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Abstract

Tracking multiple targets in a video, based on a finite
set of detection hypotheses, is a persistent problem in com-
puter vision. A common strategy for tracking is to first
select hypotheses spatially and then to link these over time
while maintaining disjoint path constraints [ 14, 15, 24]. In
crowded scenes multiple hypotheses will often be similar to
each other making selection of optimal links an unnecessary
hard optimization problem due to the sequential treatment
of space and time. Embracing this observation, we propose
to link and cluster plausible detections jointly across space
and time. Specifically, we state multi-target tracking as a
Minimum Cost Subgraph Multicut Problem. Evidence about
pairs of detection hypotheses is incorporated whether the
detections are in the same frame, neighboring frames or dis-
tant frames. This facilitates long-range re-identification and
within-frame clustering. Results for published benchmark
sequences demonstrate the superiority of this approach.

1. Introduction

Multi-target tracking can be formulated as an optimiza-
tion problem with respect to a graph whose nodes correspond
to detection hypotheses and whose edges connect detection
hypotheses that hypothetically describe the same target. A
commonly employed objective of the optimization is to se-
lect a subset of nodes and edges in such a graph to maximize
similarity of connected detection hypotheses, while main-
taining constraints that prevent splits and merges of tracks.

By far the most common approach is to choose the ini-
tial graph such that detection hypotheses are connected only
across time (not within the same time frame) and to constrain
the solution such that connected components of selected de-
tection hypotheses are paths (that do not branch). With
respect to a linear objective function, this problem is a Mini-
mum Cost Disjoint Paths Problem with respect to the initial
graph. It is used, explicitly or implicitly, in many modern
tracking algorithms including [14, 15, 1, 25].

While being intuitive, the Disjoint Paths formulation has
a notable caveat: Typical target detectors yield, for each
time frame, many similar (and typically equally plausible)
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(clockwise) detection hypotheses, overlapping tracklet hypotheses,
hypotheses decomposition (clustering jointly across space and time)
and final tracks (dotted rectangles are interpolated tracks).

detections of the same target. Within the Disjoint Paths
formulation, it becomes necessary to choose, for each time
frame and target, one best out of many similar (and plausible)
hypotheses. Various recipes are proposed in the literature to
address this challenge. E.g., [14, 1] rely on a greedy iterative
procedure that finds one track at a time and then removes
corresponding hypotheses, or [25] performs several rounds
of optimization that merge detections into tracklets and then
into full tracks. Unfortunately, all these methods depend
on parameters that need to be tuned carefully, as noted in
[14,1,25].

Embracing the possibility of having multiple plausible
hypotheses per target and frame motivates us to formulate
multi-target tracking as a Minimum Cost Subgraph Multicut
Problem. The feasible solutions of this formulation are such
that possibly multiple hypotheses per track and time frame
are selected and clustered, resulting in an overall rigorous
and elegant approach to link, cluster and track targets jointly
across space and time. To illustrate the similarities and dif-
ferences to prior work we implement a version of a tracking
algorithm based on the Minimum Cost Disjoint Path Prob-
lem. Although conceptually simple, its output is already on
par with the state of the art for public benchmark sequences,
as we show in Sec. 6.

This paper makes the following contributions: First, to
our knowledge, our work is the first to propose a Subgraph
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Multicut model for the multi-target tracking problem jointly
solving the spatial and temporal associations of detection
hypotheses. Second, we provide an in-depth analysis and
comparison of the Subgraph Multicut and the Disjoint Paths
models. Our results suggest that the Subgraph Multicut
model has considerable advantages due to the fact that state-
of-the-art object detectors output multiple hypotheses per
target. Third, besides proposing an exact solver, we also
provide a heuristic solution based on the Kernighan-Lin
algorithm [13], which makes the method applicable to large
sequences. Finally we perform extensive experiments and
present superior results compared to the state-of-the-art.

2. Related Work

Much of the recent literature on multi-target tracking
follows the tracking-by-detection strategy using target detec-
tors to establish an initial state-space of detection hypotheses
in each frame. Given such an initial state-space a popular
approach to tracking is to formulate it as a combinatorial
optimization problem of linking detection hypotheses across
frames. Various ways to link hypotheses are proposed such
as methods based on network flow [25, 24], or integer lin-
ear programming [ 16, 20]. Other approaches are iteratively
finding one track at a time by iteratively solving the MAP
estimation problem [14] or jointly finding a set of tracks
with continuous optimization [3]. The majority of these
approaches employ some strategy to reduce the search com-
plexity by performing early grouping or non-maximum sup-
pression of hypotheses. For example, it is common to first
group single-frame hypotheses into tracklets spanning sev-
eral adjacent frames, and then combine them into complete
tracks [12, 19, 24, 11, 22, 23, 2].

