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Abstract

In the semantic multinomial framework patches and im-
ages are modeled as points in a semantic probability sim-
plex. Patch theme models are learned resorting to weak
supervision via image labels, which leads the problem of
scene categories co-occurring in this semantic space. For-
tunately, each category has its own co-occurrence patterns
that are consistent across the images in that category. Thus,
discovering and modeling these patterns is critical to im-
prove the recognition performance in this representation. In
this paper, we observe that not only global co-occurrences
at the image-level are important, but also different regions
have different category co-occurrence patterns. We exploit
local contextual relations to address the problem of discov-
ering consistent co-occurrence patterns and removing noisy
ones. Our hypothesis is that a less noisy semantic represen-
tation, would greatly help the classifier to model consistent
co-occurrences and discriminate better between scene cat-
egories. An important advantage of modeling features in
a semantic space is that this space is feature independent.
Thus, we can combine multiple features and spatial neigh-
bors in the same common space, and formulate the problem
as minimizing a context-dependent energy. Experimental
results show that exploiting different types of contextual re-
lations consistently improves the recognition accuracy. In
particular, larger datasets benefit more from the proposed
method, leading to very competitive performance.

1. Introduction

Typically, a scene is a very abstract representation com-
posed of many less abstract semantic entities localized in
regions (e.g. sky, rock, table, car). Accurate scene recog-
nition remains a challenge because it implies reasoning
from low-level visual features to high-level scene cate-
gories. Scene categories can be modeled directly from low
descriptors[36, 31, 26]. However, the required statistical

knowledge to infer scene categories (e.g. coast, mountain,
office) is difficult to obtain directly from low-level visual
descriptors, due to a large semantic gap.

A more plausible approach is to split the reasoning in a
two (or more) steps with smaller semantic gap (e.g. fea-
tures to themes, themes to scenes). This intermediate repre-
sentation is typically localized to regions in the image, and
defined over a vocabulary of mid-level concepts or themes.
Figure 1a-b shows an example of two images and their re-
gions with corresponding mid-level themes. This vocab-
ulary can be defined explicitly, but that requires labeling
regions with the corresponding themes for training spe-
cific themes classifiers. Instead, themes can be modeled
as hidden topics in a latent space to be discovered during
learning[7, 32, 30, 17, 16]. Topics capture co-occurrences
of low-level visual features, and scene categories are mod-
eled from co-occurring topics in one image.

An alternative to (predefined or hidden) mid-level vo-
cabularies is directly learning mid-level themes using scene
category labels. Note that themes are still local, but re-
ferred to the same vocabulary as scene categories. In
this paper, we focus on the semantic multinomial (SMN)
representation[21] and its extensions[22, 23, 8]. The se-
mantic multinomial represents the probability that a given
patch (or image) belongs to each scene category. As a
probability, it lies on a probability simplex (semantic sim-
plex or semantic space). As no local annotations are avail-
able, all the patches in one image share the same label,
but they correspond to different regions with different in-
termediate concepts. This weakly-supervised learning in-
duces that related scene categories, sharing regions with
the same mid-level concept (e.g. sky, road, trees) would
show certain probability in the SMN, leading to categories
co-occurring in the representation (see Figure 1c). We re-
fer to this as (scene) category co-occurrences'. Rasiwasia

In [23], the authors use the term contextual co-occurrences to refer
to consistent and thus desirable co-occurrence patterns. Here, we refer to
them as (scene) category co-occurrences to emphasize that they are high-
level categories rather than low or mid-level co-occurrences. We also want
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Figure 1. Types of co-occurrences in scene recognition: (a) im-
ages from the opencountry (top row) and tallbuilding (bottom row)
categories of the /5 scenes dataset, (b) regions with their corre-
sponding mid-level themes and vocabulary, (c) scene category co-
occurrences in different regions resulting from weakly-supervised
learning through image category labels, and (d) the corresponding
image semantic multinomial.

and Vasconcelos[23] showed that these co-occurrence pat-
terns are consistent across the images in the same category,
so they can be modeled and separated from accidental co-
occurrences (i.e. noise in the semantic representation) with
a suitable classifier (e.g. Dirichlet mixtures[23], SVM[S]).
They also point out that patch SMNs are too noisy to model
reliable co-occurrence models, so multiple patch SMNs are
aggregated into a single image SMN with some caution
to preserve co-occurrence patterns (see Figure 1d). Thus,
these works only model global co-occurrence patterns in
the image-level.

