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Abstract

Feature correspondence plays a central role in various
computer vision applications. It is widely formulated as
a graph matching problem due to its robust performance
under challenging conditions, such as background clutter,
object deformation and repetitive patterns. A variety of
fast and accurate algorithms have been proposed for graph
matching. However, most of them focus on improving the
recall of the solution while rarely considering its preci-
sion, thus inducing a solution with numerous outliers. To
address both precision and recall feature correspondence
should rather be formulated as a subgraph matching prob-
lem. This paper proposes a new subgraph matching formu-
lation which uses a compactness prior, an additional con-
straint that prefers sparser solutions and effectively elimi-
nates outliers. To solve the new optimization problem, we
propose a meta-algorithm based on Markov chain Monte
Carlo. By constructing Markov chain on the restricted
search space instead of the original solution space, our
method approximates the solution effectively. The exper-
iments indicate that our proposed formulation and algo-
rithm significantly improve the baseline performance under
challenging conditions when both outliers and deformation
noise are present.

1. Introduction
Feature correspondence plays a central role in various

computer vision applications such as object detection [28],
object recognition [6, 3], and tracking [12]. It is a challeng-
ing problem because background clutter, appearance varia-
tion, and repetitive patterns frequently occur in real world
images, thus reducing the informativeness of the local de-
scriptors. Therefore, the geometric relationship between
features is commonly used to compensate for the unreliable
match scores obtained from local descriptors. Graph match-

(a) Input images

(b) Proposed

(c) Graph matching [30]
Figure 1. An example of feature matching. True positive matches
are represented by blue lines and false positive matches are repre-
sented by red lines.

ing provides a powerful tool for feature correspondence by
modeling feature appearances and their relationships as a
graph. This paper proposes a new formulation and algo-
rithm for subgraph matching that enables robust feature cor-
respondence under clutter and appearance variation.

Graph matching has been widely formulated as an In-
teger Quadratic Programming (IQP) due to its represen-
tation power [11, 15, 16, 27, 8, 30]. Compared with
other formulations, that allow only simple dot product or
squared error as affinity/distance measures [4], IQP can
model more complex affinity measures [5]. Also, it is
extendable to higher-order graph matching, which uses
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higher-order edges [9, 14]. Nonetheless when applied to
feature correspondence problem, IQP formulation has two
fundamental problems (Section 3.1). (1) Since the solu-
tion of IQP is predetermined to have certain number of
matches, independently of the number of outliers in the
graph, the solution may contain many outliers. As a result,
recall has become a prevalent measure of reporting accu-
racy [6, 11, 15, 16, 27, 8, 5, 25, 30], whereas precision has
not been considered. (2) The outliers contained in the solu-
tion make the objective function non-discriminative. When
outliers are present, IQP objective not only lowers the preci-
sion but also the recall of the solution by preferring to select
a solution with large number of outliers, instead of one with
a small number of inliers, as shown in Figure 1(c).

In this paper, we propose a new graph matching method
to solve the aforementioned problems. First, we augment
the original IQP objective with additional compactness
prior, in which its parameters are discriminatively trained
to maximize both precision and recall. Additional compact-
ness prior eliminates outliers while collecting inliers by pre-
ferring a compact solution. Then, we propose a new meta-
algorithm based on Markov chain Monte Carlo (MCMC),
which builds on existing graph matching algorithms as its
core algorithm, in order to solve the new optimization prob-
lem. Constructing Markov chain on the reduced search
space instead of the original solution space effectively ap-
proximates the solution. In the experiments, the proposed
solution consistently and significantly improves the base-
line algorithms in the practical conditions in which both
outliers and deformation noise exist.

2. Related Works
Several works on graph matching addressed the afore-

mentioned two problems (Section 1) that occur due to the
presence of outliers. The following strategies have been
proposed: changing formulation, designing a robust algo-
rithm, and restriction to specific problems such as feature
correspondence.

