus enabling the generation of visual representa-
tions of our part-based models (Sect. 3.2). Finally, our op-
timization strategy trains models efficiently (on the order of
LDA) while achieving performance superior to exemplar-
SVM with hard negative mining (Sect. 3.3, and 3.4).

3.1. Generative Regularization of Max-Margin Ex-
emplars

Even though the recent success of LDA exemplars is re-
markable [14], their standalone performance is still inferior
to SVM with hard mining. An important limitation of LDA
is the assumption that the distributions of each category
share the same covariance with their mean shifted. While
Quadratic Discriminant Analysis overcomes this limitation,
its decision boundary is defined by a quadratic function,
which makes it computationally intractable for large-scale
visual recognition problems.

The intuition behind the success of LDA for exemplar-
based models is that a uni-modal covariance is able to cap-
ture generic spatial statistics of the background distribution,
so that a simple decorrelation boosts the discriminative fea-
ture dimensions of the exemplar classifier decision surface.
However, the model solely focuses on the distribution of
the negatives. The distribution of the positives is simply as-
sumed to be the same. This assumption is obviously incor-
rect and contradicts the analysis of recent works such as [7],
that identify a good HoG filter to have strong correlations of
neighboring cells.



Figure 1. Scheme of the approach. First local patches are extracted from positive boxes. With each, an LDA classifier is trained. Then,
positive mining is performed using that classifier on positive bounding boxes. Following, our generative max-margin classifier is trained
using those positives as well as the distributions Σ+ and Σ−. Note that the red dashed line indicates the classifier obtained with regular
LDA, while the green solid line represents our classifier, that aligns acoording to the shape of positive and negative covariances. Finally,
the improved part filters are obtained, and part-based reconstruction of the original instance can be performed.

Our first goal is to determine a hyper-planew with max-
imal Mahalanobis distance to the distribution of negatives
centered at the mean µx of the negatives and to the positive
distribution centered at the single positive exemplar feature
x1. This family of classifiers is closely related to Support
Vector Machines [15, 18], and aims to establish a decision
hyper-plane based on local information (exemplar features)
as well as global evidence (probability densities). Let us
denote the covariances of the positive and negative distribu-
tions as Σ+ and Σ− respectively. The positive covariance
is specific for an object category and it is trained using all
the HoG features present within the bounding boxes of the
category objects. The negative covariance is common for
all categories and it is trained using all available HoG win-
dows in the data-set. In [14] is pointed out the difficulty
of learning category-specific covariances due to the high di-
mensionality of the covariance matrix. However, we aim
for decorrelating HoG features whose size is relatively low
(5 by 5 cells) in comparison to whole object filters (12 by
12 cells). Additionally, we also regularize both covariances
by adding a small value (.01) to its diagonal, which corre-
sponds to adding an isotropic prior to Σ. We formulate the
optimization problem as

arg max
γ,b,w

γ − ‖w‖1 (1)

s.t w>x1 − b ≥ γ
√
wΣ+w

−w>µx + b ≥ γ
√
wΣ−w

γ ≥ 0

where we aim to explicitly maximize the functional mar-
gin γ. Note that we can not impose any scaling con-
straint on the margin and maximize the geometric margin
instead, because given that Σ+ 6= Σ− we cannot assume
γ
√
wΣ+w = 1 = γ

√
wΣ−w.

To facilitate the overall optimization it is convenient to
reduce the degrees of freedom of the classifiers to drive
them towards good quality optima. We include a L1 nor-
malization for this purpose, which encourages structured

activations within HoG cells. It is also tempting to further
exploit the positive distribution to induce a structured prior
over the positive class to encourage strong correlations of
the filter weights wlda in nearby locations. Those two char-
acteristics, cell covariance and cell cross-covariance, are in-
dicators of a good filter, as pointed out in [10, 7]. We impose
a structured prior in the positive covariance as

Σ+ = Σx
+

◦K (2)

where K is a sparse block matrix having ones only on
the elements corresponding to neighboring HoG cells in
4 directions: horizontal, vertical, diagonal-left, diagonal-
right, to encourage high cross-covariance on neighboring
cells. The matrix Σx

+

is a covariance matrix computed on
features extracted exclusively from objects of the positive
class (as previously explained), and ◦ denotes the Hadamard
product.