Various strategies are proposed to deal with the variable
number of tracking targets. [14, 24] rely on a greedy ap-
proach that recovers tracks one at a time by iteratively reduc-
ing the state space. [3] jointly optimizes tracking trajectories
and the number of tracking targets. [15] implicitly encodes
the number of tracks by linking individual detection hypoth-
esis between neighboring frames.

Literature on multi-target tracking is vast but several key
properties reappear in a number of successful approaches:
leveraging long-range associations to prevent ID switches
and recover missing detections caused by long-term occlu-
sion [3, 24]; jointly inferring the number of tracks and solv-
ing the data association problem [ 15, 3]; exploring appear-
ance information and combine it with long-range associ-
ations [24, 15]; integrate non-maximum suppression with
tracking [, 14]. Our Subgraph Multicut formulation allows
to combine all these in the same framework.

Approaches of [15, 24] are perhaps closest to ours. Simi-
larly to [15] we implicitly encode the number of tracks by
linking tracklet hypotheses. However our approach jointly
reasons about connectivity of groups of hypotheses, whereas
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Figure 2. Two person detection hypotheses in three consecutive
frames (ground truth assignment depicted in color) (a); The disjoint
paths (c¢) obtained by solving a Minimum Cost Disjoint Paths Prob-
lem with respect to a directed graph (b); The decomposition (e)
obtained by solving a Minimum Cost Subgraph Multicut Problem
with respect to an undirected graph (d).

they connect individual hypotheses only. Our approach in-
corporates long-range connections between hypotheses, and
we show that our approach achieves better experimental
results compared to [15]. [24] also introduces long-range
connections between hypotheses and uses an iterative greedy
procedure finding tracks one at a time, whereas we jointly
solve for all tracks. [ 1] aims to delay resolution of local
ambiguities by introducing “tree-tracklets” that delay lo-
cally ambiguous decision until more information is available.
Our approach achieves the same goal by jointly associating
groups of detections.

3. Formulations of Multi-Target Tracking

Before introducing the formulations for the Subgraph
Multicut Problem and the Disjoint Paths Problem, we il-
lustrate the difference between them by visualizing a toy
example in Fig. 2: (c) shows a solution of the Minimum
Cost Disjoint Paths problem that finds disjoint trajectories
for all targets in a directed graph; and (e) shows a solu-
tion to the Minimum Cost Subgraph Multicut problem that
corresponds to a decomposition of an undirected graph.

3.1. Disjoint Paths Problem

We now summarize the formulation of multi-target track-
ing as a Minimum Cost Disjoint Paths Problem (Def. 1). The
formulation is with respect to a directed graph G = (V, E)
whose nodes V' are all hypothesized detections of an en-
tire video and whose edges E connect pairs of detection
hypotheses that hypothetically describe the same target in
the different frames. More specifically, every edge vw € F
points forward in time, i.e., the frame of the detection v is
strictly smaller than the frame of the detection w .

The feasible solutions of the Minimum Cost Disjoint
Paths Problem (Def. 1) are subgraphs G’ = (V', E’) of
G which are encoded by z € {0,1}V, the characteristic
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Figure 3. (a) An undirected graph G; (b) A feasible solution of
the Minimum Cost Subgraph Multicut Problem (Def. 2) on G, two
connected components are in red and blue respectively, the set of
edges with value 0 (dotted lines) is a multicut of the graph G; (c)
The cycle constraint (9) is violated for the cycle depicted in green.

(c) Violation of the
cycle constraint

function of the subset V! = {v € V |z, = 1} C V of
nodes, and y € {0,1}F, the characteristic function of the
subset B/ = {vw € E | ypu = 1} C E of edges. More
specifically, the subgraph G’ is constrained (by Def. 1) to be
a set of disjoint paths in GG. The objective function is linear
in the coefficients of = and y:

Definition 1 With respect to a directed graph G = (V, E),
c € RV and d € R, the 01-linear program written below
is called an instance of the Minimum Cost Disjoint Paths

Problem.
min Z CoTy + Z deye (1)
ze{0,1}" vev ecE
ye{0,1}*
subjectto Ve =vw € E @ Yy < Ty 2)
Ve=vw € F: Yy < Ty 3)

YWwevV: > yu<l “)
vweE
vweE

Here, ¢, and d, correspond to the unary and pairwise costs.
The constraints (2) and (3) state that an edge can only be
selected if both its nodes are selected. The constraints (4)
and (5) state that every node has at most one incoming edge
and at most one outgoing edge, respectively, effectively im-
plementing the Disjoint Paths constraint.

