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Abstract

Although RGB-D sensors have enabled major break-
throughs for several vision tasks, such as 3D reconstruc-
tion, we have not attained the same level of success in high-
level scene understanding. Perhaps one of the main rea-
sons is the lack of a large-scale benchmark with 3D anno-
tations and 3D evaluation metrics. In this paper, we intro-
duce an RGB-D benchmark suite for the goal of advancing
the state-of-the-arts in all major scene understanding tasks.
Our dataset is captured by four different sensors and con-
tains 10,335 RGB-D images, at a similar scale as PASCAL
VOC. The whole dataset is densely annotated and includes
146,617 2D polygons and 64,595 3D bounding boxes with
accurate object orientations, as well as a 3D room layout
and scene category for each image. This dataset enables
us to train data-hungry algorithms for scene-understanding
tasks, evaluate them using meaningful 3D metrics, avoid
overfitting to a small testing set, and study cross-sensor
bias.

1. Introduction
Scene understanding is one of the most fundamen-

tal problems in computer vision. Although remarkable
progress has been achieved in the past decades, general-
purpose scene understanding is still considered to be very
challenging. Meanwhile, the recent arrival of affordable
depth sensors in consumer markets enables us to acquire
reliable depth maps at a very low cost, stimulating break-
throughs in several vision tasks, such as body pose recog-
nition [56, 58], intrinsic image estimation [4], 3D modeling
[27] and SfM reconstruction [72].

RGB-D sensors have also enabled rapid progress for
scene understanding (e.g. [20, 19, 53, 38, 30, 17, 32, 49]).
However, while we can crawl color images from the Inter-
net easily, it is not possible to obtain large-scale RGB-D
data online. Consequently, the existing RGB-D recogni-
tion benchmarks, such as NYU Depth v2 [49], are an order-
of-magnitude smaller than modern recognition datasets for
color images (e.g. PASCAL VOC [9]). Although these

(a) NYU Depth v2 (b) UW Object Dataset

(c) SUN3D (d) Ours
Figure 1. Comparison of RGB-D recognition benchmarks.
Apart from 2D annotation, our benchmark provided high quality
3D annotation for both objects and room layout.

small datasets successfully bootstrapped initial progress in
RGB-D scene understanding in the past few years, the size
limit is now becoming the critical common bottleneck in
advancing research to the next level. Besides causing over-
fitting of the algorithm during evaluation, they cannot sup-
port training data-hungry algorithms that are currently the
state-of-the-arts in color-based recognition (e.g. [15, 36]).
If a large-scale RGB-D dataset were available, we could
borrow the same success to the RGB-D domain as well.
(Table 1 shows the performance improvement for a RGB-
D deep learning algorithm [20] when a bigger training set
is used.) Furthermore, although the RGB-D images in these
datasets contain depth maps, the annotation and evaluation
metrics are mostly in 2D image domain, but not directly in
3D (Figure 1). Scene understanding is much more useful in
the real 3D space for most applications. We desire to reason
about scenes and evaluate algorithms in 3D.

To this end, we introduce SUN RGB-D, a dataset con-
taining 10,335 RGB-D images with dense annotations in
both 2D and 3D, for both objects and rooms. Based on
this dataset, we focus on six important recognition tasks
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Testing Set
Training Set

NYU (795 images) SUN RGB-D (5,285 images)

NYU 32.50 34.33
SUN RGB-D 15.78 33.20

Table 1. Performance improves as the size of training data in-
creases. We trained the Depth-RCNN [20] for 2D object detection
using RGB-D images, and evaluated the mean average precision.
Bigger training set produces better result. Especially for the first
row using NYU as the testing set, the performance is still better
using the bigger SUN RGB-D that is a superset of NYU, despite
the domain gap due to dataset bias.