3.2. Regularization by Reconstruction

Let us now further improve the generalization perfor-
mance (their recall) of our filters while preserving their dis-
criminative power. Since the filters are trained with only a
single positive we need to add additional positive samples
to improve their recall and have them generalize better to
other similar samples. Since part-based annotations re not
available for this large number of parts, automatically gath-
ering additional positive samples inevitably implies outliers
and spatially badly aligned samples, which reduce classifier
performance as can be seen in Figure 5. The effect in the
filters themselves can be seen in Figure 2, where naively
gathering multiple positives and training an LDA classifier
(MLDA) averages out miss-aligned features, with the loss
of the original exemplar specificity.

To make the models robust to badly chosen samples, we
need a regularization term that prevents a classifier from
drifting away from the original object region that the ex-
emplar represented in the first place. Thus, we need to es-
timate the image region that the filter w originally corre-



Seed patch 5 nearest neighbors ELDA MLDA Ours

Figure 2. Visual comparison of part classifiers. Each row shows a part classifier. The first column shows the original patch, the central
column the 5 nearest neighbors (out of 10 used for training), and the third column shows a visual representation of the positive weights
of the resulting classifier for ELDA (1 positive), MLDA (10 positives) and ours (10 positives). In the first row, the miss-alignment of
plane-rudders produces a wider edge in the MLDA while ours is compact. In the second row, the MLDA filter hides the details of the bent
wing-tips present in the original exemplar, while our filters keep those details. The third row shows an example of a part with very low
repetitivity and plenty of false positives. The response of the MLDA filter is averaged out, while ours preserves most of the signal of the
original ELDA.

sponds to, and penalize deviations therefrom. [25] have uti-
lized a mapping from HoG space to the image domain using
ridge-regression to primarily visualize and study the filters.
We now invert the HoG filter and map it back into the same
domain to regularize the learning of the part classifier. Since
several images map to the same HoG feature, the inversion
is not bijective and the inverted representation resembles an
averaging of several patches obtained by shifting few pixels
in every direction. This amplifies details that are robust to
misalignment and weakens those that are likely to get lost
when assembling a large set of related patches.

Let r denote the wavelet transformation of an image re-
gion and x is the corresponding HoG feature. The wavelet
representation consists of the approximation coefficients of
the daubechies wavelet decomposition. This transformation
removes high-frequency data not interesting for the sake of
the reconstruction and facilitates the covariance estimation
by reducing to half the dimensionality of the image do-
main. We stack (x, r)> and compute the covariance matrix
Σ =

(
Σxx Σxr

Σrx Σrr

)
, and µ = [µxµr] right over all features

sampled from all training images. We denote with r the im-
age domain and with x the HoG domain. The upper-left part
of Σ is the covariance of all negative features Σxx = Σ−

from Eq.(1). Now we can map w back into the image do-
main by projecting it onto

r̂ = Σrxw + µr (3)

and then apply the inverse wavelet transformation.
Let us denote the set of related positive samples (includ-

ing the original exemplar x1) as {x1,x2 · · ·xN}, and let

r1 be the wavelet representation of the image patch corre-
sponding to the original exemplar. The set of candidate pos-
itive features is obtained by running the classifiers within
a validation set of images containing objects of the cate-
gory and keeping the N nearest neighbor detections that lie
within the boundaries of the ground-truth bounding boxes
(Figure 2 shows examples of candidate sets). Since the in-
version is in closed form we can easily include it in the op-
timization of Eq.(1) as a regularization term,

arg max
γ,b,w,ξ

γ −
[
‖w‖1 + C

∑
ξi + β‖r̂ − r1‖22

]
(4)

s.t w>xi − b ≥ γ
√
wΣ+w − ξi ∀i

−w>µx + b ≥ γ
√
wΣ−w

r̂ = Σrxw + µr

ξ ≥ 0, γ ≥ 0

Since we are considering multiple positive features and
some of them could be outliers, we need to take the sepa-
rability into account by introducing a slack variable ξi for
each positive feature. This is not necessary in the negative
side, since the mean of the negative distribution will never
violate the margin. The regularization term encourages the
inverted classifier r̂ to stay close to the wavelet transform
of the original exemplar patch r1.