3.2. Subgraph Multicut Problem

We now formulate multi-target tracking as a Minimum
Cost Subgraph Multicut Problem (Def. 2). The formulation
is with respect to an undirected graph G = (V, E') whose
nodes V' are all hypothesized detections of an entire video
and whose edges E connect pairs of detection hypotheses
that hypothetically describe the same target, including pairs
in the same video frame.

The feasible solutions of the Minimum Cost Subgraph
Multicut Problem (Def. 2) define subgraphs G’ = (V', E’)
of G which are encoded by = € {0, 1}V, the characteristic
function of the subset V! = {v € V |z, = 1} C V of
nodes, and y € {0, 1}E , a characteristic function defining
the subset E/ = {vw € E | Yy, = 1} C E of edges. More
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Figure 4. A Bayesian Network of probability measures of charac-
teristic functions of subgraphs.

specifically, the subgraph G’ is constrained (by Def. 2) such
that each connected component (V”; E") of G’ contains all
edges B = (VQH) N E. We show an example graph and a
feasible solution in Fig. 3.

The objective function of the Minimum Cost Subgraph
Multicut Problem is linear in the coefficients of x and y:

Definition 2 With respect to an undirected graph G =
(V,E),c € RV and d € RP, the 01-linear program written
below is called an instance of the Minimum Cost Subgraph
Multicut Problem.

min Z CyTy + Z deye (6)

ze{0,1}" vev e€E

ye{0,1}7

subjectto Ve =ovw € E 1 Yy < Ty @)
Ve=vw e FE: Ypuw < Ty ®)

VC € cycles(G) Ve € C':
I=y) <Y (A=ye) (O

e’eC\{e}

Here, the constraints (7) and (8) state that an edge can only
be selected if both its nodes are selected. The cycle con-
straints (9) state, firstly, that every component of the selected
subgraph G’ is also a component of G and, secondly, that ev-
ery edge of G whose nodes are in the same component of G’
is also in G. An example of violation is shown in Fig. 3(c).
In the context of multi-target tracking this implies that if a
detection hypothesis is connected (spatially or temporally)
to another detection hypothesis, all neighbors of the first
hypothesis have to be connected to all spatial and temporal
neighbors of the second hypothesis as well.

3.3. Probabilistic Model

Toward the goal of learning and inferring the parameters
¢ and d of both optimization problems (Def. 1 and 2) from
video data and toward the goal of comparing the two formu-
lations of the multi-target tracking problem, we now define
a probability measure on subgraphs of a graph G = (V, E)
such that a maximally probable set of disjoint paths is pre-
cisely a solution of the Minimum Cost Disjoint Path Problem
(Def. 1) and such that a maximally probable subgraph multi-
cut is precisely a solution of the Minimum Cost Subgraph
Multicut Problem (Def. 2).
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More specifically, we define a probability measure on the
characteristic functions z € {0,1}" and y € {0, 1}¥ with
respect to the Bayesian Network depicted in Fig. 4. Realiza-
tions of the random variables X and Y are the characteristic
functions x and y. For a finite index set J and every v € V,
a realization of the random variable F, is a vector f¥ € RY
of features of the node v. For a finite index set /& and every
e € F, arealization of the random variable G, is a vector
g° € RE of features of the edge e. A realization of the ran-
dom variable © (©') is a vector § € R” (¢’ € R¥) of model
parameters. Finally, a realization of the random variable Z
isaset Z C {0,1}VVYF of feasible characteristic functions.

From the conditional independencies enforced by the
Bayesian Network (Fig. 4) follows that a probability measure
of the conditional probability of characteristic functions x
of nodes and y of edges and model parameters 6 and 6,
given features f and g and given a feasible set Z, factorizes
according to

p(x,y,0,0'f,9,2)

veV JjeJ

’ H p(ye|ge’9/) ’ H p(e;c) : (10)
ecE keK
In order to constrain the characteristic functions x and y
jointly to the feasible set Z, the first term, the probability
density of a feasible set Z, given x and y, is defined to be
0if (z,y) ¢ Z; It is defined to be positive and constant,
otherwise:
1 if(zx,y)eZ
0 otherwise

p(Z|z,y) o { an

The second and third term in Eq. 10 are a probabilistic
model for the independent 01-classification of nodes (detec-
tions). The fourth and fifth term are a probabilistic model
for the independent 01-classification of edges (pairs of de-
tections). Specifically, we consider a linear logistic model
and a Gaussian prior with ¢ € RT. These are stated be-
low for nodes. The definition for edges is independent and
analogous.