In contrast, we want to focus on local category
co-occurrences in patch SMNs, as many category co-
occurrences depend on the particular region (see Figure 1c).
Our motivation is to exploit (in an unsupervised way) con-
textual relations to reinforce consistent co-occurrence pat-
terns and remove accidental ones (i.e. noise). We consider
two types of contextual relations: spatial relations between
neighboring patches and multi-feature relations obtained
from complementary low-level visual features (e.g. color,
gradient, shape). Note that it is not possible to combine di-
rectly these two types of contextual relations, as each visual
feature lies in a different low-level feature space, and so are
the different feature-specific spatial contexts (see Figure 2a
and b). In general they can be processed independently and
then combined.

Note that SMN representations all lie in the same seman-
tic space, independently of which visual feature they come
from. This common space allows us to combine easily spa-
tial relations and multi-feature relations in a single multi-
feature spatial context. Thus, in this paper we propose a

to avoid confusion other type of context, such as the spatial neighborhood
or inter-feature relations.
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Figure 2. Contextual relations in a 4-connected neighborhood:
(a) multi-feature context, (b) spatial context, and (c) joint multi-
feature spatial context.

joint context model to reinforce consistent co-occurrence
patterns and filter out accidental ones. We show that de-
livering cleaner SMINs to the classifier can help to discover
intrinsic co-occurrence patterns that can model a scene cat-
egory, thus improving the recognition performance.

The rest of the paper is organized as follows. Sections 2
and 3 review related works and the semantic multinomial
framework. The proposed joint context model is described
in Section 4. Experiments are presented in Section 5 and
Section 6 draws the conclusions.

2. Related work

A number of methods have proposed mid-level represen-
tations using explicit classifiers. Vogel and Schiele[29] pro-
posed a vocabulary with nine local concepts to model nat-
ural scenes. Object bank[13, 38] is a semantic representa-
tion that encodes the response at different spatial locations
of a number of pretrained object classifiers. Classemes|[1]
are intermediate semantic representations based on a set of
2659 basis classes. These methods require explicit interme-
diate level training and often exploit large amounts of ex-
ternal training data (e.g. ImageNet) to learn these mid-level
classifiers.

Closely related to this paper, Vicept[14] and meth-
ods extending the SMN framework[21] only require to
label the scene category of the image. Rasiwasia and
Vasconcelos[23] propose a contextual model based on
Dirichlet mixtures to model contextual co-occurrences.
Kwitt et al[8] propose a discriminative version which uses
SVM combined with a suitable kernel for the semantic
space (i.e. the negative geodesic kernel[37]). In this case,
the semantic simplex is described as a semantic manifold
(SM). This approach is extended with rough spatial context
via spatial pyramids[10] and an approximate embedding of
the NGD kernel for large scale recognition is proposed.
In contrast, we encode explicitly SMN relations between
neighboring patches and multiple features. These works
only model global co-occurrences in the image SMNs,
while most of our proposed techniques focus on local co-
occurrences at patch level.

Latent topics models are often modeled using Latent
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Dirichlet Allocation (LDA)[7, 24]. However, most LDA
have been shown to capture irrelevant general regulari-
ties rather than the semantic regularities of interest, due
to poor supervision[24]. Spatial context can be included
to model the global layout and enforce local coherence in
the topics[32, 17]. Recently, Li and Guo[16] proposed a
patch-based latent framework which jointly learns the con-
textual representation and the classification model. Most
latent topic models are generative, and usually do not scale
well to large scale datasets. Compared to topic models, our
approach has two main differences. First, the vocabulary of
patch SMN's is still the (high-level) scene categories, while
topic models are mid-level representations. Second, the ob-
jective is to encourage contextual co-occurrences and then
let the classifier disambiguated them a posteriori.
Co-occurrences at different levels are in the core of many
scene understanding systems. Lang et al[9] propose a fea-
ture co-occurrence matrix useful for scene classification.
Topics in computer vision model essentially low-level vi-
sual co-occurrences. Li and Guo[15] propose to segment
the image into superpixels, classify them into object classes
and then exploit the object co-occurrences to predict the
scene category. In contrast to these types of co-occurrences,
weak supervision in learning SMN representations induces
a very special type of co-occurrences (i.e. category co-
occurrences), which are at the highest-level of abstraction.