3.3. Optimization

The coupling of γ andwmakes the problem non-convex.
We approach it in an iterative fashion, similarly to [15], as



Figure 3. Three point pattern to perform a Quadratic Line Search
to estimate the maximum margin, with a fixed hyperplane w. The
blue continuous line denotes the unimodal distribution of the ob-
jective as a function of the margin γ.

a sequence of Second Order Cone Programming (SOCP)
problems. When the margin γ is fixed, the optimization is
equivalent to minimizing ‖w‖1 + C

∑
ξi + β‖r − r1‖22

under the same constraints, which is feasible in polynomial
time using interior-point methods. Then parameters w, ξ, r
are optimized, before searching for the next optimal mar-
gin γ using a line search strategy over the original objective
function f(γ) = γ−

[
‖w‖1 + C

∑
ξi + β‖r − r1‖22

]
. We

approach the line search by fitting a quadratic function to a
three point pattern spanned by three values γ1, γ2, γ3, and
their corresponding objective values f(γ1), f(γ2), f(γ3)
(See Fig. 3). To generate the next γ we search for the
one that maximizes the interpolated estimate and establish a
new three point pattern using the new γ as the central point
together with the two nearest previous values.

Since we need to establish a range for the line search a
priori, we use a trust-region approach. We assume f(γ) to
be unimodal in a interval γ ∈ (0,∞) of the margin. We
set the three initial values of γ to be uniformly distributed
within a small trust region of size 2s (s = 15 in our imple-
mentation), as γ1 = γ2 − s, γ2 = w>µx

‖w‖ , γ3 = γ2 + s. At
each step, if the maxima of the quadratic fit is found to be
outside the trust region, we progressively expand it in the
direction that the maxima is expected. The iterative process
runs until reaching a maximum number of iterations or the
stopping condition tol > |γprev − γnew| is satisfied.

3.4. Speeding up the training of part filters

A great advantage of representing the negative training
set with a generative model (the parametric model of Σ−) is
to avoid performing several rounds of hard negative mining
to train each of the part classifiers, which is the most expen-

Figure 4. Optimal margin of 100 bicycle parts against the predicted
margin. The red crosses indicate the optimal margin trained using
the sequential SOCP optimization (Sect. 3.3). The blue circles
indicate the margin predictions using linear regression on filter
characteristics Ω (Sect. 3.4). The black line indicates the train-
ing average as a naive margin predictor.

sive process of standard exemplar-SVM training. Although
the proposed training procedure is faster than Exemplar-
SVM, the iterative optimization presented in Sect. 3.3 is
still computationally more costly than LDA.

Let us know propose an alternative to speed-up the train-
ing of the classifiers by directly estimating an approxima-
tion of the functional margin. We first sample 1000 regions
from object bounding boxes (details of the sampling can be
found in the Experiments section). For each of those re-
gions we train a part classifier i using the method described
above, inferring the classifier parameters wi, bi as well as
the optimal functional margin γi. Intuitively, the value of
the optimal margin will depend on the shape of the positive
and negative data distribution, as well as on the set of pos-
itive instances and the classifier hyperplane. Thus, we aim
for learning a margin predictor g, using a set of characteris-
tics Ω extracted from the filters themselves,

Ω =
[
d(X+),w>X+, ‖w‖2,wΣ+w,wΣ−w

]
(5)

where X+ is the matrix of all positive instances xi and
d(X+) is a vector of Mahalanobis distances of those in-
stances to the negative distribution < µx,Σ− >.

We perform a linear regression to map the feature char-
acteristics of a part to its functional margin γ̂i = g(Ωi) + ε.
In such way, we can perform the optimization in one sweep,
which takes around 10 seconds per part, at the expense of
a slight drop in performance (1%). Figure 4 shows the op-
timal margin obtained with the alternating optimization of
Sect. 3.3 and that of linear regression estimate presented in
this section on 100 parts of the bicycle category.



Figure 5. Part localization. Detection accuracy of i) the 48 DPM
parts [9] against a set of 48 parts trained with ii) MLDA (10 posi-
tive instances), iii) ESVM on object patches [21] or, equivalently,
the part filters of [6] (1 positive instance), and iv) our final ap-
proach (sequential SOCP). The average gain in AP between our
iv) and iii) is 4%, although our training is roughly 4× faster.