Subgraph matching is a method that directly addresses
the first problem by finding shared structure of the two
input graphs, where structure includes node and edge at-
tributes when dealing with attributed graphs. Although sub-
graph matching of basic graphs has been widely studied
(e.g. subgraph isomorphism and its extension to labeled
graphs [1], which are attributed graphs with small number
of discrete labels and costs between them), subgraph match-
ing of attributed graphs with general attributes has been
rarely addressed in the literature. Pavan et al. [24] and Liu et
al. [18, 19] addressed the attributed subgraph matching by
designing the objective that maximizes the average intra-
cluster affinity, in contrast to maximizing the total affinity
used in the original IQP. Since the affinity between inlier
and outlier matches is expected to be lower than that be-

tween inliers, outliers usually lower the average affinity of
the matches. Therefore, maximizing average affinity effec-
tively eliminates outliers from the solution. However, when
there exists deformation noise, small but highly correlated
outliers may score higher objective than large but loosely
correlated inliers, resulting in low recall.

Most of the graph matching algorithms based on IQP at-
tempt to solve the second problem by proposing robust al-
gorithms, while leaving the objective unchanged. Gold and
Rangarajan [11] iteratively estimated the convex approxi-
mation around the previous solution and Cho et al. [5] ex-
ploited random walk to explore the relaxed solution space
effectively. Zhou et al. [30] relaxed the original objective
into concave and convex forms and solve them using path
following algorithm. Cho et al. [7] reduced the effect of out-
liers by using max-pooling in graph matching, and in their
other work Cho et al. [6] significantly enhanced recall us-
ing progressive framework that iteratively constructs graphs
and finds matches. These methods robustly work with de-
formation and outliers, however, because of the inherit con-
straints of the IQP formulation, they still suffer from a large
number of outliers in the solution.

Finally, graph matching research as restricted to solv-
ing feature correspondance problem further addressed the
issue of outliers. Torresani et al. [26] modeled feature cor-
respondence problem by means of a Markov Random Field
(MRF), using potentials related to appearance, geometry,
occlusion, and feature coherence. The occlusion term used
in their formulation corresponds to our compactness prior,
enforcing to increase the number of matches in the solution
while minimizing the discrepancy. However, their objective
is restricted to feature matching, whereas our formulation
can be used for general graph matching problems.

Our paper contributes to the literature in three aspects.
Firstly, we propose a new graph matching formulation for
subgraph matching which uses compactness prior, thus ad-
dressing the precision and recall at the same time. Secondly,
an MCMC-based meta-algorithm is proposed to solve the
new optimization problem. Finally, our method demon-
strates the state-of-the-art performance on graph matching
when both deformation and outlier exist. This property en-
ables robust feature matching of real images.

3. Graph Matching Model
Let us consider two attributed graphs, G1 =

(V1, E1,AV1 ,AE1 ) with n1 nodes and G2 = (V2, E2,AV2 ,AE2 )
with n2 nodes, where V , E , AV and AE denote a set of
nodes, edges, node attributes and edge attributes, respec-
tively. In this paper, one-to-one matching constraints are
adopted so that every node in G1 is mapped to at most one
node in G2 and vice versa. Graph matching identifies the
subset of node correspondences between G1 and G2 among
all of the possible correspondences, which best preserve the



attribute relations under the matching constraints.
We use binary indicator vector y ∈ {0, 1}n1n2 to repre-

sent the correspondence between G1 and G2; yi is 1 if i-th
match is selected and 0, otherwise. Affinity matrix M con-
sists of the relational similarity values between edges and
nodes; the compatibility of two edge attributes aij ∈ AE1
and aab ∈ AE2 is encoded in the non-diagonal compo-
nent Mia;jb, and the compatibility of two node attributes
ai ∈ AV1 and aa ∈ AV2 is encoded in the diagonal compo-
nent Mia;ia.1

3.1. IQP Formulation

In the conventional IQP formulation, the quality of a
matching between two graphs is measured as the sum of
affinity values between all pairs of nodes and edges given
by the correspondence. The graph matching is modeled as
follows:

y∗ = arg maxy y
TMy

s.t. y ∈ Cint ∩ Cone, (1)

where Cint = {y|y ∈ {0, 1}n1n2} enforces the in-
teger constraint and Cone = {y|∀i,

∑
a yia ≤ 1} ∩

{y|∀a,
∑
i yia ≤ 1} enforces the one-to-one constraint.