RealSense Xtion Kinect v1 Kinect v2
weight (pound) 0.077 0.5 4 4.5

size (inch) 5.2×0.25×0.75 7.1×1.4×2 11×2.3×2.7 9.8×2.7×2.7
power 2.5W USB 2.5W USB 12.96W 115W

depth resolution 628×468 640×480 640×480 512×424
color resolution 1920×1080 640×480 640×480 1920×1080

Table 2. Specification of sensors. RealSense is very light, while
Kinect v2 is heavier and has much higher power consumption.

towards total scene understanding, which recognizes ob-
jects, room layouts and scene categories. For each task,
we propose metrics in 3D and evaluate baseline algorithms
derived from the state-of-the-arts. Since there are several
popular RGB-D sensors available, each with different size
and power consumption, we construct our dataset using four
different kinds of sensors to study how well the algorithms
generalize across sensors. By constructing a PASCAL-scale
dataset and defining a benchmark with 3D evaluation met-
rics, we hope to lay the foundation for advancing RGB-D
scene understanding in the coming years.

1.1. Related work

There are many interesting works on RGB-D scene un-
derstanding, including semantic segmentation [53, 49, 19]
object classification [69], object detection [59, 20, 62], con-
text reasoning [38], mid-level recognition [32, 31], and sur-
face orientation and room layout estimation [13, 14, 74].
Having a solid benchmark suite to evaluate these tasks will
be very helpful in further advancing the field.

There are many existing RGB-D datasets available [54,
47, 1, 25, 44, 60, 49, 45, 29, 66, 57, 52, 46, 16, 21, 73, 35,
67, 3, 41, 10, 63, 42, 64, 65, 48, 12, 33, 8, 50, 26, 6]. Fig-
ure 1 shows some of them. Here we will briefly describe
several most relevant ones1. There are datasets [61, 37] that
capture objects on a turntable instead of real-world scenes.
For natural indoor scene datasets, NYU Depth v2 [49] is
probably the most popular one. They labeled 1,449 selected
frames from short RGB-D videos using 2D semantic seg-
mentation on the image domain. [18] annotates each object
by aligning a CAD model with the 3D point cloud. How-
ever, the 3D annotation is quite noisy, and in our bench-
mark we reuse the 2D segmentation but recreate the 3D an-

1 A full list with brief descriptions is available at http://www0.cs.
ucl.ac.uk/staff/M.Firman/RGBDdatasets/.
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Figure 2. Comparison of the four RGB-D sensors. The raw
depth map from Intel RealSense is noisier and has more missing
values. Asus Xtion and Kinect v1’s depth map have observable
quantization effect. Kinect v2 is more accurate to measure the de-
tails in depth, but it is more sensitive to reflection and dark color.
Across different sensors our depth improvement algorithm man-
ages to robustly improve the depth map quality.

notation by ourselves. Although this dataset is very good,
the size is still small compared to other modern recognition
datasets, such as PASCAL VOC [9] or ImageNet [7]. B3DO
[28] is another dataset with 2D bounding box annotations
on the RGB-D images. But its size is smaller than NYU
and it has many images with an unrealistic scene layouts
(e.g. snapshot of a computer mouse on the floor). The Cor-
nell RGBD dataset [2, 34] contains 52 indoors scenes with
per-point annotations on the stitched point clouds. SUN3D
[72] contains 415 RGB-D video sequence with 2D polygon
annotation on some key frames. Although they stitched the
point cloud in 3D, the annotation is still purely in the 2D
image domain, and there are only 8 annotated sequences.

2. Dataset construction
The goal of our dataset construction is to obtain an im-

age dataset captured by various RGB-D sensors at a similar
scale as the PASCAL VOC object detection benchmark. To
improve the depth map quality, we take short videos and
use multiple frames to obtain a refined depth map. For each
image, we annotate the objects with both 2D polygons and
3D bounding boxes and the room layout with 3D polygons.

2.1. Sensors

Since there are several popular sensors available, with
different size and power consumption, we construct our
dataset using four kinds – Intel RealSense 3D Camera for
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Figure 3. Example images with annotation from our dataset.

tablets, Asus Xtion LIVE PRO for laptops, and Microsoft
Kinect versions 1 and 2 for desktop. Table 2 shows each
sensor’s specification. Figure 2 shows the example color
and depth images captured.