v 1
Pl = 50 = @ )
p(8;) = N(0,0%) (13)

12)

Estimation (Learning and Inference). Estimating max-
imally probable model parameters 6,6’ from training data
x,y, f, g requires the solution of two (convex) logistic re-
gression problems, one for nodes and one for edges.
Estimating maximally probable characteristic functions
x and y for previously unseen data f, g, given a feasible
set Z and given (learned) model parameters 6, 8" amounts
to solving the O1-linear problem stated in Lemma 1. This
problem specializes to the problems in Definitions 1 and 2

for the respective feasible sets Z and motivates our choice
of the parameters ¢ and d.

Lemma 1 Given a graph G = (V, E), a feasible set Z,
feature vectors f, g, and model parameters 0,0, all as
defined above with respect to G, a pair (x,y) with © €
{0,1}V and y € {0, 1} is maximally probable with respect
to the measure defined above if and only if it is a solution
of the 0l-linear program written below, with ¢, = —(0, ")
and d, = —(0', g°).

min Z CoTy + Z deye (14)

ze{01} eV ecE
y€{071}E
subjectto (x,y) € Z (15)

Certified Optimal Solutions. The Minimum Cost Disjoint
Paths Problem has polynomial time complexity. We solve
instances of this problem by Branch-and-Cut. The Minimum
Cost Subgraph Multicut Problem is NP-hard [4] and APX-
hard [7]. In order to solve instances of this problem exactly,
we make use of the Branch-and-Cut loop of the closed-source
commercial software Gurobi' which represents the state of
the art in integer linear programming (ILP).

In every iteration of an outer cutting plane loop, we con-
sider a relaxed ILP with the full objective function and a
subset of the cycle inequalities (none in the first iteration).
In order to solve this relaxed ILP to optimality, in an inner
loop, we resort to the general classes of branches and cuts
implemented in Gurobi. Once a solution of the relaxed ILP
is found, we separate violated cycle inequalities, by breadth-
first-search, and add these to the relaxed ILP, thus tightening
the relaxation. The procedure stops when all cycle inequali-
ties are satisfied and, thus, the full problem has been solved
to optimality.

Heuristic Solutions. Alternatively, we propose a heuristic
solution for the unconstrained set partition problem by mak-
ing use of the Kernighan Lin (KL) algorithm as defined in
[13], which uses the KL for the bi-partition problem, also
defined in [13], as a subroutine. The procedure starts from
an initial decomposition defined, in our case, by the com-
ponents of the graph containing precisely the edges e € E
for which d. > 0. In every iteration, an attempt is made to
strictly improve the current decomposition via a sequence
of transformations: In an outer loop, every pair of adjacent
components is considered. For any such pair, it is assessed,
in an inner loop, whether moving nodes from one set to
the other improves the objective value. In every iteration
of this inner loop, an optimal move is chosen and saved,
together with the difference of the objective value caused by
this move. Having ordered all possible moves in this way,
the smallest £ is chosen such that the first k£ moves, carried
out in order, improve the objective value maximally. If the
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improvement is positive, the moves are made and thus, the
current decomposition is improved. If the improvement is
not positive, the procedure terminates.

4. Tracking Details

In this section, we describe our tracklet hypotheses gener-
ation method in Sec. 4.1, definitions of the unary feature f
and the pairwise feature g in Sec. 4.2 and further implemen-
tation details about the Disjoint Paths and Subgraph Multicut
tracking model in Sec. 4.3.

4.1. Tracklet Generation

We start with person detections produced by the De-
formable Part Model (DPM) [9]. Instead of using the detec-
tions as person hypotheses directly, we generate overlapping
tracklet hypotheses by the method proposed in [1]. Let
the length of a tracklet be M, the set of all detections in
frame ¢ is denoted by h' = [, ..., h%,]. Then a tracklet
H = [h}y,...,h},] is optimal given all the detections in M
frames if H maximizes the following probability:

M
p(H) = p(hiy) - T[] p(hii) - p(hi, hi)- (16)
k=2

where p(hF,) denotes the probability of detection hyy, being
true, and p(hk, , hf,;ll) is the transition probability which
models a simple Gaussian position dynamics. In our imple-
mentation, M = 5 for sequences which are shorter than 300
frames and M = 9 for others due to the computation cost.