3. Framework overview
3.1. Semantic manifold

The semantic manifold is also based on the seman-
tic multinomial[23] for the mid-level theme representation.
The probability distribution of each category is estimated
from local visual descriptors defined in some visual space
X. Images are represented as a bag of local visual descrip-
tors I = {xX1,...,Xn}, X, € X , densely sampled in a
grid with N local patches. Given a vocabulary of scene
categories {w1,...,wys }, each image is labeled with one
of those M categories. As patch labels are not available,
theme conditional distributions Px|y (%, |w) are learned
using weak supervision via image labels. All the patches
in a given image share the same label (i.e. scene category),
which we showed that induces category co-occurrences.
Themes conditional distributions are modeled as mixtures
of Gaussians (GMM), one model per scene category.

For a given patch, we can obtain the vector of posterior
probabilities s = (s1,..., sar)” with 5., = Py x (w]xy,),
which can be referred to as the semantic multinomial
(SMN)[21] of the patch x,,, and it lies on the (semantic)
simplex AM~1,

Multiple patch SMNs are combined into a single image
SMN using a voting-based method. First, the most proba-
ble category is assigned to each patch as w), = MAX Sy -

Then a histogram is obtained by counting the occurrences
of each category in the image as 0,, = [{wy, : w} = w}|.
The image SMN s is obtained as

owt+pB—1
M (ow+B-1)

where 3 is a regularization parameter.

Category co-occurrences in the image SMNs are mod-
eled using an SVM. Note that the more consistent the co-
occurrence patterns are in the images in the training set,
the better the classifier discriminate between categories.
Rather than using conventional kernels (e.g. polynomial,
RBF), a kernel designed for the particular geometry of
the semantic simplex is used, based on the geodesic dis-

tance g(s,s’) = 2arccos (<\/§, \/§>) where /s de-

notes element-wise square root. A negative geodesic dis-
tance (NGD) kernel can be defined from this distance as
knap (s,s’) = —g(s,s)[37]. Finally, a spatial pyramid
representation is used to rough encode the spatial context.

Note that using kernels limits the application of SVM
classifiers to large datasets, due to computational cost.
Kwitt et al[8] also propose an approximate mapping of the
NGD kernel, so the same framework can be used for large
scale scene recognition combined with a linear SVM.

Figure 3 shows our scene recognition framework, build
upon the semantic manifold framework with some differ-
ences. First, our framework includes multiple features,
for which we learn feature-specific theme models and then
combine them in the semantic space. Second, prior to com-
bining patch SMNs into a single image SMN, we process
patches SMNs using a joint multi-feature spatial context
model. Finally, we use a different approximation of the
NGD kernel based on projecting on a lower dimensional
feature space[4].

S = QP (D) =

ey

3.2. Multi-feature combination in the semantic
space

Instead of a single type of visual feature, we now
consider a set V' of complementary ones (in our ex-
periments V' = {gradient, shape, color}). Each fea-
ture v € V generates a set of local visual descrip-
tors 1(¥) = {xgv), . ,x%)}, x" e X®, and T =
{1 ... IUVD} represents all the features in the image.
Now we assume that we learn feature-specific theme models
Pxow (ng >|w<”)), learned independently in the same
way as in the single feature case. Thus, we can define the
feature-specific patch SMN of the patch n and the feature
vassy) = (s sgf)]e{)T. Figure 4 shows an example
with three feature-dependent patch SMNSs. In this figure we
can observe how certain regions are noisier than others in
some features. We can also observe certain patterns across
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Figure 3. Overview of the recognition framework with the proposed methods highlighted.

(a)

(b)

Figure 4. Patch SMINs: (a) image of the 15 scenes dataset (category: MITtallbuilding), and (b) probability maps illustrating each component
of the patch SMNs. Each row corresponds to SMNs obtained for a different visual descriptor.

categories (category co-occurrences), across features (inter-
feature relations) and between neighboring patches (spatial
relations).