Intel RealSense is a lightweight, low power consuming
depth sensor designed for tablets. It will soon reach con-
sumers; we obtained two pre-release samples from Intel. It
projects an IR pattern to the environment and uses stereo
matching to obtain the depth map. For outdoor environ-
ments, it can switch automatically to stereo matching with-
out IR pattern; however, we visually inspect the 3D point
cloud and believe the depth map quality is too low for use in
accurate object recognition for outdoors. We thus only use
this sensor to capture indoor scenes. Figure 2 shows its raw
depth is worse than that of other RGB-D sensors, and the
effective range for reliable depth is shorter (depth gets very
noisy around 3.5 meters). But this type of lightweight sen-
sor can be embedded in portable devices and be deployed at
a massive scale in consumer markets, so it is important to
study algorithm performance with it.

Asus Xtion and Kinect v1 use a near-IR light pattern. Asus
Xtion is much lighter and powered by USB only, with worse
color image quality than Kinect v1’s. However, Kinect v1
requires an extra power source. The raw depth maps from
both sensors have an observable quantization effect.

Kinect v2 is based on time-of-flight and also consumes sig-
nificant power. The raw depth map captured is more accu-
rate, with high fidelity to measure the detailed depth differ-
ence, but fails more frequently for black objects and slightly
reflective surfaces. The hardware supports long distance
depth range, but the official Kinect for Windows SDK cuts
the depth off at 4.5 meters and applies some filtering that
tends to lose object details. Therefore, we wrote our own

driver and decoded the raw depth in GPU (Kinect v2 re-
quires software depth decoding) to capture real-time video
without depth cutoffs or additional filtering.

2.2. Sensor calibration

For RGB-D sensors, we must calibrate the camera in-
trinsic parameters and the transformation between the depth
and color cameras. For Intel RealSense, we use the default
factory parameters. For Asus Xtion, we rely on the default
parameters returned by OpenNI library without modeling
radial distortion. For Kinect v2, the radial distortion is very
strong. So we calibrate all cameras with standard calibra-
tion toolbox [5]. We calibrate the depth cameras by comput-
ing the parameters with the IR image which is the same with
the depth camera. To see the checkerboard without overex-
posure on IR, we cover the emitter with a piece of paper.
We use the stereo calibration function to calibrate the trans-
formation between the depth (IR) and the color cameras.

2.3. Depth map improvement

The depth maps from these cameras are not perfect, due
to measurement noise, view angle to the regularly reflec-
tive surface, and occlusion boundary. Because all the RGB-
D sensors operate as a video camera, we can use nearby
frames to improve the depth map, providing redundant data
to denoise and fill in missing depth.

We propose a robust algorithm for depth map integration
from multiple RGB-D frames. For each nearby frame in a
time window, we project the points to 3D, get the triangu-
lated mesh from nearby points, and estimate the 3D rotation
and translation between this frame and the target frame for
depth improvement. Using this estimated transformation,
we render the depth map of the mesh from the target frame
camera. After we obtain aligned and warped depth maps,
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Kinect v2 SUN3D (ASUS Xtion) NYUv2 (Kinect v1)

B3DO (Kinect v1)Intel RealSense 

(a) object distribution (b) scene distribution19959

Figure 4. Statistics of semantic annotation in our dataset.

(a) (b) (c)
Figure 5. Data Capturing Process. (a) RealSense attached to lap-
top, (b) Kinect v2 with battery, (c) Capturing setup for Kinect v2.

we integrate them to get a robust estimation. For each pixel
location, we compute the median depth and 25% and 75%
percentiles. If the raw target depth is missing or outside
the 25% − 75% range and the median is computed from
at least 10 warped depth maps, we use the median depth
value. Otherwise, we keep the original value to avoid over-
smoothing. Examples are shown in Figure 2. Our depth
map improvement algorithm, compared to [72] which uses
a 3D voxel-based TSDF representation, requires much less
memory and runs faster at equal resolution, enabling much
high-resolution integration.