The affinity measure is typically restricted to be nonneg-
ative [11, 15, 16, 5, 25], therefore the number of matches
in the final solution is implicitly determined to be the max-
imum possible number of matches under one-to-one con-
straint, that is min(n1, n2) because more matches result in
higher objective. 2 The underlying assumption is that the
solutions that contain true matches would have a higher ob-
jective value than those do not. However, this assumption
poorly holds even with few outliers as shown in the follow-
ing test.

Let us consider a simple example of graph matching in
the presence of outliers. We construct two graphs, each with
five inlier nodes. The details of generating those random
graphs are described in Section 6.1. Three sets of tests are
performed where the number of outliers is 0, 2 and 4, re-
spectively. The results are shown in Figure 2. Each test is
illustrated by two bars which represent the objective score,
S, of the match y. The left bar represents the ground truth+,
which is the set of matches that maximizes the objective (1)
while containing the true matches yGT . The right bar rep-
resents the results obtained via maximizing the IQP objec-
tive (1). Each objective score consists of the two parts, Sin
and Sout, i.e., S = Sin + Sout = yTMy. The value

1In a vector x, we denote its i-th component as xi, yet in the case
of the indicator vector y, we slightly abuse the notation; yia denotes the
component of indicator vector y that corresponds to the match between
i-th node in G1 and a-th node in G2.

2Even when affinity is allowed to have negative values, its effect is
equivalent to thresholding the original solution, which results in a move
along the Pareto curve, not the move of the curve itself.

?

Figure 2. An example of graph matching and the objective scores.
Three tests are performed varying the number of ouliers from 0 to
4. The left and right bar represent the objective score of the ground
truth+ and IQP solution, respectively. It shows that maximizing
IQP is not necessarily related to the detection of inliers. Refer to
the main text for details.

Sin = ŷTMŷ, represented by blue color, is the score gen-
erated by the matches given by ŷ, where ŷ is the indica-
tor vector of the top five matches in the matching vector
y. Top matches are measured by the sum of affinity be-
tween every possible pairs. The value Sout, represented by
the green color, is the remaining portion of the score, i.e.
Sout = yTMy − ŷTMŷ.

In all three tests, top five matches of ground truth+ are
true, i.e., Sin is equal to yTGTMyGT . In contrast, Sin of
IQP solution is smaller than that of ground truth+, which
means that IQP solution does not contain all true matches.
However , the score of IQP solution S is higher than that of
ground truth+. It shows that solving IQP is not necessarily
related to the detection of the inliers. This observation indi-
cates that IQP formulation may not only lower the precision
but also recall.

3.2. Compactness Augmented Model

To overcome the problem of the conventional IQP, we
propose to augment the original objective of the IQP with
an additional compactness prior, which adjusts number of
matches in the solution as a function of the number of
matches, ‖y‖1. The augmented optimization problem is as
follows:

y∗ = arg maxy y
TMy − λTΩ(‖y‖)

s.t. y ∈ Cint ∩ Cone, (2)

where Ω(‖y‖) = [ω1(‖y‖), ω2(‖y‖), · · · , ωn(‖y‖)] is a
vector, and λ = [λ1, · · · , λn]T is the parameter vector that
adjusts the weight of each component. Though the learning
described in Section 4 is applicable to general Ω, in this pa-
per, we used Ω(‖y‖) = [‖y‖, ‖y‖2] for simplicity. As in



the conventional IQP, the affinity matrix M is constrained
to be element-wise nonnegative.