Note that all SMINS lie in the same (semantic) space and
all represent a probability, so we can combine them us-
ing probability models. In particular, we obtain the multi-
feature SMN from several feature-dependent SMNs as a
representative SMN closer to all of them. A suitable choice
for probability distributions is minimizing the Kullback-
Leibler (KL) divergence[23] as

S, = argmin Z KL(sﬁf’)Hén) 2)
8n veV
which results in
1 (v)
eXpPlT 2w log(snaw
o (th Toevlogshd)

ZweW eXp(|_\£'| Zuev IOg(SS;;)) )

4. Multi-feature Spatial Context Model
4.1. Global models

To exploit the spatial context, we consider the relations
between neighboring patches. In contrast to the feature-
dependent SMNs, we could use a similar approach as the
one used, but here each patch is not independent. So here
we resort to undirected models.

We first formulate the problem as denoising patches
SMNs using a Markov Random Field (MRF), with
a 4-connectivity grid (see Figure S5b).  Considering

\/

n=1-.- N

(a)

(b)
Figure 5. Contextual models: (a) multi-feature combination, (b)
4-connected spatial grid model, and (c) multi-feature spatial grid
model.

a single feature, the objective is to maximize the
joint probability over the observed SMNs and the de-
noised SMNs set defined as P (s1,...SN,S1,...SN)
%emp(—E ($1,...8Nn,81,...8SN)), where Z is the parti-
tion function to normalize the probability. Thus, the prob-
lem is equivalent to minimizing the global energy of the
network modeled as

SN)

= g(sn,sn)+a Y glsu,sn) @

n {n,n'}

E(S1,...SN,S1,---

where s, is the unknown denoised SMN of patch n (in con-
trast to the original s,,) and {n, n'} represents pairs of con-
nected patches. We model the energy as distance between
SMNs. A suitable choice for probability simplices is the
geodesic distance ¢ (s, s’)[37]. We chose it over the KL di-
vergence used in (2) because KL divergence is asymmetric,
and in the semantic manifold framework has been proved
effective[8].
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Figure 6. Local patch contextual models (joint multi-feature spa-
tial): (a) only features from the target patch, and (b) features from
all the patches in the neighborhoods of target patch

As both feature-dependent SMNs and the denoised
SMNs are in the same space, this model can be easily ex-
tended to multiple features using the model in Figure 5c.
The corresponding energy is

E (S_h e Sjv’sgl)’ s Sg\lf)ﬁsg‘VI)a cee Sg\lva)

zzzg(sn, s(v >)+a 3 g(asw)

n veV {n,n'}

To solve the optimization problem, we resort to the Iter-
ative Conditional Modes (ICM) algorithm[2], which loops
over the different patches minimizing the energy related
with one variable keeping the other variable nodes fixed.
It can be seen as coordinate-wise gradient descent. This al-
gorithm converges to a local maximum of the probability.
Other algorithms can be used, such as graph cuts, but their
extension to larger neighborhoods without pairwise cliques
is difficult, computationally more expensive and they do not
lead to the local formulation of ICM.

4.2. Local models

The ICM algorithm updates the value of each patch by
minimizing locally the related energy, keeping fixed the
value of other patch variables. Now we can define the
neighborhood B, as the set of neighbors of the patch n. In
the case of Figure 5b, B,, contains four neighbors. Now we
can reformulate the model as [V independent patch-centred
subgraphs (see Figure 6a, where all s;, (h # n) are consider
observed for a particular patch n) , and

E(Sn7¢n |V| Z (Sn S(Q )
1
+a|B | Z

™ {n,n},heB,

g(Sn,sn) (6)

where ¢, = {sg{U)WU S V} U{sn|Vh € B,} is the set of

SMNs in the multi-feature spatial neighborhood of the patch
n. For convenience we also normalize by the size of the
neighborhood | B,,| and the number of features |V|. Includ-
ing larger neighborhoods with the global models of the pre-
vious section would lead to some factors being no longer
pairwise, and the complexity of the problem increases sig-
nificantly. However, by using this local approximation we
can easily include larger neighborhoods.