Overlapping Tracklets. For all the detections in every
M consecutive frames, we apply the Viterbi algorithm to
maximize Eq. (16) to obtain the optimal sequence of de-
tections - our tracklet hypotheses. We remove the selected
detections from the set of detections and maximize Eq. (16)
iteratively until all the detections are considered. Our track-
lets are obtained in an over-complete fashion in two aspects
(1) Non-Maximum Suppression (NMS) is not applied for the
detections and (2) we compute overlapping tracklets starting
at every frame of the sequence. Each strong detection con-
tributes M times to different tracklets (which have different
starting frames). Our overlapping tracklets contain a suffi-
cient number of good ones which is arguably a good basis
for a tracking algorithm.

4.2. Unary and Pairwise Features

Each tracklet contains the following information: spatial-
temporal location, speed, scale, appearance and confidence
(tracklet score). Here, with respect to the detection in the
middle frame of a tracklet, we use x and y to denote the
tracklet center; ¢ is the frame index; v, and v, is the velocity
fo the tracklet along x and y coordinate respectively; i and
a denotes the scale and appearance of the tracklet; s is the
tracklet score. Given two tracklets (z,y,t, vz, vy, b, a, s)

and (z',y', ', vy, vy, B, a’, s"), the unary feature is simply
the tracklet score and we define the following auxiliary vari-
ables for the pairwise feature:
mi=12'—x mo=uv,(t' —t) mz=0,(t —1t)
=y —y na=uw,(t'—t) ng=wv,(t'—t)
which are all further normalized by h where h = max(h, h').
The pairwise features are defined as

G =1t=t] ga=|mi—ms| gr=|n1—ns
|h — 1|
92 = h g5 = |m2 —m3| gg = |na — n3|
gs = D(a,d') g¢=|m1—ms| go=|n1—mns| (17)

where g; denotes temporal distance between two tracklets,
go is the normalized scale difference, g4 . . . g9 describe the
relations between speed and temporal-spatial locations of
two tracklets, g3 is the euclidean distance between two track-
lets” dColorSIFT features proposed in [26].

We introduce a non-linear mapping from the feature space
to the cost space by extending our unary and pairwise fea-
tures to quadratic and exponential terms. Unary feature f*
is extended as (fi, fZ,e(~/)) and pairwise feature g¢ is
(G1s---190,97...g3,e(791) el=99)),

4.3. Further Details

NMS for the Disjoint Paths Model. The above technical
details are identical for the Subgraph Multicut model and
the Disjoint Paths model. However, pre-selection of track-
let hypotheses (tracklet NMS) and post-processing of the
final tracks (tracks NMS) are necessary steps for the Dis-
joint Paths model. In our implementation, these two steps
are performed in a standard way: the tracklet NMS is per-
formed in full analogy to a greedy NMS for people detection,
with respect to the middle frame of the tracklet. For the
NMS of the final tracks, the suppression is performed on
the overlapping fragment of each track, which means that
if the optimal track of a target is obtained, it suppresses all
other suboptimal redundant tracks of the target. The exten-
sive evaluation described in Sec. 6.3 shows that our Disjoint
Paths model with the standard NMS technics achieves re-
sults which are on par with state-of-the-art, indicating that
our Disjoint Paths model is a good baseline to conduct valid
analyses and comparisons.

Tracks from the Subgraph Multicut Model. While the
Disjoint Paths model directly produces tracks for each target
by its definition, our Subgraph Multicut model produces
a connected component for each target. Generating tracks
from connected components is straight-forward: in each
frame, for all the hypotheses which belong to the same com-
ponent, we obtain representative location x,y and scale s
in this frame by averaging all the connected hypotheses
weighted by their probability defined in Eq.12. The final
track of the target is a smoothed trajectory which links the
representative hypotheses across all the frames.
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Figure 5. Performance comparison between the Subgraph Multicut
model and local greedy NMS methods.

5. Subgraph Multicut for Detection NMS

Our Subgraph Multicut model has the property of jointly
addressing the problem of spatial (within-frame) and tempo-
ral (across-frame) associations. Non-Maximum Suppression
(NMS) for detections in single frames, on the other hand, is a
spatial association problem. Therefore, it is straight-forward
to apply the Subgraph Multicut model to the NMS problem.

In full analogy to our Subgraph Multicut tracking model,
for detection hypotheses, the unary feature is the detection
score, the pairwise feature is derived from Eq.17. Given that
we have |t/ — t| = 0, the pairwise feature g is defined as
(Jh — R'|,|m1], |n1]). The final representation of each target
is obtained by weighted averaging of all the detections which
are associated together.