3.5. Part-based Object Recognition

Given the set of trained part-classifiers of a category we
need to combine them to represent the object instances of
that same category. For each image, parts are evaluated by
densely convolving the part-filters along the image region
of an object box, at all locations and scales. Then we aggre-
gate the contribution of all parts by max-pooling the filter
responses in a regular grid within the object bounding box.
In our implementation, we employ a three-level grid with
4 × 4, 2 × 2 and 1 grid cells in each level. Therefore, af-
ter pooling and concatenating we obtain a high-dimensional
representation of an object instance of N × (16 + 4 + 1) di-
mensions, where N is the number of part filters. To provide
a final ranking of objects we train a linear classifier (SVM)
on top of those part-based representations.

4. Experiments

Subsequently we compare our exemplar-based approach
against several popular exemplar and part-based models,
which also need no part annotations. The experiments on
the standard benchmark data-set of PASCAL VOC 2007
evaluate part localization performance, present a quantita-
tive and qualitative comparison in context of object recon-
struction, and investigate recognition performance.

Regarding the experimental set-up, in all our experi-
ments we use HoG filters with a size of 5 by 5 cells. The C
and β parameters of the classifiers are estimated by grid-
search on a validation set and are set to 0.5 and 0.1 re-
spectively. We run the sequential SOCP optimization for

Category ELDA [25] MLDA-5 MLDA-10 Ours
airplane .58 .51 .47 .60
bicycle .47 .46 .42 .51
bird .50 .47 .46 .54
boat .61 .60 .55 .61
bottle .82 .81 .81 .84
bus .65 .56 .48 .66
car .78 .75 .72 .82
cat .62 .58 .57 .60
chair .79 .70 .68 .81
cow .67 .60 .56 .64
table .74 .65 .56 .79
dog .56 .50 .48 .58
horse .62 .61 .58 .61
motorbike .70 .67 .60 .73
person .58 .55 .53 .61
plant .76 .75 .72 .76
sheep .56 .56 .54 .57
sofa .81 .75 .73 .80
train .79 .74 .69 .78
tvmonitor .83 .82 .79 .85
mean .67 .63 .60 .69

Table 1. Average reconstruction quality per category in PASCAL
VOC 07 measured by maximum cross-correlation between recon-
struction and original

a maximum of 100 iterations, with a tolerance of 0.01. To
estimate the wavelet representation and the ridge-regression
model, we scale the image patches to fit 4x4 pixels per HoG
cell. That is, patches of 20x20 wavelet approximation coef-
ficients.

4.1. Part Localization Performance

A benefit of part-based models is that they not only de-
tect objects but also accurately localize object parts, which
is crucial for various applications ranging from pose esti-
mation and gait analysis to quality control in industrial in-
spection. To evaluate the accuracy of part detection in novel
images we employ the key-point annotations of Pascal VOC
2010 that were introduced in [3]. Note that contrary to [3]
neither our model nor the part-based models that we com-
pare to are trained with part annotations. We only use the
key-point annotations in this section to evaluate the local-
ization of individual part classifiers, but nowhere else.