Robust estimation of an accurate 3D transformation be-
tween a nearby frame and target frame is critical for this
algorithm. To do this, we first use SIFT to obtain point-to-
point correspondences between the two color images, ob-
tain the 3D coordinates for the SIFT keypoints from the
raw depth map, and then estimate the rigid 3D rotation and
translation between these two sparse 3D SIFT clouds us-
ing RANSAC with three points. To obtain a more accurate
estimation, we would like to use the full depth map to do
dense alignment with ICP, but depending on the 3D struc-
ture, ICP can have severe drifting. Therefore, we first use
the estimation from SIFT+RANSAC to initialize the trans-
formation for ICP, and calculate the percentage of points
for ICP matching. Using the initialization and percentage
threshold, we run point-plane ICP until convergence, then
check the 3D distances with the original SIFT keypoint in-
liers from RANSAC. If the distances significantly increase,
it means ICP makes the result drift away from the truth; we
will use the original RANSAC estimation without ICP. Oth-
erwise, we use the ICP result.

2.4. Data acquisition

To construct a dataset at the PASCAL VOC scale, we
capture a significant amount of new data by ourselves and
combine some existing RGB-D datasets. We capture 3,784
images using Kinect v2 and 1,159 images using Intel Re-
alSense. We included the 1,449 images from the NYU
Depth V2 [49], and also manually selected 554 realistic
scene images from the Berkeley B3DO Dataset [28], both
captured by Kinect v1. We manually selected 3,389 dis-
tinguished frames without significant motion blur from the
SUN3D videos [72] captured by Asus Xtion. In total, we
obtain 10,335 RGB-D images.

As shown in Figure 5, we attach an Intel RealSense to
a laptop and carry it around to capture data. For Kinect v2
we use a mobile laptop harness and camera stabilizer. Be-
cause Kinect v2 consumes a significant amount of power,
we use a 12V car battery and a 5V smartphone battery to
power the sensor and the adaptor circuit. The RGB-D sen-
sors only work well for indoors. And we focus on univer-
sities, houses, and furniture stores in North America and
Asia. Some example images are shown in Figure 3.

2.5. Ground truth annotation

For each RGB-D image, we obtain LabelMe-style 2D
polygon annotations, 3D bounding box annotations for ob-
jects, and 3D polygon annotations for room layouts. To en-
sure annotation quality and consistency, we obtain our own
ground truth labels for images from other datasets; the only
exception is NYU, whose 2D segmentation we use.

For 2D polygon annotation, we developed a LabelMe-
style [55] tool for Amazon Mechanical Turk. To ensure
high label quality, we add automatic evaluation in the tool.
To finish the HIT, each image must have at least 6 objects
labeled; the union of all object polygons must cover at least
80% of the total image. To prevent workers from cheat-
ing by covering everything with big polygons, the union
of the small polygons (area < 30% of the image) must
cover at least 30% of the total image area. Finally, the au-
thors visually inspect the labeling result and manually cor-
rect the layer ordering when necessary. Low quality label-
ings are sent back for relabeling. We paid $0.10 per image;
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Figure 6. Confusion matrices for various scene recognition algorithms. Each combination of features and classifiers is run on RGB, D
and RGB-D. The numbers inside the parentheses are the average accuracy for classification.

some images required multiple labeling iterations to meet
our quality standards.

For 3D annotation, the point clouds are first rotated to
align with the gravity direction using an automatic algo-
rithm. We estimate the normal direction for each 3D point
with the 25 closest 3D points. Then we accumulate a his-
togram on a 3D half-sphere and pick the maximal count
from it to obtain the first axis. For the second axis, we pick
the maximal count from the directions orthogonal to the first
axis. In this way, we obtain the rotation matrix to rotate the
point cloud to align with the gravity direction. We manually
adjust the rotation when the algorithm fails.

We design a web-based annotation tool and hire oDesk
workers to annotate objects and room layouts in 3D. For ob-
jects, the tool requires drawing a rectangle on the top view
with an orientation arrow, and adjusting the top and bottom
to inflate it to 3D. For room layouts, the tool allows arbitrary
polygon on the top view to describe the complex structure
of the room (Figure 3). Our tool also shows the projec-
tion of the 3D boxes to the image in real time, to provide
intuitive feedback during annotation. We hired 18 oDesk
workers and trained them over Skype. The average hourly
rate is $3.90, and they spent 2,051 hours in total. Finally,
all labeling results are thoroughly checked and corrected by
the authors. For scene categories, we manually classify the
images into basic-level scene categories.