Results. We evaluate the Subgraph Multicut NMS method
on the TUD-Campus and TUD-Crossing datasets [ ], which
are challenging for pedestrian detection due to partial oc-
clusions. Given the detections obtained from DPM [9], two
state-of-the-art NMS methods are used as baselines. (1)
NMS intersection over union (NMS-IOU) [10] and (2) NMS
intersection over minimum (NMS-IOM) [8].

In Fig. 5(a), NMS-IOU with threshold 0.3 gets better pre-
cision and NMS-IOU with threshold 0.5 obtains higher recall.
For NMS-IOM, we use threshold 0.65 which is the best set-
ting for this method [8]. Our Subgraph Multicut model is
able to improve the performance comparing to all the NMS
methods evaluated here. In Fig. 5(b), our Subgraph Multicut
model is on par with NMS-IOM at equal-error-rate, and out-
performs others at high precision. The parameters used in
the Subgraph Multicut NMS model for TUD-Crossing are
learned from TUD-Campus and vice versa.

Summary. Only spatial relations between two detections
are considered in the current pairwise feature, which is a fair
comparison between our Subgraph Multicut model and local
greedy NMS methods. Our model performs better because
(1) associations of detections are obtained in a globally opti-
mal fashion and (2) different spatial relations between two
detections are learned for associations. Note that, our Sub-
graph Multicut model has the potential of leveraging other
information in the pairwise term, e.g., appearance and prior
knowledge about object layout.

o L e
O'U.O 01 02 03 04 05 06 07 08 09 1.

6. Tracking Evaluation

We evaluate the performance of the proposed Subgraph
Multicut model on three publicly available sequences: TUD-
Campus, TUD-Crossing [ 1] and Parkinglot [24]. We per-
form extensive experiments and analysis on TUD-Crossing
and present quantitative, superior results compared to other
competitive methods on three sequences.

We use standard CLEAR MOT as evaluation metrics that
include recall (Rcll), precision (Prcsn), multiple object track-
ing accuracy (MOTA), and multiple object tracking precision
(MOTP) [5]. MOTA is a cumulative measure that combines
missed targets (FN), false alarms (FP), and identity switches
(IDs). MOTP measures overlap between the ground truth and
estimated trajectory. We also report mostly tracked (MT),
partly tracked (PT), mostly lost (ML) and fragmentation
(FM) for measuring track completeness.

We analyze the performance of the proposed methods
in four aspects. (/) We compare the exact integer linear
programming (ILP) solver and the heuristic Kernighan Lin
(KL) solver in terms of run time and MOTA. For the same
tracklet hypotheses, KL obtains nearly the same MOTA com-
pared to ILP, but much faster (Sec. 6.1). (2) We evaluate
the influence of long-term associations both for the Dis-
joint Paths model and the Subgraph Multicut model. By
associating tracklet hypotheses that are temporally far from
each other (up to 30 frames), MOTA is improved for both
models and the number of ID switches is substantially re-
duced (Sec. 6.2). (3) We provide an in-depth analysis of
the Disjoint Paths model and the Subgraph Mutlicut model.
Extensive experimental results indicate that the properties of
leveraging multiple hypotheses per target within and across
frames facilitate the Subgraph MultiCut model to obtain a
more robust association (Sec. 6.3). (4) We show that our
Subgraph Multicut model obtains superior results over the
state-of-the-art (Sec. 6.4).

Training sequences. For the Subgraph Multicut and Dis-
joint Paths models, we need training data to learn the model
parameters 0 and 6’ (Sec 3.3). In our experiments, we use the
parameters learned from TUD-Crossing for the experiments
on TUD-Campus and Parkinglot. For TUD-Crossing, we
use the parameters learned on TUD-Campus.

6.1. Solver Comparison

We start by comparing the performance of the Subgraph
Multicut model optimized by the KL and ILP solvers on
TUD-Campus. In this experiment we vary the number of
initial person hypotheses |V'| by adjusting the threshold 7
of NMS and report tracking performance and convergence
speed of each solver. Results are shown in Tab. 6(a).