The objective function enforces the matches to have high
total affinity by the first term, while enforcing the proper
number of matches by the second term. The level of com-
pactness is determined by the parameter λ, whose value de-
pends both on affinity measure and graph size. Note that our
formulation has different meaning from introducing dummy
nodes used in [11], whose purpose is to balance the size of
two graphs while exhibiting nearly zero effect on enhancing
accuracy.

4. Learning Compactness Prior

In this section we determine the most favorable form of
the compactness prior for a given problem setting, which
is equivalent to finding the optimal values λ∗. We use the
training set St = {(G(j)1 ,G(j)2 ),y(j)}Nt

j=1, where j-th sam-
ple consists of two graphs and the true correspondence be-
tween them. The parameter λ is trained to maximize the
margin as follows:

λ∗ = min
λ
r(λ) +

C

Nt

Nt∑
j=1

∆(y(j), ŷ(G(j)1 ,G(j)2 , λ)), (3)

where r(·) is a regularizer and ŷ(G(j)1 ,G(j)2 , λ) is the es-
timated solution of (2) with respect to the corresponding
affinity matrix M(j). Hamming loss ∆(y,y′) = ‖y −
y′‖1/(n1n2), is used as the loss function to address both
the precision and recall at the same time.

We solve the optimization problem (3) using standard
structured support vector machine (SSVM) learning tech-
nique, as it was used for learning graphs in [2, 3]. Since y∗

is invariant to constant multiplicaition of objective in (2), λ∗

can be obtained by solving the SSVM as follows:

min
λ̃

1

2
‖λ̃‖2 +

C

Nt

Nt∑
n=1

∆(y(j), ŷ(G(j)1 ,G(j)2 , λ̃)), (4)

where ŷ(G1,G2, λ̃) = arg maxy λ̃
TΦ(G1,G2,y) and the

joint feature map Φ(G1,G2,y) = [yTMy,−Ω(‖y‖)] =
[yTMy,−‖y‖,−‖y‖2].λ̃ is a constant multiplication of
[1, λ] = [1, λ1, λ2].

Note that learning the parameter λ using Eq.(3) ensures
the augmented prior in the proposed formulation (2) to be
at least not harmful. If there is no non-zero λ (λ 6= 0) that
further reduces the objective Eq.(3) then λ is learned to be
0, while making the Eq.(2) equivalent to the original IQP of
(1). In our experiments, under the problem setting of Sec-
tion 6.1, which models general graph matching, the learnt
value is λ = [0.01, 0.69]. Since λ1 � λ2, we approximate
λ as λ = [0, λ2] in all the experiments.

5. Algorithm
We propose an algorithm based on Markov chain Monte

Carlo (MCMC) sampling technique to solve the optimiza-
tion problem (2). The basic idea behind MCMC is to con-
struct a Markov chain on the state spaceX whose stationary
distribution is the target density P (x) of interest [23].

We define a state space asX = {x|x ∈ {0, 1}n1}, where
n1 is the number of nodes in the graph G1. Each state x ∈ X
corresponds to the activation of nodes in graph G1; xi = 1 if
i-th node in G1 is active and 0, otherwise. We can optimize
the objective function (2) by defining the target probability
distribution on X as follows:

P (x) ∝ π(x) = exp(y(x)TMy(x)− λTΩ(‖y(x)‖), (5)

where function y(·) on x is defined as

y(x) = arg max
y

yTMy (6)

s.t. y ∈ Cint ∩ Cone ∩ Cx,

and Cx = {y|
∑
a yia = 1,∀i s.t.xi = 1} ∩ {y|

∑
a yia =

0,∀i s.t.xi = 0} restricts y(x) to have matches only for the
active nodes of x. In other words, y(x) is the solution of
conventional IQP between two graphs, G′1 and G2, where G′1
is a subgraph of G1 with active nodes of x. Therefore, one
transition in the Markov chain corresponds to a selection of
active nodes in the graph G1 with its best graph matching
with G2, according to the original IQP (1).