We sample exemplar patches centered at the annotated
key-points, with a random size smaller than half the object
bounding box. For each of those parts, we train an Exemplar
SVM with hard mining [21], use the LDA approach of [14]
with one positive, an LDA classifier with 10 positives (ab-
breviated as MLDA) and our final discriminative approach
with generative regularization and reconstruction with 10
positives, Sect. 3.2. Positive instances for our approach and
MLDA are obtained by simply running exemplar LDA over
the category bounding boxes of the validation set and keep-
ing the 10 nearest neighbors for an exemplar. Evaluation
follows the standard VOC protocol, considering detections
correct if part overlap is greater .5.
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ESVM [21] 37.2 58.1 8.6 12.4 23.1 54.7 55.4 24.2 20.2 26.4 28.2 18.1 50.5 49.6 36.8 12.1 19.3 34.6 46.9 43.2 33.0 40h;1K
ELDA [14] 37.1 53.2 7.5 11.9 22.3 51.1 54.2 21.7 19.6 24.3 26.9 18.2 47.8 48.6 34.5 12.1 19.2 3.4 45.3 42.1 31.6 1sec;1K
MLDA 35.4 54.5 7.2 10.6 21.7 46.8 52.9 20.0 18.2 23.3 24.5 16.6 45.7 47.8 33.9 11.2 18.1 31.4 43.1 40.6 30.1 1sec;1K
w/o Σ+ 37.3 57.2 9.6 12.7 24.2 55.1 56.1 23.5 21.1 25.5 28.7 18.9 49.8 50.0 36.3 12.8 20.1 34.6 46.3 42.2 33.1 14h;1K
Final 39.9 57.8 9.2 14.1 27.7 57.8 56.4 25.2 22.5 26.2 29.8 21.2 49.7 50.5 37.7 13.1 21.9 35.5 46.9 43.8 34.3 14h;1K
Final/Fast 39.0 56.3 8.9 13.0 26.8 57.4 55.1 24.5 22.2 24.9 29.5 20.5 48.1 50.2 37.3 12.8 21.2 35.1 46.1 43.0 33.6 14min;1K
DPM [9] 33.2 60.3 9.8 16.1 27.3 54.3 58.2 23.0 20.0 24.1 26.7 19.5 58.1 48.2 43.2 12.0 21.1 36.1 46.0 43.5 33.7 5h;48
LLDA [13] - - - - - - - - - - - - - - - - - - - - 24.4 7min;48
RM2C [6] 37.0 58.3 12.0 14.7 22.9 51.3 51.7 23.7 21.7 25.0 29.0 20.6 51.4 46.1 36.3 12.7 22.3 35.1 43.9 41.8 32.9 40h;1K

Table 2. Detection performance on PASCAL VOC 2007 (AP %). ESVM: exemplar-SVM with hard-negative mining. ELDA: LDA with
one positive sample. MLDA: multiple (10) positive samples with no reconstruction regularization nor positive generative model. In w/o
Σ+: our model with regularization by reconstruction but without positive generative model. In Final: the approach of Sect. 3.2. In
Final/Fast: the approach with accelaration by margin regression of Sec. 3.4. Related approaches: DPM [9], LLDA [13] and RM2C [6].
The last row shows the average training time of each approach, which depends on the number of parts that need to be trained. Whereas
DPM needs 5 hours to train 48 parts our fast method trains 1000 parts in 14 minutes.

Figure 5 evaluates the detection accuracy of individual
parts. Parts are ranked according to their AP over all cate-
gories. Comparison against MLDA, the DPM parts of [9],
and to the part classifiers of [6] shows an average gain of
4% over the previously best results by [6], which is an
exemplar-SVM. This gain is mainly due to a considerable
increase in recall of our parts.

4.2. Computational Performance

Training a single ESVM classifier [21] (or a part of [6])
on an Intel i7 CPU takes around 30 minutes per part due
to hard negative mining on the training set. Our part detec-
tors optimized with sequential SOCP take approximately 10
minutes per part. Speeding up our model as detailed in Sect.
3.4 reduces training time of a part to the order of 10 seconds,
i.e., a speed-up of roughly 180× over the popular ESVM.
Also note that part training can easily be parallelized, so
learning a category model with 1000 parts takes only a few
minutes. This is a significant gain over [6] with the same
number of parts (more than 24 hours) or DPM (around 5
hours on the same hardware, i.e., around 20× slower). Re-
garding testing time, filter responses are computed with a
single matrix multiplication (all at the same time). Evaluat-
ing 1K parts in a whole image takes around 13 seconds.

4.3. Visual Parsing

Our part detectors are optimized not only to discover ob-
ject parts [6] and discriminate against clutter [22]. They
are also trained to provide a good reconstruction of original
object regions. Thus they can be backprojected into the im-
age domain to parse and explain objects and provide more
information than only a bounding box with class label. To
generate an object visualization, in a query image we gather
all parts that cover the object box and place the reconstruc-
tion of each part at the corresponding location, averaging
over overlapping regions (see Fig. 6).