2.6. Label statistics

For the 10,335 RGB-D images, we have 146,617 2D
polygons and 64,595 3D bounding boxes (with accurate ori-
entations for objects) annotated. Therefore, there are 14.2
objects in each image on average. In total, there are 47
scene categories and about 800 object categories. Figure 4
shows the statistics for the semantic annotation of the major
object and scene categories.

3. Benchmark design
To evaluate the whole scene understanding pipeline, we

select six tasks, including both popular existing tasks and
new but important tasks, both single-object based tasks and
scene tasks, as well as a final total scene understanding task
that integrates everything.

Scene Categorization Scene categorization is a very pop-
ular task for scene understanding [70]. In this task, we are

Effective free space
Outside the room
Inside some objects
Beyond cutoff distance 

Figure 7. Free space evaluation. The free space is the gray area
inside the room, outside any object bounding boxes, and within
the effective minimal and maximal range [0.5m-5.5m]. For evalu-
ation, we use IoU between the gray areas of the ground truth and
the prediction as the criteria.

given an RGB-D image, classify the image into one of the
predefined scene categories, and use the standard average
categorization accuracy for evaluation.

Semantic Segmentation Semantic segmentation in the
2D image domain is currently the most popular task for
RGB-D scene understanding. In this task, the algorithm
outputs a semantic label for each pixel in the RGB-D im-
age. We use the standard average accuracy across object
categories for evaluation.

Object Detection Object detection is another important
step for scene understanding. We evaluate both 2D and 3D
approaches by extending the standard evaluation criteria for
2D object detection to 3D. Assuming the box aligns with
the gravity direction, we use the 3D intersection over union
of the predicted and ground truth boxes for 3D evaluation.

Object Orientation Besides predicting the object loca-
tion and category, another important vision task is to es-
timate its pose. For example, knowing the orientation of a
chair is critical to sit on it properly. Because we assume that
an object bounding box is aligned with gravity, there is only
one degree of freedom in estimating the yaw angle for ori-
entation. We evaluate the prediction by the angle difference
between the prediction and the ground truth.

Room Layout Estimation The spatial layout of the entire
space of the scene allows more precise reasoning about free
space (e.g., where can I walk?) and improved object rea-
soning. It is a popular but challenging task for color-based
scene understanding (e.g. [22, 23, 24]). With the extra depth
information in the RGB-D image, this task is considered to
be much more feasible [74]. We evaluate the room layout
estimation in 3D by calculating the Intersection over Union



mean
RGB NN 45.03 27.89 16.89 18.51 21.77 1.06 4.07 0 8.32
Depth NN 42.6 9.65 21.51 12.47 6.44 2.55 0.6 0.3 5.32

RGB-D NN 45.78 35.75 19.86 19.29 23.3 1.66 6.09 0.7 8.97
RGB [40] 47.22 39.14 17.21 20.43 21.53 1.49 5.94 0 9.33
Depth [40] 43.83 13.9 22.31 12.88 6.3 1.49 0.45 0.25 5.98

RGB-D [40] 48.25 49.18 20.8 20.92 23.61 1.83 8.73 0.77 10.05
RGB-D [53] 78.64 84.51 33.15 34.25 42.52 25.01 35.74 35.71 36.33

Table 3. Semantic segmentation. We evaluate performance for 40
object categories. Here shows 8 selected ones: floor, ceiling, chair,
table, bed, nightstand, books, and person. The mean accuracy is
for all the 40 categories. A full table is in the supp. material.

mAP
Sliding Shapes [62] 33.42 25.78 42.09 61.86 23.28 37.29

Table 4. 3D object detection.

(IoU) between the free space from the ground truth and the
free space predicted by the algorithm output.

As shown in Figure 7, the free space is defined as the
space that satisfies four conditions: 1) within camera field
of view, 2) within effective range, 3) within the room, and
4) outside any object bounding box (for room layout esti-
mation, we assume empty rooms without objects). In terms
of implementation, we define a voxel grid of 0.1×0.1×0.1
meter3 over the space and choose the voxels that are inside
the field of view of the camera and fall between 0.5 and 5.5
meters from the camera, which is an effective range for most
RGB-D sensors. For each of these effective voxels, given a
room layout 3D polygon, we check whether the voxel is in-
side. In this way, we can compute the intersection and the
union by counting 3D voxels.