The overall algorithm is presented as Algorithm 1. It ef-
fectively approximates the solution by constructing Markov
chain on X , which is much smaller than the original so-
lution space Y . Note that when outliers exist on only one
side among two graphs, the solution of IQP gets much more
accurate by circumventing the problems mentioned in the
Section 3.1. We use an existing graph matching algorithm
to solve Eq. (6).

5.1. State Proposal

The Metropolis-Hastings algorithm [10] is used to gen-
erate the Markov chain. We attempt two different state pro-
posals, namely, random proposal and data-driven proposal.

In random proposal, one node is randomly selected from
V1 and flipped from active to inactive or vice versa:

qrand(x→ x′) =

{
1/n1 if ‖x− x′‖1 = 1,x′ ∈ X
0 otherwise

(7)
At most n1 steps are required to convert from one state to
another in the worst case, which suggest it actively wanders
around the state space.

The data-driven proposal is designed based on the intu-
ition that true feature points are likely to be closer together
in the image, because they are extracted from the same ob-
ject. The proposal consists of two steps: First we select the



mode whether to add a node to or delete a node from acti-
vated nodes of the state x according to the probability padd,
and then sample a particular node according to the proba-
bility qadd or qdel. When add mode is selected, we sample
a node from within inactive nodes, and activate it according
to the following probability distribution,

qadd(x→ x′) =


1
Z e
−d(x,x′)

if ‖x′‖1 = ‖x‖1 + 1
and x′ ∈ X

0 otherwise,
(8)

where Z is a normalizing constant and d(x,x′) is the dis-
tance between the i-th node and geometric center of the ac-
tive nodes of x in the image, when x′i = xi+1. When delete
mode is selected, an active node is selected and deactivated
with uniform probability,

qdel(x→ x′) =

 1/‖x‖1 if ‖x′‖1 = ‖x‖1 − 1
and x′ ∈ X

0 otherwise.
(9)

Algorithm 1: Graph matching via MCMC
input : Affinity matrix M
output: Assignment vector y∗

Generate initial state x randomly
Initialize N,T
while T > Tf do

Calculate proposal distribution q(x→ x′) (Eq. 7
or 10)
Sample x′ from q
Calculate acceptance ratio a(x→ x′) (Eq. 11)
if rand() < a(x→ x′) then

x← x′

if π(x′) > π(x∗) (Eq. 5) then
y∗ ← y(x′) (Eq. 6)
x∗ ← x

end
end
T = γT
if N > Nmax then

break
end

end
return y∗

Finally, the data driven proposal is designed as follows:

qdata(x→ x′) =



padd · qadd(x → x′)
if ‖x′‖1 = ‖x‖1 + 1
and x′ ∈ X

(1− padd)· qdel(x→ x′)
if ‖x′‖1 = ‖x‖1 − 1
and x′ ∈ X

0 otherwise.
(10)

To ensure that the Markov chain satisfies the detailed bal-
ance condition, the acceptance ratio is obtained as follows:

a(x→ x′) = min(
π(x′)

π(x)

q(x′ → x)

q(x→ x′)
, 1), (11)

where q(·) is defined as Eq.(7) or Eq.(10), according to the
proposal type. We set padd = 0.5 in all the experiments.

6. Experiments
This section consists of three parts. In the first part,

we evaluate our method on synthetic random graph match-
ing by varying the number of outliers and the amount of
deformation noise. We compare the result to eight state-
of-the-art graph matching methods, namely, FGM [30],
RRWM [5], SEA [18], GAGM [11], DDMCMC [13],
IPFP [16], MPM [7] and SM [15]. Since SEA [18] out-
puts several solutions, we choose the one that maximizes
their objective as their output, for fair comparison with other
methods. In the second part, we evaluate our method in fea-
ture correspondence problems using real images. We com-
pare the result to four graph matching methods, namely,
FGM [29], RRWM [5], IPFP [16], and SEA [18]. In the
last part, we analyze the effect of changing parameters λ
and varying the core algorithm.