Related approaches to reconstruction such as hoggles
[25] are typically holistic (reconstruct the full bounding box
rather than learned object parts) and based only on a single

positive exemplar sample for a part. Using multiple pos-
itive samples for training (MLDA) reduces details due to
bad sample alignment and clutter as can be seen in Fig. 6.
In contrast our regularization yields additional details as can
for instance be seen at the tail of the cat, the cockpit of the
airplane, the tail of the car, or the wheel of the bike. More-
over, the average reconstruction quality per category (mea-
sured by maximum cross-correlation between reconstruc-
tion and original object bounding box) is improved when
comparing against standard ridge regression with 1,5, and
10 positive instances, in the PASCAL VOC 2007 dataset
(see Table 1).

4.4. Object Recognition

Let us now evaluate our parts in the context of object
detection. We sample initial exemplar patches from all ob-
ject bounding boxes of all classes. Patches have a random
size not larger than half the object bounding box. We first
discard patches containing little detail based on their aver-
age image gradient to remove those that contain only noise
or compression artifacts. Similarly to [2], each remaining
HoG descriptor x gets a score

q(x) =
1

(x− µx)Σxx−1(x− µx)
(6)

thus ranking first those part filters that are further from the
background distribution. We retain the 1000 highest scoring
parts per class and with those we compute object represen-
tations as explained in Sect. 3.5. We apply the same process
over test data by extracting object hypothesis following the
same strategy as [6].

The state-of-the-art of object detection in PASCAL VOC
is currently achieved with Deep Learning approaches [12]
with an AP of 53.7%. However, such approaches require
pre-training with extensive datasets (ILSVRC 1.2 million
images). We focus our comparison with works based on
HoG that follow the VOC comp3 (only PASCAL training
data). Table 2 evaluates the object detection performance
obtained with different algorithms for unsupervised part



image box ELDA (1 pos.) MLDA (5 pos.) MLDA (10 pos.) Ours (10 pos.)
0.58 0.54 0.51 0.63

0.62 0.59 0.59 0.65

0.57 0.54 0.51 0.60

0.60 0.54 0.52 0.66

Figure 6. Part-based reconstruction of query images with LDA (ridge-regression) [25] with one positive (second column), with 5 instances
per part (third column), 10 instances per part (fourth column), and with our final model (fifth column). On top of each reconstruction its
quality is given by its maximum cross-correlation against the original image.

training on PASCAL VOC 2007. Although we have signifi-
cantly improved the speed of part training, part localization
performance, and visual reconstruction, the detection per-
formance is not impaired. We emphasize the training time
of individual part filters to show that our models with mar-
gin prediction achieve competitive performance with ex-
tremely fast training times. In approaches like DPM and
its fast version Latent-LDA [13] the parts are tightly linked
to the root so that all of them have to be trained jointly. Our
model treats parts independently so that the training can be
paralelized very efficiently and by adding additional parts
a posteriori the object model does not have to be retrained
from scratch. For the computational performance presented
in Tab. 2 we used a parallel pool of a maximum of 12
threads. Having additional threads would further increase
the time differences between our approach and DPM.

Consistently with the experiment in Sect. 4.1 the perfor-
mance of models with multiple positives and lacking regu-
larization (MLDA) suffers significantly. Only by including
the reconstruction regularization (Tab. 2 fourth row) pro-
vides a performance boost of 3%. Including the structured
prior of Eq.(2) in the positive class provides an additional

accuracy increase of 1.2%. Moreover, we see that pooling
a 1000 parts and combining them in a joint model at least
partially compensates for weak part classifiers (2.9% per-
formance loss between ESVM and MLDA) as opposed to
a drop of 5% for individual parts in Sect. 4.1. However,
this is computationally daunting without our speeding up of
training.

5. Conclusions

We have addressed a key problem of part-based models,
the efficient training of large numbers of part classifiers with
multiple samples and without requiring part annotations or
costly hard negative mining. This is an orthogonal direction
to previous work [16, 5, 8] that aims at improving the pos-
itive mining process. We integrate a generative regulariza-
tion into the discriminative part training and enforcing good
visual reconstruction. The proposed part training algorithm
is significantly faster than popular ESVM [21] or DPM [9],
while retaining object recognition performance and improv-
ing part localization and the ability to reconstruct and ex-
plain images of objects.



References
[1] M. Aubry, D. Maturana, A. Efros, B. Russell, and J. Sivic.