This evaluation metric directly measures the free space
prediction accuracy. However, we care only about the space
within a 5.5 meter range; if a room is too big, all effective
voxels will be in the ground truth room. If an algorithm pre-
dicts a huge room beyond 5.5 meters, then the IoU will be
equal to one, which introduces bias: algorithms will favor
a huge room. To address this issue, we only evaluate algo-
rithms on the rooms with reasonable size (not too big), since
none of the RGB-D sensors can see very far either. If the
percentage of effective 3D voxels in the ground truth room
is bigger than 95%, we discard the room in our evaluation.

Total Scene Understanding The final task for our scene
understanding benchmark is to estimate the whole scene in-
cluding objects and room layout in 3D [38]. This task is also
referred to “Basic Level Scene Understanding” in [71]. We
propose this benchmark task as the final goal to integrate
both object detection and room layout estimation to obtain
a total scene understanding, recognizing and localizing all
the objects and the room structure.

We evaluate the result by comparing the ground truth ob-
jects and the predicted objects. To match the prediction with
ground truth, we compute the IoU between all pairs of pre-

Angle: 12.6   IoU: 0.7 Angle: 87.4  IoU: 0.4 Angle: 31.4  IoU: 0.24

Angle: 8.6   IoU: 0.7Angle: 3.54   IoU: 0.66

Angle: 49.5  IoU: 0.6

Angle: 1.6  IoU: 0.6 Angle: 2.4  IoU: 0.7

Figure 8. Example results for 3D object detection and orienta-
tion prediction. We show the angle difference and IoU between
predicted boxes (blue) and ground truth (red).
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Figure 9. Object orientation estimation. Here we show the dis-
tribution of the orientation errors for all true positive detections.

dicted boxes and ground truth boxes, and we sort the IoU
scores in a descending order. We choose each available pair
with the largest IoU and mark the two boxes as unavail-
able. We repeat this process until the IoU is lower than
a threshold τ (τ = 0.25 in this case). For each matched
pair between ground truth and prediction, we compare their
object label in order to know whether it is a correct predic-
tion or not. Let |G| be the number of ground truth boxes,
|P| be the number of prediction boxes, |M| be the num-
ber of matched pairs with IoU> τ , and |C| be the number
of matched pairs with a correct label. We evaluate the al-
gorithms by computing three numbers: Rr = |C| / |G| to
measure the recall of recognition for both semantics and ge-
ometry, Rg = |M|/|G| to measure the geometric prediction
recall, and Pg = |M|/|P| to measure the geometric predic-
tion precision. We also evaluate the free space by using a
similar scheme as for room layout: counting the visible 3D
voxels for the free space, i.e. inside the room polygon but
outside any object bounding box. Again, we compute the
IoU between the free space of ground truth and prediction.

4. Experimental evaluation
We choose some state-of-the-art algorithms to evaluate

each task. For the tasks without existing algorithm or imple-
mentation, we adapt popular algorithms from other tasks.
For each task, whenever possible, we try to evaluate al-
gorithms using color, depth, as well as RGB-D images to
study the relative importance of color and depth, and gauge
to what extent the information from both is complementary.



mAP
RGB-D ESVM 7.38 12.95 7.44 0.09 12.47 0.02 0.86 0.57 1.87 6.01 6.12 0.41 6.00 1.61 6.19 14.02 11.89 0.75 14.79 5.86
RGB-D DPM 34.23 54.74 14.40 0.45 29.30 0.87 4.75 0.43 1.82 13.25 23.38 11.99 23.39 9.36 15.59 21.62 24.04 8.73 23.79 16.64

RGB-D RCNN[20] 49.56 75.97 34.99 5.78 41.22 8.08 16.55 4.17 31.38 46.83 21.98 10.77 37.17 16.5 41.92 42.2 43.02 32.92 69.84 35.20
Table 5. Evaluation of 2D object detection. We evaluate on 19 popular object categories using Average Precision (AP): bathtub, bed,
bookshelf, box, chair, counter, desk, door, dresser, garbage bin, lamp, monitor, night stand, pillow, sink, sofa, table, tv and toilet.