6.1. Synthetic Random Graph Matching

In this experiment, we construct two graphs, G1 and G2,
with n = nin + nout nodes at each trial, where nin and
nout denote the number of inlier and outlier nodes, respec-
tively. First, the reference graph G1 is constructed where
its edge attributes aij ∈ AE1 are randomly assigned from
the uniform distribution [0, 1]. The target graph G2 is sub-
sequently constructed by perturbing the edge attributes of
inliers in G1 with Gaussian noise ε ∼ N(0, σ2

s), that is,
ai′j′ = aij + ε, where ai′j′ ∈ AE2 . The resulting graphs,
G1 and G2, share a common subgraph with nin nodes. We
use the negative exponential of square distance as an affinity
measure, thus the affinity matrix M is calculated by assign-
ing Mia,jb = exp(−||aij − aab||/σ2

s). The diagonal com-
ponents of M are set to zero, because no node attributes are
used. Scaling factor σ2

s is chosen to be 0.1 according to the
setting in [5].



(a) Varying number of outliers without
deformation noise

(b) Varying number of outliers with
deformation noise (c) Varying deformation noise with outliers

Figure 3. Synthetic graph matching experiments. The recall (top) and precision (bottom) are plotted for three different conditions: (a)
varying the number of outliers with no deformation noise, (b) varying the number of outliers with deformation noise σ = 0.1, and (c)
varying the amount of deformation with 10 outliers.

(a) Varying number of outliers (b) Varying deformation
Figure 4. Precision-recall curves are plotted for two different conditions: (a) varying the number of outliers with fixed deformation noise
σ = 0.15 and (b) varying the amount of deformation noise with fixed number of outliers nout = 10.

We evaluate our method under three different experimen-
tal settings, namely, (1) varying the number of outliers with
no deformation, (2) varying the number of outliers with
some deformation, and (3) varying the amount of deforma-
tion with some outliers. In all of the experiments, we fix the
number of inliers nin to be 20 and use RRWM as a core al-
gorithm of the proposed meta-algorithm. We independently
generate 40 graph matching problems for each experimen-
tal setting and record the average recall and precision. Fig-

ure 3(a) shows the results of varying the number of outliers
nout from 0 to 20 by increments of 4 while fixing the defor-
mation noise σ = 0. Figure 3(b) shows the results of vary-
ing the number of outliers nout from 0 to 20 by increments
of 4 while fixing deformation noise σ = 0.1. Figure 3(c)
shows the results of varying the deformation noise σ from
0 to 0.3 by increments of 0.05 while fixing the number of
outliers nout = 10.

Our method achieves the best performance in both recall



(a) Winebottle (b) Face
Figure 5. The result of feature matching experiments on (a)
winebottle and (b) face class. The F-score is plotted while varying
the number of outliers.

and precision when deformation noise exists, as shown in
Figure 3 (b) and (c). As shown in Figure 3 (a), our method
slightly gives way to MPM and SEA, achieving similar per-
formance as FGM in the setting when only outliers exist
with no deformation present. MPM and SEA perform ro-
bustly in the presence of outliers, however, their perfor-
mance rapidly falls as deformation noise increases, whereas
the proposed method performs consistently well. As shown
in Figure 3 (b) and (c), our method works robustly when
both deformation and outliers exist, which is an inseparable
condition in the real world images. Using FGM as a core
algorithm is expected to further improve the performance as
our method consistently improves the core method as shown
in Figure 7 (a). However, we use RRWM as the core algo-
rithm instead of FGM, because the running time of FGM is
more than hundred times longer than that of RRWM given
the codes provided by the authors.

Figure 4 (a) and (b) present the precision-recall curve
for the experiments in Figure 3 (b) and (c), respectively.
The curve is obtained by greedily deleting most unreliable
matches one by one from the solution and averaging pre-
cision for each recall. Reliability is measured as the sum
of affinity values between the corresponding match and the
remaining inlier matches. We present the precision-recall
curve for the proposed algorithm and FGM. Only the result
of FGM, which achieved the most robust performance af-
ter ours, is plotted for visibility. The curve of the proposed
method is placed up and to the right of FGM curve, which
means that our method performs better than FGM, even af-
ter the outlier removal by greedy post-processing.