We also consider an extended context, which not only
considers feature-dependent SMNs from the target patch,
but also from the neighbors (the graphical model is shown
in Figure 6b).

E(S_n§¢n - |Z Sny n
veV
1 _
> glsasn)
|Bn|
{n,h},h€B,

: (v))
BW Z Z Sn; S, @)

{n,h},he B, veV

now with 6, = {s{’|vo € V} U {s{""|vh € B, vw € V}.

Finally, we include an additional term in the energy to
penalize too flat SMNs, which would lead to uninformative
patches:

E' ($ni¢n) = E (Sn:¢n) + AH (sn) ©)
where H (s) = — Zf\le Sw log (84 is the entropy of s.
Following the same idea of the ICM algorithm, we loop
over the patches minimizing (8) for each patch n. This prob-
lem can be solved using gradient descent. The gradient cor-
responding to the patch n is

veV
1
+0¢ﬁ Z f (0w, Shw)
"™ {n,h},heB,
TS > F (s st ) =y (1+10g(si,)
BV e

{n,h},he€B, vEV

where

f(zy

):8g(:v,y)__ VY

Or oumi- (Vaym?

In this section we evaluate the different context models
described previously over different dataset, comparing with
the related works.

5. Experiments
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5.1. Experimental setup

Datasets. The proposed methods are evaluated on three
small datasets. 15 scenes [7, 10] contains 4485 images
across 15 scene categories. LabelMe[18] consists of 8 out-
door scene categories, with a total of 2600 images. UIUC-
Sports[12] consists of 1585 images labeled into 8 com-
plex sport scene categories. Following settings in pre-
vious works, we use 100, 100 and 70 images for train-
ing, respectively. We also evaluate the proposed meth-
ods on larger scale datasets, including MIT67[20] and
SUN397[34]. MIT67 contains 15620 images of 67 indoor
scene classes. SUN397[34] consists of 397 categories, with
108762 images in total. In the case of MIT67 Indoor and
SUN397, the training/testing configurations are provided by
the original authors.

Visual and semantic features. We use three kinds of
kernel descriptors[3] as the local descriptors, including gra-
dient, shape (LBP) and color. All local visual descriptors
are extracted on a regular 16 x 16 pixel dense grid (step 8
pixels). For themes, we train GMMs with 512 mixtures for
each theme model. We also extend the descriptor using a
spatial pyramid[10] with four levels (1 x 1, 2 x 2, 3 x 3,
4 x 4) for SVM classification.

Baselines. We compare our approach with the same
framework without context model, which is equivalent to
the spatial pyramid semantic manifold (SPMSM)[8], just
using a different approximate embedding[4]. We evaluate it
independently over the same visual features.

Variations of the proposed methods. We evaluate four
variations of the proposed context models:

o Multi-feature context (MF): multiple features are com-
bined in the semantic space using (3), corresponding
to the context in Figure 2a and the model in Figure 5a.

e Spatial context (S): single feature neighboring rela-
tions (see Figure 2b). Obtained by minimizing (6)
when only one feature is used.

o Multi-feature spatial context (MFS): combines
multiple-features of the target patch and neighboring
relations (i.e. the combination of Figure 2a and b).
Obtained by minimizing (6) in the multi-feature case.

o Extended multi-feature spatial context (EMFS): also
includes multiple-features from patches in the neigh-
borhood (see Figure 2¢). Obtained by minimizing (6)
and corresponding to the model in Figure 6b.

5.2. Impact of the neighborhood size and entropy
regularization

Two critical parameters are the size of the spatial neigh-
borhood and the entropy regularization, as it has impact on
the co-occurrence patterns. We evaluate them on the 15

15 scenes
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Figure 8. Region size and sparse parameter evaluation

scenes dataset, using the EMFS setting and fixing o and
B to 1. The results are illustrated in Figure 8.

We evaluate different neighborhoods, including the 4-
connectivity spatial neighborhood shown in Figure 2b and
¢, and other dense neighborhoods of size LxL patches (3x3
corresponds to 8 neighbors). We can observe that larger
neighborhoods can effectively reinforce consistent patterns
and filter accidental ones. However, too large neighbor-
hoods cannot capture properly local co-occurrence patterns.
From our experiments, a good trade-off is 7x7 patches.