Manhattan Box (0.99)Ground Truth Geometric Context (0.27)Convex Hull (0.90)

Convex Hull (0.85)

Geometric Context (0.61)Convex Hull (0.43)Manhattan Box (0.72)

Geometric Context (0.57)Ground Truth

Ground Truth

Manhattan Box (0.811)

Figure 10. Example visualization to compare the three 3D room
layout estimation algorithms.

Various evaluation results show that we can apply standard
techniques designed for color (e.g. hand craft features, deep
learning features, detector, sift flow label transfer) to depth
domain and it can achieve comparable performance for var-
ious tasks. In most of cases, when we combining these two
source of information, the performance get improved.

For evaluation, we carefully split the data into training
and testing set, ensuring each sensor has around half for
training and half for testing, Since some images are cap-
tured from the same building or house with similar furni-
ture styles, to ensure fairness, we carefully split the training
and testing sets by making sure that those images from the
same building either all go into the training set or the testing
set and do not spread across both sets. For data from NYU
Depth v2 [49], we use the original split.

Scene Categorization For this task, we use the 19 scene
categories with more than 80 images. We choose GIST [51]
with a RBF kernel one-vs-all SVM as the baseline. We also
choose the state-of-the-art Places-CNN [75] scene feature,
which achieves the best performance in color-based scene
classification on the SUN database [70]. This feature is
learned using a Deep Convolutional Neural Net (AlexNet
[36]) with 2.5 million scene images [75]. We use both linear
SVM and RBF kernel SVM with this CNN feature. Also,
empirical experiments [20] suggest that both traditional im-
age features and deep learning features for color image can
be used to extract powerful features for depth maps as well.
Therefore, we also compute the GIST and Places-CNN on
the depth images. We also evaluate the concatenation of
depth and color features. The depth image is encoded as
HHA image as in [20] before extract the feature. Figure 6
reports the accuracy for these experiments. We can see that
the deep learning features indeed perform much better, and
the combination of color and depth features also helps.

Semantic Segmentation We run the state-of-the-art algo-
rithm for semantic segmentation [53] on our benchmark and

RGB-D RCNN Sliding Shapes
(1) (2) (3) (4) (1) (2) (3) (4)

Pg 21.5 21.7 21..4 22.3 33.2 37.7 33.2 37.8
Rg 38.2 39.4 40.8 39.0 32.5 32.4 32.5 32.3
Rr 21.5 32.6 20.4 21.4 23.7 23.7 23.7 23.7
IoU 59.5 60.5 59.5 59.8 65.1 65.8 65.2 66.0

Table 6. Evaluation of total scene understanding. With the ob-
jects detection result from Sliding Shape and RCNN and Man-
hattan Box for room layout estimation, we evaluate four ways to
integrate object detection and room layout: (1) directly combine
(2) constrain the object using room. (3) adjust room base on the
objects (4) adjust the room and objects together.

report the result on Table 3. Since our dataset is quite large,
we expect non-parametric label transfer to work well. We
first use Places-CNN features [75] to find the nearest neigh-
bor and directly copy its segmentation as the result. We sur-
prisingly found that this simple method performs quite well,
especially for big objects (e.g. floor, bed). We then adapt
the SIFT-flow algorithm [40, 39], on both color and depth to
estimation flow. But it only slightly improves performance.

Object Detection We evaluate four state-of-the-art algo-
rithms for object detection: DPM [11], Exemplar SVM
[43], RGB-D RCNN [20], and Sliding Shapes [62]. For
DPM and Exemplar SVM, we use the depth as another
image channel and concatenate HOG computed from that
and from color images. To evaluate the first three 2D al-
gorithms, we use 2D IoU with a threshold of 0.5 and the
results are reported in Table 5. The 2D ground truth box is
obtained by projecting the points inside the 3D ground truth
box back to 2D and finding a tight box that encompasses
these 2D points. For 3D detection, we evaluate the state-
of-the-art Sliding Shapes algorithm, using the CAD models
originally used in [62], and evaluate the algorithm for their
five categories. We use 3D boxes for evaluation with 0.25
for the IoU as in [62], results are reported in Table 4.