6.2. Feature Correspondence

This part of the experiments focuses on evaluating our
method on the real image feature correspondence task. Al-
though the SNU dataset [5] and the Car and Motorbike
dataset [17] are frequently used in the graph matching liter-
ature, they contain only 30 and 50 pairs of images, respec-
tively. Therefore, we created 1000 pairs of images using
Willow object class dataset [3], which provides images for
five classes and their key point annotations. We randomly

Input pair Proposed method

FGM RRWM

SEA IPFP

Input pair Proposed method

FGM RRWM

SEA IPFP

Figure 6. Example results of the real image matching using local
features. True positive matches are represented by cyan lines, and
false positive matches are represented by red lines.

select 200 pairs of images from each class, respectively. We
use MSER detector [21] and Hessian detector [22] to extract
interesting points and HOG descriptor [20] and HARG [3]
to represent the node and edge attributes, respectively. In
all the experiments, the greedy mapping is used for the
post-processing of discretization. Our method is compared
to four graph matching methods, FGM, RRWM, IPFP and
SEA.

To evaluate the effect of increasing the number of out-
liers, we perform matching while varying the number of
outliers. The outliers are randomly sampled from the fea-
ture points extracted from the images using the above de-
tectors. The results are shown in Figure 5. Figure 5 (a) and
(b) show results of winebottle and face classes, respectively.
To evaluate the precision and recall at the same time, the F-
score, which is the harmonic mean of the two measures,
is plotted while varying the number of number of outliers
between 0, 5, 10, 15 and 20. Our method with both ran-
dom and data-driven proposal consistently outperforms the
others. Some example results are shown in Figure 6. Ad-
ditional experiments on the remaining classes are shown in
the supplementary material.



(a) The effect of core algorithm (b) The effect of parameters (c) The effect of parameters
Figure 7. Analysis of the proposed method. (a) The accuracy of proposed method while varying the core algorithm. (b) and (c) Performance
gain of the proposed method with respect to the core algorithm.

6.3. Analysis

6.3.1 Effect of baseline graph matching method

To determine the effect of changing the core algorithm of
our method, we perform the same synthetic random graph
matching experiments as in Section 6.1 while varying the
core algorithms. Three core algorithms, RRWM, GAGM,
and IPFP are compared in Figure 7 (a). Our method consis-
tently improves the performance of the original core algo-
rithm in both precision and recall.

6.3.2 Effect of parameter selection

To evaluate the robustness of the formulation when λ varies,
we perform the same experiments of Section 6.1 for various
λ values. For simplicity, we assume λi = 0 for all i 6= 2 and
vary λ2 from 0 to 1.4. RRWM is used as a core algorithm.
In the first test, deformation σ varies from 0 to 0.3, whereas
nout is fixed to 10. In the second test, nout varies from 0
to 20, whereas σ is fixed to 0.1. The resulting precision
and recall gain relative to the core algorithm are shown in
Figure 7 (b) and (c). In most of the cases, the gain is larger
than 0, which means that the additional compactness prior
has positive effect. The algorithm works robustly when λ
has value between 0.5 and 1.

7. Conclusion
In this paper, we address the feature correspondence

problem using subgraph matching. To overcome the limita-
tions of the previous IQP formulation, we augment the orig-
inal objective with additional compactness prior. The objec-
tive in this form is trained to minimize the max margin loss.
To solve the new formulation, we propose a novel MCMC-
based meta-algorithm. Exploring the reduced search space
allows the proposed algorithm to effectively approximate
the correspondence. The experimental results indicate that
the proposed method outperforms the other methods in both
synthetic graph matching and feature correspondence prob-
lems performing robustly in the noisy environment and in
the presence of outliers.
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