We also evaluate the impact of the entropy regularization
varying v from 0 to 0.2, with a step of 0.05. In general, the
performance increases with « with maximum around 0.1
and then decreases. Figure 7 illustrates the effect of entropy
on the patch SMNs. Without penalizing the entropy (y = 0)
we obtain too flat patch SMNS (i.e. high entropy) which are
not suitable for co-occurrence modeling. Too low entropy
in the patch SMNs is not useful either (v = 0.2), as one
category may dominate with a too high probability, there are
few consistent co-occurrence patterns. The best results in
this experiment were achieved for v = 0.1 and L = 7. For
the rest of the experiments we will use this configuration,
although specific parameters may improve the performance.

5.3. Context models

We evaluate the different variations of the proposed
methods on the three small scale datasets to show how dif-
ferent types of context models improve the accuracy. Ta-
ble 1 shows that the classification accuracy increases con-
sistently when we model different types of context. Com-
bining multiple features help with a gain around 1.1-2.5%
over the best single feature. Spatial context is more vari-
able and varies from no gain to modest gains around 1%.
However, combining both can increase an additional 0.5-
1% over only multi-feature context. The extended multi-
feature spatial context contributes with an additional 0.5-1%
gain by incorporating multiple features from the neighbor-
ing patches. The total gain with the extended context model
over the baseline with no context is around 2.6-5.7%.
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Figure 7. Effect of entropy regularization on the patch SMNs. The spatial neighborhood is 3x3 patches.

Table 1. Accuracy (%) for different context models.

Method (feature) 15 scenes LabelMe Sports
No context model
Baseline (gradient) 78.9 86.5 83.9
Baseline (shape) 80.0 85.0 84.3
Baseline (color) 75.4 72.4 72.8
Spatial context (7x7 patches)

Spatial (Gradient) 81.0 86.7 83.7
Spatial (Shape) 81.4 84.9 83.9
Spatial (Color) 76.6 72.9 73.1

Multiple feature context
Multi-feature 82.5 88.3 85.4
Joint multi-feature spatial context (7x7 patches, v = 0.1)
MFS 83.5 88.9 85.9
Extended MFS 85.7 89.3 86.9

5.4. Comparison with related works

We compare with recent works using mid-level seman-
tic representations, such as latent topic models[12, 30,
15, 24, 16], extensions of the SMN framework[23, 8]
and others such as extensions of Object bank[13, 38] and
Classemes|[28, 1]. Most of these approaches cannot be used
in large scale datasets, so we separate comparisons for small
datasets and larger datasets.

5.4.1 Small scale datasets

Table 1 compares the results reported by the authors in
their corresponding references. Although a completely fair
comparison is not possible, due to different implemen-
tations, features and other parameters, our framework at
least seems to be very competitive in the three evaluated
datasets. Comparing with methods based on SMNs is of
particular interest. Note that the contextual multinomial
(CMN) exploits CCO at the image level SMN using a gen-
erative model, Dirichlet mixture models (DMM). SPMSM

Table 2. Comparison with related works.

Dataset Method Accuracy (%)
SMN[23] 71.7
LDA[24] 76.6
CMN][23] 77.2
ObjectBank[16] 80.9
15 scenes Kernel descriptor[3] 82.2
SPMSM[8] 82.5
SR-LSR[16] 85.7
Proposed (EMFS) 85.7
Object-to-Class kernels[38] 88.8
Wang et al[30] 76.0
SPMSM[8] 87.5
LabelMe Kernel descriptor(3]* 87.3
Proposed (EMFS) 89.3
SR-LSR[16] 89.8
Li and Fei-Fei[12] 734
ObjectBank[13] 76.3
SPMSM[8] 83.0
Sports SR-LSR[16] 83.9
Kernel descriptor[3] 85.2
Object-to-Class kernels[38] 86.0
Proposed (EMFS) 86.9

* Results are based on our own implementation using the
code available from the authors.

exploits discriminative classification and rough spatial con-
text, achieving better performance. The proposed method,
which also exploits multiple features and local context in
patch level achieves better performance than those meth-
ods. We also compare with modeling categories directly
from the same low-level kernel descriptors (concatenated to
combine them), with and a SVM and spatial pyramid. We
observe that our method, which uses a mid-level represen-
tation achieves better results.
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Table 3. Comparison on MIT67 dataset.