Object Orientation We evaluate two exemplar-based ap-
proaches: Exemplar SVM [43] and Sliding Shapes [62]. We
transfer the orientations from the training exemplars to the
predicted bounding boxes. Some categories (e.g. round ta-
ble) do not have well-defined orientations and are not in-
cluded for evaluation. Figure 8 shows example results, and
Figure 9 shows the distribution of prediction error.

Room Layout Estimation Although there exists an algo-
rithm for this task [74], we could not find an open source
implementation. Therefore, we design three baselines: the
simplest baseline (named Convex Hull) computes the floor
and ceiling heights by taking the 0.1 and 99.9 percentiles
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Figure 11. Visualization of total scene understanding results.

of the 3D points along the gravity direction, and computes
the convex hull of the point projection onto the floor plane
to estimate the walls. Our stronger baseline (named Man-
hattan Box) uses plane fitting to estimate a 3D rectangular
room box. We first estimate the three principal directions of
the point cloud based on the histogram of normal directions
(see Section 2.5). We then segment the point cloud based on
the normal orientation and look for the planes with furthest
distance from center to form a box for the room layout. To
compare with the color-based approach, we run Geometric
Context [22] on the color image to estimate the room layout
in 2D. We then use the camera tilt angle from gravity direc-
tion estimation and the focal length from the sensor to re-
construct the layout in 3D with single-view geometry, using
the estimated floor height to scale the 3D layout properly.
Figure 10 shows examples of the results of these algorithms.
Average IoU for Geometric Context is 0.442, Convex Hull
is 0.713, and Manhattan Box is 0.734 performs best.

Total Scene Understanding We use RGB-D RCNN and
Sliding Shapes for object detection and combine them with
Manhattan Box for room layout estimation. We do non-
maximum suppression across object categories. For RGB-
D RCNN, we estimate the 3D bounding boxes of objects
from the 2D detection results. To get the 3D box we first
project the points inside the 2D window to 3D. Along each
major direction of the room we build a histogram of the
point count. Starting from the median of the histogram, we
set the box boundary at the first discontinuous location. We
also set a threshold of detection confidence and maximum
number of objects in a room to further reduce the number
of detections. With the objects and room layout in hand
we propose four simple ways to integrate them: (1) directly
combines them; (2) remove the object detections that fall

Test
Train Kinect v2 Xtion Percent drop (%)

rgb d rgbd rgb d rgbd rgb d rgbd

ch
ai

r Kinect v2 18.07 22.15 24.46 18.93 22.28 24.77 -4.76 -0.60 -1.28
Xtion 12.28 16.80 15.31 15.86 13.71 23.76 29.22 -18.39 55.23

ta
bl

e Kinect v2 15.45 30.54 29.53 16.34 8.74 18.69 -5.78 71.38 36.70
Xtion 8.13 24.39 28.38 14.95 18.33 24.30 45.64 -33.05 -16.79

Table 7. Cross-sensor bias.

outside the estimated room layout; (3) adjust room to en-
compass 90 % the objects; (4) adjust the room according
to majority of objects and remove the out-of-room objects.
Figure 11 and Table 6 show the results.

Cross sensor Because real data likely come from differ-
ent sensors, it is important that an algorithm can generalize
across them. Similar to dataset bias [68], we study sensor
bias for different RGB-D sensors. We conduct an experi-
ment to train a DPM object detector using data captured by
one sensor and test on data captured by another to evaluate
the cross-sensor generality. To separate out the dataset bi-
ases, we do this experiment on a subset of our data, where
a Xtion and a Kinect v2 are mounted on a rig with large
overlapping views of the same places. From the result in
Table 7, we can see that sensor bias does exist. Both color
and depth based algorithms exhibit some performance drop.
We hope this benchmark can stimulate the development of
RGB-D algorithms with better sensor generalization ability.

5. Conclusions
We introduce a RGB-D benchmark suite at PASCAL

VOC scale with annotation in both 2D and 3D. We pro-
pose 3D metrics and evaluate algorithms for all major tasks
towards total scene understanding. We hope that our bench-
marks will enable significant progress for RGB-D scene un-
derstanding in the coming years.
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