Setting 7 to 0.5 results in 277 tracklet hypotheses and
4835 pairwise terms. Both solvers achieve the same MOTA
(79.4%) within comparable runtime (0.86 sec. vs. 0.48 sec.).
Increasing 7 to 0.7 results in 616 tracklet hypotheses. In this
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KL solver ILP solver
[Vl |E| Runtime (s) MOTA Run time (s) MOTA «

277 4835 0.86 79.4 0.48 79.4
616 35424 1.82 80.8 76.39 83.3
1453 199333 12.49 83.3 79986.01 833 70

MOTA

(a) Solver comparison
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Figure 6. (a) Comparison of tracking performance and convergence speed of KL and ILP solvers on TUD-Campus; (b) Long-term association
for the Subgraph Multicut model on TUD-Crossing; MOTA (¢) and ID switches (d) comparison for the Subgraph Multicut model and the

Disjoint Paths model on TUD-Crossing.

regime ILP achieves better MOTA, but is 40 times slower
than KL. Omitting NMS further increases the number of
tracklet hypotheses to 1453. KL achieves the same MOTA
as ILP in 12.5 seconds, compared to ILP that takes 22 hours.
These results indicate that the KL algorithm achieves results
comparable to ILP but significantly faster. For efficiency, we
apply the KL solver for the Subgraph Multicut Problem in
the following experiments. Note that reducing amount of
NMS leads to improved performance, likely because NMS
makes local decisions on the level of individual frames that
are potentially suboptimal in the context of global optimiza-
tion.

6.2. Long-Term Association

Next, we evaluate the robustness of the Disjoint Paths
and Subgraph Multicut models with respect to long-term
associations between hypotheses. To that end we apply both
models to graphs that connect each tracklet hypothesis to
every other tracklet hypothesis within a neighborhood of 30
frames. Intuitively enabling such long-range connectivity
should be helpful for misdetection and occlusion cases that
otherwise result in ID switches. We conduct this experiment
on TUD-Crossing that has a large number of people that
frequently occlude each other.

The baseline model in this comparison corresponds to a
graph in which each hypothesis is connected to hypotheses
in the next and previous frames only. This baseline model
for the Disjoint Paths formulation results in 66.8% MOTA.
Adding long-range connections improves the performance of
the Disjoint Paths model to 71.8% and reduces the number
of ID switches from 34 to 18. The results for the Subgraph
Multicut model are shown in Fig. 6(b). The performance
improves from 72.5% to 80.9% MOTA, and the number of
ID switches is reduced from 27 to 1. This result indicates the
importance of long-term associations across frames which
the Subgraph Multicut model can leverage.

6.3. Subgraph Multicut vs. Disjoint Paths Models

The Disjoint Paths model achieves results on par with
the state-of-the-art, as shown in Tab. 2 and Tab. 3 (71.8%
MOTA for TUD-Crossing, 86.6% MOTA for ParkingLot).

2Result on frame 346-989 using the parameters trained on frame 1-345.

This suggests that the Disjoint Paths model is a good baseline
to conduct a detailed analysis. Note that both models are
based on the same set of tracklet hypotheses as well as unary
and pairwise terms as detailed above.

An important difference between the Disjoint Paths and
Subgraph Multicut models is that the Disjoint path model im-
poses mutual exclusion constraints when connecting tracklet
hypotheses. This is in contrast to the Subgraph Multicut
model that allows each tracklet hypothesis to associate with
an appropriate number of tracklet hypotheses in the same
and other frames resulting in more robust associations.

When the tracklet hypotheses are pre-selected by perform-
ing NMS, as shown in Fig 6(c), with 7 = 0.5, the Disjoint
Paths model performs best. However, the model is sensi-
tive to the NMS threshold. Decreasing the level of NMS
or skipping the NMS step altogether results in a substantial
performance drop for MOTA (from 71.8% to 56.9%). Ad-
ditionally, the number of ID switches increases from 18 to
33 (red line in Fig 6(d)). This is an inherent limitation of
the Disjoint Paths model resulting from the mutual exclu-
sion constraints. This and similar models require both pre-
processing of person hypotheses (detection/tracklets-NMS)
as well as post-processing of tracks (tracks-NMS) to obtain
good performance.

In contrast, decreasing the level of NMS improves the per-
formance of the Subgraph Multicut model constantly from
76.0% MOTA to 80.9% (blue curve in Fig. 6(c)). This is due
to the ability of the Subgraph Multicut model to associate hy-
potheses jointly across space and time, thereby aggregating
information about the targets which results in more robust
associations over the whole sequence.

With respect to ID switches, the Subgraph Multicut model
constantly outperforms the Disjoint Paths model for all NMS
thresholds by a large margin as shown in Fig. 6(d). This
performance difference is explained by the fact that finding a
disjoint path for a target precisely in a graph across all frames
is a substantially harder problem than clustering nodes that
correspond to the same target.