Table 4. Comparison on SUN397 dataset.

MIT67 Method Acc (%) SUN397 Method Accuracy (%)
Baseline (gradient) 34.7 Baseline (gradient) 254
Baseline (shape) 36.9 Baseline (shape) 23.2
Proposed Baseline (color) 26.8 Proposed Baseline (color) 18.2
Proposed (MF) 42.4 Proposed (MF) 30.4
Proposed (MFS) 44.7 Proposed (MFS) 34.9
Proposed (EMFS) 48.2 Proposed (EMFS) 40.7
ObjectBank[16] 37.6 SUN (HOG)[34] 27.2
Object-to-Class kernels[38] 39.6 SPMSM[8] 28.2
Deformable Part Models[19] 43.1 Meta-classes[1] 36.8
SPMSM|8] 44.0 State-of-the-art SUN(MKL)[34] 38.0
Sparse Spatial Coding[11] 44.4 CNN (Decaf)[6] 40.9
State-of-the-art  Geometric Phrase Pooling[35] 46.4 IFV[27] 472
Linear Distance Coding[33] 46.7 Places-CNNJ[39] 54.3

IFV[27] 60.8
Discriminative parts[5] 64.0
Places-CNN[39] 68.2
CNNaug-SVM [25] 69.0

5.4.2 Large scale datasets

We evaluate the proposed methods on the medium scale
dataset MIT67 and the much larger SUN397. The results
are shown in Tables 3 and 4, respectively. The gains due
to incorporating different contexts are much higher than in
smaller datasets, for significant gains of 11% and 15% over
the best single feature baseline for the MIT67 and SUN397
datasets, respectively. This suggests that contextual rela-
tions become much more important important as the num-
ber of scene categories increases, resulting in co-occurrence
patterns much noisier in these larger datasets. Exploit-
ing the context to emphasize representative category co-
occurrence patterns can greatly help to improve the recog-
nition performance. Other mid-level semantic representa-
tions, such as Object-bank and Meta-classes exploit larger
amounts of external data (e.g.. ImageNet) to model the mid-
level classifiers. The proposed method outperforms them
without resorting to external data.

As the number of mid-level representation approaches
that can be trained for these datasets is limited, as a refer-
ence we also compare with recent works based on coding in
the bag-of-words framework[33, 11, 35], Fisher vector[27],
mining discriminative parts[5] and convolutional neural net-
works (CNN)[6, 39, 25]. We achieve slightly better per-
formance than LLC but not Fisher vector. Note however
than the result in [27] uses a much denser grid for sampling
local features resulting in a much higher dimensional fea-
ture. Mining discriminative parts also achieves better per-
formance in MIT67. This dataset contains indoor scenes
with many objects where part-based representations can
achieve good performance. Even being a purely scene-level
representation, our approach still achieves competitive per-
formance in both datasets. We achieve comparable perfor-

mance to CNN features learned on ImageNet[6] but not on
Places[39], since this dataset is scene-centric and thus more
suitable. Note that, in contrast to CNN, we do not make use
of any external data.

6. Conclusions

Intermediate semantic spaces are very helpful to recog-
nize complex scenes. In contrast to topic models exploiting
low and mid-level feature co-occurrences, we focus on a
special type of pattern resulting from learning local theme
models with weak supervision. Exploiting these patterns
(i.e. scene category co-occurrences) properly can boost the
recognition performance.

We extend the semantic manifold framework[8] by
including a context model integrating multiple features
and neighboring patches. We exploit the property that
the semantic simplex is a common space where multiple
features and neighboring patches can be naturally inte-
grated. A joint context model exploiting these relations is
critical to improve the performance in this framework. In
particular, large datasets benefit more from the proposed
context models, as the number of classes is higher and
useful category co-occurrence patterns are more subtle
and hidden in noisy patterns. Exploiting local spatial and
multi-feature relations can help to discover consistent
patterns and filter out noisy patterns, making things easier
to the classifier which can focus on modeling these patterns.
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