Seeing 3d chairs: exemplar part-based 2d-3d alignment us-
ing a large dataset of cad models. In CVPR, 2014. 2

[2] M. Aubry, B. C. Russell, and J. Sivic. Painting-to-3d model
alignment via discriminative visual elements. ACM Trans.
Graph., 2014. 7

[3] L. Bourdev and J. Malik. Poselets: Body part detectors
trained using 3d human pose annotations. In International
Conference on Computer Vision (ICCV), 2009. 1, 6

[4] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In ICCV, 2005. 1

[5] C. Doersch, A. Gupta, and A. A. Efros. Mid-level visual
element discovery as discriminative mode seeking. In Ad-
vances in Neural Information Processing Systems (NIPS),
pages 494–502, 2013. 2, 8

[6] A. Eigenstetter, M. Takami, and B. Ommer. Randomized
max-margin compositions for visual recognition. The IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2014. 1, 2, 6, 7

[7] G. S. Ejaz Ahmed and S. Maji. Knowing a good hog filter
when you see it: Efficient selection of filters for detection. In
European Conference on Computer Vision (ECCV), 2014. 2,
3

[8] I. Endres, K. J. Shih, J. Jiaa, and D. Hoiem. Learning collec-
tions of part models for object recognition. In CVPR, 2013.
2, 8

[9] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-
manan. Object detection with discriminatively trained part
based models. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 32(9):1627–1645, 2010. 1, 2, 6, 7, 8

[10] T. Gao, M. Stark, and D. Koller. What makes a good detec-
tor? – structured priors for learning from few examples. In
European Conference on Computer Vision (ECCV), October
2012. 2, 3

[11] G. Ghiasi, Y. Yang, D. Ramanan, and C. Fowlkes. Parsing
occluded people. In CCVPR, 2014. 1

[12] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-
ture hierarchies for accurate object detection and semantic
segmentation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2014. 7

[13] R. Girshick and J. Malik. Training deformable part models
with decorrelated features. In Proceedings of the Interna-
tional Conference on Computer Vision (ICCV), 2013. 2, 7,
8

[14] B. Hariharan, J. Malik, and D. Ramanan. Discriminative
decorrelation for clustering and classification. In European
Conference on Computer Vision (ECCV), 2012. 1, 2, 3, 6, 7

[15] K. Huang, H. Yang, I. King, and M. R. Lyu. Maxi-min mar-
gin machine: Learning large margin classifiers locally and
globally. IEEE Transactions on Neural Networks, 2008. 3, 4

[16] M. Juneja, A. Vedaldi, C. V. Jawahar, and A. Zisserman.
Blocks that shout: Distinctive parts for scene classification.
In IEEE Conference on Computer Vision and Pattern Recog-
nition, 2013. 2, 8

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
NIPS. 2012. 1

[18] G. R. Lanckriet, L. E. Ghaoui, C. Bhattacharyya, and M. I.
Jordan. A robust minimax approach to classification. Journal
of Machine Learning Research, 2003. 3

[19] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of
features: Spatial pyramid matching for recognizing natural
scene categories. In CVPR. 1

[20] B. Leibe, A. Leonardis, and B. Schiele. Combined ob-
ject categorization and segmentation with an implicit shape
model. In Workshop on Statistical Learning in Computer Vi-
sion (ECCV), May 2004. 1

[21] T. Malisiewicz, A. Gupta, and A. A. Efros. Ensemble of
exemplar-svms for object detection and beyond. In ICCV,
2011. 1, 2, 6, 7, 8

[22] A. Monroy and B. Ommer. Beyond bounding-boxes: Learn-
ing object shape by model-driven grouping. In ECCV, 2012.
7

[23] D. Ramanan. Learning to parse images of articulated bodies.
In NIPS. 2007. 1

[24] G. Sharma, F. Jurie, and C. Schmid. Expanded Parts Model
for Human Attribute and Action Recognition in Still Images.
In International Conference on Computer Vision and Pattern
Recognition (CVPR), 2013. 1

[25] C. Vondrick, A. Khosla, T. Malisiewicz, and A. Torralba.
Hoggles: Visualizing object detection features. ICCV, 2013.
4, 6, 7, 8

[26] P. Yarlagadda and B. Ommer. From meaningful contours
to discriminative object shape. In European Conference on
Computer Vision (ECCV), 2012. 1