6.4. Comparison to the State-of-the-art

We now compare our approach to recent approaches on
TUD-Crossing, TUD-Campus, and “Parking Lot” datasets.
TUD-Campus and TUD-Crossing show people from the cam-
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Method

Rcll Precsn FAR GT MT PT ML FP FN IDs

FM MOTA MOTP MOTAL

Pirsiavashetal. [14] 666 955 0.15 8 3 4 1 11 118 10 13 60.6 782 63.2
Breitenstein et al. [0] - - - - - - - - - 2 - 733 670 -
Segal et al. [15] - - - -5 - - - - 0 3 820 740 -
Subgraph Multicut 838 993 003 8 5 2 1 2 58 0 1 833 769 833
Table 1. Tracking performance on TUD-Campus.
Method Rcll Presn FAR GT MT PT ML FP EN IDs FM MOTA MOTP MOTAL
Pirsiavash etal. [14] 739 950 021 13 6 7 0 43 286 50 42 655 768 699
Breitenstein et al. [0] - - - - - - - - - 2 - 843 171.0 -
Segal etal. [15] - - - -7 - - - - 2 12 740 76.0 -
Tang et al. [18] 82.7 93.9 - - 7 - 1 - - - 76.0 78.6 -
Zamir et al. [24] 884 962 0.19 13 9 4 0 38 128 2 5 848 745 849
Disjoint Paths 745 986 006 13 6 7 0 12 281 18 18 71.8 777 733
Subgraph Multicut 820 98.8 005 13 8 3 2 11 198 1 1 809 780 81.0
Table 2. Tracking performance on TUD-Crossing.

Method Rcll Presn FAR GT MT PT ML FP FEN IDs FM MOTA MOTP MOTAL
Pirsiavashetal. [14] 694 978 0.16 14 2 1 - 39 754 52 60 657 753 -
Shuetal. [17] - - - - - - - - - - - 193 741 -
Wen et al. [21] 90.8 984 0.16 14 11 - 0 39 227 21 23 884 819 -
Tang et al. [18] 91.0 98.5 - - - - - - - - - 893 717 -
Zamir et al. [24] 853 982 002 14 - - - - - - - 904 741 -
Disjoint Paths 89.0 985 0.14 14 11 3 0 34 272 25 24 866 767 875
Subgraph MultiCut  96.1 954 045 14 13 1 0 113 95 5 18 914 774 915
Subgraph MultiCut* 96.9 97.0 037 14 13 1 0 46 47 1 6 938 783 939

Table 3. Tracking performance on ParkingLot.

era at low viewpoint resulting in frequent occlusions, and
TUD-Campus also includes substantial variation in people
scale. The Parking Lot sequence is captured in a surveil-
lance setting with a camera elevated above the ground that
results in pedestrians’ walking patterns substantially differ-
ent compared to TUD-Campus and TUD-Crossing. Tables 1,
2 and 3 show results for TUD-Campus, TUD-Crossing and
“Parking Lot” respectively. The ground truth tracks used in
all experiments are from [3]. Our Subgraph Multicut model
achieves state-of-the-art MOTA results overall. In partic-
ular the number of ID switches is substantially improved
compared to other approaches. [24] also reports tracking
results on TUD-Crossing. Based on the tracking results they
provided to us, we obtain 84.8% MOTA and 2 ID Switches
on the ground truth from [3].

On the Parkinglot sequence, the Disjoint Paths model
again performs on par with state-of-the-art (86.6% MOTA),
suggesting that it is a good baseline to conduct comparison
and analysis. With our Subgraph Multicut Model and param-
eters learned from TUD-Crossing, we achieve 91.4% MOTA
and 5 ID Switches. To evaluate sensitivity of our model to
particular training set we split the “Parking Lot” sequence
into to training(1-345) and testing(346-989) sequences, and
retrain parameters of our pairwise and unary terms on the
training subset. This results in slight improvement in perfor-

mance compared to the model with parameters trained on
TUD-Crossing. We obtain 93.8% MOTA and ID switches
are reduced to 1, as shown in the last row of Tab. 3.

7. Conclusion

In this work, we propose to formulate multi-target track-
ing as a Minimum Cost Subgraph Multicut Problem. In con-
trast to the Minimum Cost Disjoint Paths formulation, which
selects a set of disjoint paths as tracks and which is similar in
spirit to many state-of-the-art methods, the Subgraph Multi-
cut model selects and clusters all suitable hypotheses for each
target jointly in space and time. Experiments show that our
Subgraph Multicut model improves the multi-target tracking
performance on several datasets underlying both the useful-
ness as well as the applicability of the proposed formulation.
We also show initial results to the classic problem of Non-
Maximum Suppression that without any changes achieves
performance on par with top-performing NMS-schemes. In
the future we will explore more powerful unary and pairwise
terms to further improve NMS and tracking performance.
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